|
|
@@ -0,0 +1,443 @@
|
|
|
+///////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
+// OpenGL Mathematics Copyright (c) 2005 - 2014 G-Truc Creation (www.g-truc.net)
|
|
|
+///////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
+// Created : 2014-10-27
|
|
|
+// Updated : 2014-10-27
|
|
|
+// Licence : This source is under MIT licence
|
|
|
+// File : test/core/func_integer_find_lsb.cpp
|
|
|
+///////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
+
|
|
|
+// This has the programs for computing the number of leading zeros
|
|
|
+// in a word.
|
|
|
+// Max line length is 57, to fit in hacker.book.
|
|
|
+// Compile with g++, not gcc.
|
|
|
+#include <cstdio>
|
|
|
+#include <cstdlib> // To define "exit", req'd by XLC.
|
|
|
+#include <ctime> // To define "exit", req'd by XLC.
|
|
|
+
|
|
|
+#define LE 1 // 1 for little-endian, 0 for big-endian.
|
|
|
+
|
|
|
+int pop(unsigned x) {
|
|
|
+ x = x - ((x >> 1) & 0x55555555);
|
|
|
+ x = (x & 0x33333333) + ((x >> 2) & 0x33333333);
|
|
|
+ x = (x + (x >> 4)) & 0x0F0F0F0F;
|
|
|
+ x = x + (x << 8);
|
|
|
+ x = x + (x << 16);
|
|
|
+ return x >> 24;
|
|
|
+}
|
|
|
+
|
|
|
+int nlz1(unsigned x) {
|
|
|
+ int n;
|
|
|
+
|
|
|
+ if (x == 0) return(32);
|
|
|
+ n = 0;
|
|
|
+ if (x <= 0x0000FFFF) {n = n +16; x = x <<16;}
|
|
|
+ if (x <= 0x00FFFFFF) {n = n + 8; x = x << 8;}
|
|
|
+ if (x <= 0x0FFFFFFF) {n = n + 4; x = x << 4;}
|
|
|
+ if (x <= 0x3FFFFFFF) {n = n + 2; x = x << 2;}
|
|
|
+ if (x <= 0x7FFFFFFF) {n = n + 1;}
|
|
|
+ return n;
|
|
|
+}
|
|
|
+
|
|
|
+int nlz1a(unsigned x) {
|
|
|
+ int n;
|
|
|
+
|
|
|
+/* if (x == 0) return(32); */
|
|
|
+ if ((int)x <= 0) return (~x >> 26) & 32;
|
|
|
+ n = 1;
|
|
|
+ if ((x >> 16) == 0) {n = n +16; x = x <<16;}
|
|
|
+ if ((x >> 24) == 0) {n = n + 8; x = x << 8;}
|
|
|
+ if ((x >> 28) == 0) {n = n + 4; x = x << 4;}
|
|
|
+ if ((x >> 30) == 0) {n = n + 2; x = x << 2;}
|
|
|
+ n = n - (x >> 31);
|
|
|
+ return n;
|
|
|
+}
|
|
|
+// On basic Risc, 12 to 20 instructions.
|
|
|
+
|
|
|
+int nlz2(unsigned x) {
|
|
|
+ unsigned y;
|
|
|
+ int n;
|
|
|
+
|
|
|
+ n = 32;
|
|
|
+ y = x >>16; if (y != 0) {n = n -16; x = y;}
|
|
|
+ y = x >> 8; if (y != 0) {n = n - 8; x = y;}
|
|
|
+ y = x >> 4; if (y != 0) {n = n - 4; x = y;}
|
|
|
+ y = x >> 2; if (y != 0) {n = n - 2; x = y;}
|
|
|
+ y = x >> 1; if (y != 0) return n - 2;
|
|
|
+ return n - x;
|
|
|
+}
|
|
|
+
|
|
|
+// As above but coded as a loop for compactness:
|
|
|
+// 23 to 33 basic Risc instructions.
