#WebRTC #networking #p2p #tcp #udp #rtcpeerconnection

Paul-Louis Ageneau 38b30f65d9 Reordered C API functions for clarity há 4 anos atrás
.github 52494f4855 Fixed dependabot following #367 há 4 anos atrás
cmake 03e7c1cdc7 Replaced FindNettle.cmake to fix MacOS build há 4 anos atrás
deps cbb6863955 Updated libjuice to v0.8.1 há 4 anos atrás
examples 2f67f71968 Fixes to build for iOS há 4 anos atrás
include 38b30f65d9 Reordered C API functions for clarity há 4 anos atrás
src 38b30f65d9 Reordered C API functions for clarity há 4 anos atrás
test 788d1f5fb7 Updated TURN test to use iceTransportPolicy há 4 anos atrás
.clang-format 17f99252cd clang-format does not support python há 5 anos atrás
.editorconfig ea8cd06964 Converted web example to WebSocket signaling há 5 anos atrás
.gitignore 4ba8c9e3e8 Move uwp-tests and uwp-benchmark to uwp/tests and uwp/benchmark. há 4 anos atrás
.gitmodules 4cf5f8356a Changed plog URL to https://github.com/SergiusTheBest/plog.git há 4 anos atrás
BUILDING.md f3f8ecfe3b Enhaned Readme and moved building instructions to BUILDING.md há 4 anos atrás
CMakeLists.txt ea03e3c7f7 Merge branch 'v0.13' há 4 anos atrás
DOC.md 38b30f65d9 Reordered C API functions for clarity há 4 anos atrás
Jamfile 6cea78c618 support finding openssl form homebrew on M1 Macs há 4 anos atrás
LICENSE f844c71e0f Initial commit há 6 anos atrás
Makefile ee37c9bae4 Fixed build with Makefile há 4 anos atrás
README.md 3b0058365a Added external link to Violet há 4 anos atrás

README.md

libdatachannel - C/C++ WebRTC lightweight library

libdatachannel is a standalone implementation of WebRTC Data Channels, WebRTC Media Transport, and WebSockets in C++17 with C bindings for POSIX platforms (including GNU/Linux, Android, and Apple macOS) and Microsoft Windows.

The library aims at being both straightforward and lightweight with minimal external dependencies, to enable direct connectivity between native applications and web browsers without the pain of importing Google's bloated reference library. The interface consists of somewhat simplified versions of the JavaScript WebRTC and WebSocket APIs present in browsers, in order to ease the design of cross-environment applications.

It can be compiled with multiple backends:

  • The security layer can be provided through OpenSSL or GnuTLS.
  • The connectivity for WebRTC can be provided through my ad-hoc ICE library libjuice as submodule or through libnice.

The WebRTC stack is fully compatible with Firefox and Chromium, see Compatibility below.

Licensed under LGPLv2, see LICENSE.

Dependencies

Only GnuTLS or OpenSSL are necessary. Optionally, libnice can be selected as an alternative ICE backend instead of libjuice.

Submodules:

Building

See BUILDING.md for building instructions.

Examples

See examples for complete usage examples with signaling server (under GPLv2).

Additionnaly, you might want to have a look at the C API documentation.

Signal a PeerConnection

#include "rtc/rtc.hpp"
rtc::Configuration config;
config.iceServers.emplace_back("mystunserver.org:3478");

rtc::PeerConection pc(config);

pc.onLocalDescription([](rtc::Description sdp) {
    // Send the SDP to the remote peer
    MY_SEND_DESCRIPTION_TO_REMOTE(string(sdp));
});

pc.onLocalCandidate([](rtc::Candidate candidate) {
    // Send the candidate to the remote peer
    MY_SEND_CANDIDATE_TO_REMOTE(candidate.candidate(), candidate.mid());
});

MY_ON_RECV_DESCRIPTION_FROM_REMOTE([&pc](string sdp) {
    pc.setRemoteDescription(rtc::Description(sdp));
});

MY_ON_RECV_CANDIDATE_FROM_REMOTE([&pc](string candidate, string mid) {
    pc.addRemoteCandidate(rtc::Candidate(candidate, mid));
});

Observe the PeerConnection state

pc.onStateChange([](rtc::PeerConnection::State state) {
    std::cout << "State: " << state << std::endl;
});

pc.onGatheringStateChange([](rtc::PeerConnection::GatheringState state) {
    std::cout << "Gathering state: " << state << std::endl;
});

Create a DataChannel

auto dc = pc.createDataChannel("test");

dc->onOpen([]() {
    std::cout << "Open" << std::endl;
});

dc->onMessage([](std::variant<binary, string> message) {
    if (std::holds_alternative<string>(message)) {
        std::cout << "Received: " << get<string>(message) << std::endl;
    }
});

Receive a DataChannel

std::shared_ptr<rtc::DataChannel> dc;
pc.onDataChannel([&dc](std::shared_ptr<rtc::DataChannel> incoming) {
    dc = incoming;
    dc->send("Hello world!");
});

Open a WebSocket

rtc::WebSocket ws;

ws.onOpen([]() {
    std::cout << "WebSocket open" << std::endl;
});

ws.onMessage([](std::variant<binary, string> message) {
    if (std::holds_alternative<string>(message)) {
        std::cout << "WebSocket received: " << std::get<string>(message) << endl;
    }
});

ws.open("wss://my.websocket/service");

Compatibility

The library implements the following communication protocols:

WebRTC Data Channels and Media Transport

The library implements WebRTC Peer Connections with both Data Channels and Media Transport. Media transport is optional and can be disabled at compile time.

Protocol stack:

Features:

Note only SDP BUNDLE mode is supported for media multiplexing (RFC8843). The behavior is equivalent to the JSEP bundle-only policy: the library always negociates one unique network component, where SRTP media streams are multiplexed with SRTCP control packets (RFC5761) and SCTP/DTLS data traffic (RFC8261).

WebSocket

WebSocket is the protocol of choice for WebRTC signaling. The support is optional and can be disabled at compile time.

Protocol stack:

  • WebSocket protocol (RFC6455), client and server side
  • HTTP over TLS (RFC2818)

Features:

  • IPv6 and IPv4/IPv6 dual-stack support
  • Keepalive with ping/pong

External resources

Thanks

Thanks to Streamr for sponsoring this work!