|
|
|
+int nlz2a(unsigned x) {
|
|
|
+ unsigned y;
|
|
|
+ int n, c;
|
|
|
+
|
|
|
+ n = 32;
|
|
|
+ c = 16;
|
|
|
+ do {
|
|
|
+ y = x >> c; if (y != 0) {n = n - c; x = y;}
|
|
|
+ c = c >> 1;
|
|
|
+ } while (c != 0);
|
|
|
+ return n - x;
|
|
|
+}
|
|
|
+
|
|
|
+int nlz3(int x) {
|
|
|
+ int y, n;
|
|
|
+
|
|
|
+ n = 0;
|
|
|
+ y = x;
|
|
|
+L: if (x < 0) return n;
|
|
|
+ if (y == 0) return 32 - n;
|
|
|
+ n = n + 1;
|
|
|
+ x = x << 1;
|
|
|
+ y = y >> 1;
|
|
|
+ goto L;
|
|
|
+}
|
|
|
+
|
|
|
+int nlz4(unsigned x) {
|
|
|
+ int y, m, n;
|
|
|
+
|
|
|
+ y = -(x >> 16); // If left half of x is 0,
|
|
|
+ m = (y >> 16) & 16; // set n = 16. If left half
|
|
|
+ n = 16 - m; // is nonzero, set n = 0 and
|
|
|
+ x = x >> m; // shift x right 16.
|
|
|
+ // Now x is of the form 0000xxxx.
|
|
|
+ y = x - 0x100; // If positions 8-15 are 0,
|
|
|
+ m = (y >> 16) & 8; // add 8 to n and shift x left 8.
|
|
|
+ n = n + m;
|
|
|
+ x = x << m;
|
|
|
+
|
|
|
+ y = x - 0x1000; // If positions 12-15 are 0,
|
|
|
+ m = (y >> 16) & 4; // add 4 to n and shift x left 4.
|
|
|
+ n = n + m;
|
|
|
+ x = x << m;
|
|
|
+
|
|
|
+ y = x - 0x4000; // If positions 14-15 are 0,
|
|
|
+ m = (y >> 16) & 2; // add 2 to n and shift x left 2.
|
|
|
+ n = n + m;
|
|
|
+ x = x << m;
|
|
|
+
|
|
|
+ y = x >> 14; // Set y = 0, 1, 2, or 3.
|
|
|
+ m = y & ~(y >> 1); // Set m = 0, 1, 2, or 2 resp.
|
|
|
+ return n + 2 - m;
|
|
|
+}
|
|
|
+
|
|
|
+int nlz5(unsigned x) {
|
|
|
+ int pop(unsigned x);
|
|
|
+
|
|
|
+ x = x | (x >> 1);
|
|
|
+ x = x | (x >> 2);
|
|
|
+ x = x | (x >> 4);
|
|
|
+ x = x | (x >> 8);
|
|
|
+ x = x | (x >>16);
|
|
|
+ return pop(~x);
|
|
|
+}
|
|
|
+
|
|
|
+/* The four programs below are not valid ANSI C programs. This is
|
|
|
+because they refer to the same storage locations as two different types.
|
|
|
+However, they work with xlc/AIX, gcc/AIX, and gcc/NT. If you try to
|
|
|
+code them more compactly by declaring a variable xx to be "double," and
|
|
|
+then using
|
|
|
+
|
|
|
+ n = 1054 - (*((unsigned *)&xx + LE) >> 20);
|
|
|
+
|
|
|
+then you are violating not only the rule above, but also the ANSI C
|
|
|
+rule that pointer arithmetic can be performed only on pointers to
|
|
|
+array elements.
|
|
|
+ When coded with the above statement, the program fails with xlc,
|
|
|
+gcc/AIX, and gcc/NT, at some optimization levels.
|
|
|
+ BTW, these programs use the "anonymous union" feature of C++, not
|
|
|
+available in C. */
|
|
|
+
|
|
|
+int nlz6(unsigned k) {
|
|
|
+ union {
|
|
|
+ unsigned asInt[2];
|
|
|
+ double asDouble;
|
|
|
+ };
|
|
|
+ int n;
|
|
|
+
|
|
|
+ asDouble = (double)k + 0.5;
|
|
|
+ n = 1054 - (asInt[LE] >> 20);
|
|
|
+ return n;
|
|
|
+}
|
|
|
+
|
|
|
+int nlz7(unsigned k) {
|
|
|
+ union {
|
|
|
+ unsigned asInt[2];
|
|
|
+ double asDouble;
|
|
|
+ };
|
|
|
+ int n;
|
|
|
+
|
|
|
+ asDouble = (double)k;
|
|
|
+ n = 1054 - (asInt[LE] >> 20);
|
|
|
+ n = (n & 31) + (n >> 9);
|
|
|
+ return n;
|
|
|
+}
|
|
|
+
|
|
|
+ /* In single precision, round-to-nearest mode, the basic method fails for:
|
|
|
+ k = 0, k = 01FFFFFF, 03FFFFFE <= k <= 03FFFFFF,
|
|
|
+ 07FFFFFC <= k <= 07FFFFFF,
|
|
|
+ 0FFFFFF8 <= k <= 0FFFFFFF,
|
|
|
+ ...
|
|
|
+ 7FFFFFC0 <= k <= 7FFFFFFF.
|
|
|
+ FFFFFF80 <= k <= FFFFFFFF.
|
|
|
+ For k = 0 it gives 158, and for the other values it is too low by 1. */
|
|
|
+
|
|
|
+int nlz8(unsigned k) {
|
|
|
+ union {
|
|
|
+ unsigned asInt;
|
|
|
+ float asFloat;
|
|
|
+ };
|
|
|
+ int n;
|
|
|
+
|
|
|
+ k = k & ~(k >> 1); /* Fix problem with rounding. */
|
|
|
+ asFloat = (float)k + 0.5f;
|
|
|
+ n = 158 - (asInt >> 23);
|
|
|
+ return n;
|
|
|
+}
|
|
|
+
|
|
|
+/* The example below shows how to make a macro for nlz. It uses an
|
|
|
+extension to the C and C++ languages that is provided by the GNU C/C++
|
|
|
+compiler, namely, that of allowing statements and declarations in
|
|
|
+expressions (see "Using and Porting GNU CC", by Richard M. Stallman
|
|
|
+(1998). The underscores are necessary to protect against the
|
|
|
+possibility that the macro argument will conflict with one of its local
|
|
|
+variables, e.g., NLZ(k). */
|
|
|
+
|
|
|
+int nlz9(unsigned k) {
|
|
|
+ union {
|
|
|
+ unsigned asInt;
|
|
|
+ float asFloat;
|
|
|
+ };
|
|
|
+ int n;
|
|
|
+
|
|
|
+ k = k & ~(k >> 1); /* Fix problem with rounding. */
|
|
|
+ asFloat = (float)k;
|
|
|
+ n = 158 - (asInt >> 23);
|
|
|
+ n = (n & 31) + (n >> 6); /* Fix problem with k = 0. */
|
|
|
+ return n;
|
|
|
+}
|
|
|
+
|
|
|
+/* Below are three nearly equivalent programs for computing the number
|
|
|
+of leading zeros in a word. This material is not in HD, but may be in a
|
|
|
+future edition.
|
|
|
+ Immediately below is Robert Harley's algorithm, found at the
|
|
|
+comp.arch newsgroup entry dated 7/12/96, pointed out to me by Norbert
|
|
|
+Juffa.
|
|
|
+ Table entries marked "u" are unused. 14 ops including a multiply,
|
|
|
+plus an indexed load.
|
|
|
+ The smallest multiplier that works is 0x045BCED1 = 17*65*129*513 (all
|
|
|
+of form 2**k + 1). There are no multipliers of three terms of the form
|
|
|
+2**k +- 1 that work, with a table size of 64 or 128. There are some,
|
|
|
+with a table size of 64, if you precede the multiplication with x = x -
|
|
|
+(x >> 1), but that seems less elegant. There are also some if you use a
|
|
|
+table size of 256, the smallest is 0x01033CBF = 65*255*1025 (this would
|
|
|
+save two instructions in the form of this algorithm with the
|
|
|
+multiplication expanded into shifts and adds, but the table size is
|
|
|
+getting a bit large). */
|
|
|
+
|
|
|
+#define u 99
|
|
|
+int nlz10(unsigned x) {
|
|
|
+
|
|
|
+ static char table[64] =
|
|
|
+ {32,31, u,16, u,30, 3, u, 15, u, u, u,29,10, 2, u,
|
|
|
+ u, u,12,14,21, u,19, u, u,28, u,25, u, 9, 1, u,
|
|
|
+ 17, u, 4, u, u, u,11, u, 13,22,20, u,26, u, u,18,
|
|
|
+ 5, u, u,23, u,27, u, 6, u,24, 7, u, 8, u, 0, u};
|
|
|
+
|
|
|
+ x = x | (x >> 1); // Propagate leftmost
|
|
|
+ x = x | (x >> 2); // 1-bit to the right.
|
|
|
+ x = x | (x >> 4);
|
|
|
+ x = x | (x >> 8);
|
|
|
+ x = x | (x >>16);
|
|
|
+ x = x*0x06EB14F9; // Multiplier is 7*255**3.
|
|
|
+ return table[x >> 26];
|
|
|
+}
|
|
|
+
|
|
|
+/* Harley's algorithm with multiply expanded.
|
|
|
+19 elementary ops plus an indexed load. */
|
|
|
+
|
|
|
+int nlz10a(unsigned x) {
|
|
|
+
|
|
|
+ static char table[64] =
|
|
|
+ {32,31, u,16, u,30, 3, u, 15, u, u, u,29,10, 2, u,
|
|
|
+ u, u,12,14,21, u,19, u, u,28, u,25, u, 9, 1, u,
|
|
|
+ 17, u, 4, u, u, u,11, u, 13,22,20, u,26, u, u,18,
|
|
|
+ 5, u, u,23, u,27, u, 6, u,24, 7, u, 8, u, 0, u};
|
|
|
+
|
|
|
+ x = x | (x >> 1); // Propagate leftmost
|
|
|
+ x = x | (x >> 2); // 1-bit to the right.
|
|
|
+ x = x | (x >> 4);
|
|
|
+ x = x | (x >> 8);
|
|
|
+ x = x | (x >> 16);
|
|
|
+ x = (x << 3) - x; // Multiply by 7.
|
|
|
+ x = (x << 8) - x; // Multiply by 255.
|
|
|
+ x = (x << 8) - x; // Again.
|
|
|
+ x = (x << 8) - x; // Again.
|
|
|
+ return table[x >> 26];
|
|
|
+}
|
|
|
+
|
|
|
+/* Julius Goryavsky's version of Harley's algorithm.
|
|
|
+17 elementary ops plus an indexed load, if the machine
|
|
|
+has "and not." */
|
|
|
+
|
|
|
+int nlz10b(unsigned x) {
|
|
|
+
|
|
|
+ static char table[64] =
|
|
|
+ {32,20,19, u, u,18, u, 7, 10,17, u, u,14, u, 6, u,
|
|
|
+ u, 9, u,16, u, u, 1,26, u,13, u, u,24, 5, u, u,
|
|
|
+ u,21, u, 8,11, u,15, u, u, u, u, 2,27, 0,25, u,
|
|
|
+ 22, u,12, u, u, 3,28, u, 23, u, 4,29, u, u,30,31};
|
|
|
+
|
|
|
+ x = x | (x >> 1); // Propagate leftmost
|
|
|
+ x = x | (x >> 2); // 1-bit to the right.
|
|
|
+ x = x | (x >> 4);
|
|
|
+ x = x | (x >> 8);
|
|
|
+ x = x & ~(x >> 16);
|
|
|
+ x = x*0xFD7049FF; // Activate this line or the following 3.
|
|
|
+// x = (x << 9) - x; // Multiply by 511.
|
|
|
+// x = (x << 11) - x; // Multiply by 2047.
|
|
|
+// x = (x << 14) - x; // Multiply by 16383.
|
|
|
+ return table[x >> 26];
|
|
|
+}
|
|
|
+
|
|
|
+int errors;
|
|
|
+void error(int x, int y) {
|
|
|
+ errors = errors + 1;
|
|
|
+ printf("Error for x = %08x, got %d\n", x, y);
|
|
|
+}
|
|
|
+
|
|
|
+int main()
|
|
|
+{
|
|
|
+ int i, n;
|
|
|
+ static unsigned test[] = {0,32, 1,31, 2,30, 3,30, 4,29, 5,29, 6,29,
|
|
|
+ 7,29, 8,28, 9,28, 16,27, 32,26, 64,25, 128,24, 255,24, 256,23,
|
|
|
+ 512,22, 1024,21, 2048,20, 4096,19, 8192,18, 16384,17, 32768,16,
|
|
|
+ 65536,15, 0x20000,14, 0x40000,13, 0x80000,12, 0x100000,11,
|
|
|
+ 0x200000,10, 0x400000,9, 0x800000,8, 0x1000000,7, 0x2000000,6,
|
|
|
+ 0x4000000,5, 0x8000000,4, 0x0FFFFFFF,4, 0x10000000,3,
|
|
|
+ 0x3000FFFF,2, 0x50003333,1, 0x7FFFFFFF,1, 0x80000000,0,
|
|
|
+ 0xFFFFFFFF,0};
|
|
|
+ std::size_t const Count = 10000000;
|
|
|
+
|
|
|
+ n = sizeof(test)/4;
|
|
|
+
|
|
|
+ std::clock_t TimestampBeg = 0;
|
|
|
+ std::clock_t TimestampEnd = 0;
|
|
|
+
|
|
|
+ TimestampBeg = std::clock();
|
|
|
+ for (std::size_t k = 0; k < Count; ++k)
|
|
|
+ for (i = 0; i < n; i += 2) {
|
|
|
+ if (nlz1(test[i]) != test[i+1]) error(test[i], nlz1(test[i]));}
|
|
|
+ TimestampEnd = std::clock();
|
|
|
+
|
|
|
+ printf("nlz1: %d clocks\n", TimestampEnd - TimestampBeg);
|
|
|
+
|
|
|
+ TimestampBeg = std::clock();
|
|
|
+ for (std::size_t k = 0; k < Count; ++k)
|
|
|
+ for (i = 0; i < n; i += 2) {
|
|
|
+ if (nlz1a(test[i]) != test[i+1]) error(test[i], nlz1a(test[i]));}
|
|
|
+ TimestampEnd = std::clock();
|
|
|
+
|
|
|
+ printf("nlz1a: %d clocks\n", TimestampEnd - TimestampBeg);
|
|
|
+
|
|
|
+ TimestampBeg = std::clock();
|
|
|
+ for (std::size_t k = 0; k < Count; ++k)
|
|
|
+ for (i = 0; i < n; i += 2) {
|
|
|
+ if (nlz2(test[i]) != test[i+1]) error(test[i], nlz2(test[i]));}
|
|
|
+ TimestampEnd = std::clock();
|
|
|
+
|
|
|
+ printf("nlz2: %d clocks\n", TimestampEnd - TimestampBeg);
|
|
|
+
|
|
|
+ TimestampBeg = std::clock();
|
|
|
+ for (std::size_t k = 0; k < Count; ++k)
|
|
|
+ for (i = 0; i < n; i += 2) {
|
|
|
+ if (nlz2a(test[i]) != test[i+1]) error(test[i], nlz2a(test[i]));}
|
|
|
+ TimestampEnd = std::clock();
|
|
|
+
|
|
|
+ printf("nlz2a: %d clocks\n", TimestampEnd - TimestampBeg);
|
|
|
+
|
|
|
+ TimestampBeg = std::clock();
|
|
|
+ for (std::size_t k = 0; k < Count; ++k)
|
|
|
+ for (i = 0; i < n; i += 2) {
|
|
|
+ if (nlz3(test[i]) != test[i+1]) error(test[i], nlz3(test[i]));}
|
|
|
+ TimestampEnd = std::clock();
|
|
|
+
|
|
|
+ printf("nlz3: %d clocks\n", TimestampEnd - TimestampBeg);
|
|
|
+
|
|
|
+ TimestampBeg = std::clock();
|
|
|
+ for (std::size_t k = 0; k < Count; ++k)
|
|
|
+ for (i = 0; i < n; i += 2) {
|
|
|
+ if (nlz4(test[i]) != test[i+1]) error(test[i], nlz4(test[i]));}
|
|
|
+ TimestampEnd = std::clock();
|
|
|
+
|
|
|
+ printf("nlz4: %d clocks\n", TimestampEnd - TimestampBeg);
|
|
|
+
|
|
|
+ TimestampBeg = std::clock();
|
|
|
+ for (std::size_t k = 0; k < Count; ++k)
|
|
|
+ for (i = 0; i < n; i += 2) {
|
|
|
+ if (nlz5(test[i]) != test[i+1]) error(test[i], nlz5(test[i]));}
|
|
|
+ TimestampEnd = std::clock();
|
|
|
+
|
|
|
+ printf("nlz5: %d clocks\n", TimestampEnd - TimestampBeg);
|
|
|
+
|
|
|
+ TimestampBeg = std::clock();
|
|
|
+ for (std::size_t k = 0; k < Count; ++k)
|
|
|
+ for (i = 0; i < n; i += 2) {
|
|
|
+ if (nlz6(test[i]) != test[i+1]) error(test[i], nlz6(test[i]));}
|
|
|
+ TimestampEnd = std::clock();
|
|
|
+
|
|
|
+ printf("nlz6: %d clocks\n", TimestampEnd - TimestampBeg);
|
|
|
+
|
|
|
+ TimestampBeg = std::clock();
|
|
|
+ for (std::size_t k = 0; k < Count; ++k)
|
|
|
+ for (i = 0; i < n; i += 2) {
|
|
|
+ if (nlz7(test[i]) != test[i+1]) error(test[i], nlz7(test[i]));}
|
|
|
+ TimestampEnd = std::clock();
|
|
|
+
|
|
|
+ printf("nlz7: %d clocks\n", TimestampEnd - TimestampBeg);
|
|
|
+
|
|
|
+ TimestampBeg = std::clock();
|
|
|
+ for (std::size_t k = 0; k < Count; ++k)
|
|
|
+ for (i = 0; i < n; i += 2) {
|
|
|
+ if (nlz8(test[i]) != test[i+1]) error(test[i], nlz8(test[i]));}
|
|
|
+ TimestampEnd = std::clock();
|
|
|
+
|
|
|
+ printf("nlz8: %d clocks\n", TimestampEnd - TimestampBeg);
|
|
|
+
|
|
|
+ TimestampBeg = std::clock();
|
|
|
+ for (std::size_t k = 0; k < Count; ++k)
|
|
|
+ for (i = 0; i < n; i += 2) {
|
|
|
+ if (nlz9(test[i]) != test[i+1]) error(test[i], nlz9(test[i]));}
|
|
|
+ TimestampEnd = std::clock();
|
|
|
+
|
|
|
+ printf("nlz9: %d clocks\n", TimestampEnd - TimestampBeg);
|
|
|
+
|
|
|
+ TimestampBeg = std::clock();
|
|
|
+ for (std::size_t k = 0; k < Count; ++k)
|
|
|
+ for (i = 0; i < n; i += 2) {
|
|
|
+ if (nlz10(test[i]) != test[i+1]) error(test[i], nlz10(test[i]));}
|
|
|
+ TimestampEnd = std::clock();
|
|
|
+
|
|
|
+ printf("nlz10: %d clocks\n", TimestampEnd - TimestampBeg);
|
|
|
+
|
|
|
+ TimestampBeg = std::clock();
|
|
|
+ for (std::size_t k = 0; k < Count; ++k)
|
|
|
+ for (i = 0; i < n; i += 2) {
|
|
|
+ if (nlz10a(test[i]) != test[i+1]) error(test[i], nlz10a(test[i]));}
|
|
|
+ TimestampEnd = std::clock();
|
|
|
+
|
|
|
+ printf("nlz10a: %d clocks\n", TimestampEnd - TimestampBeg);
|
|
|
+
|
|
|
+ TimestampBeg = std::clock();
|
|
|
+ for (std::size_t k = 0; k < Count; ++k)
|
|
|
+ for (i = 0; i < n; i += 2) {
|
|
|
+ if (nlz10b(test[i]) != test[i+1]) error(test[i], nlz10b(test[i]));}
|
|
|
+ TimestampEnd = std::clock();
|
|
|
+
|
|
|
+ printf("nlz10b: %d clocks\n", TimestampEnd - TimestampBeg);
|
|
|
+
|
|
|
+ if (errors == 0)
|
|
|
+ printf("Passed all %d cases.\n", sizeof(test)/8);
|
|
|
+}
|