#WebRTC #networking #p2p #tcp #udp #rtcpeerconnection

Paul-Louis Ageneau 55f67c2a6d Refactored SCTP shutdown 2 ani în urmă
.github fc0eb3bf4d Added build-nomedia workflow 3 ani în urmă
cmake 7aced2860c Match Upstream LibSRTP CMake Targets 3 ani în urmă
deps c49961ad3c Updated libjuice to v1.0.6 2 ani în urmă
examples 9f648bcd40 Enhanced seeding in examples 2 ani în urmă
include d263b4b5b7 Removed C API functions related to packetizer start time 2 ani în urmă
pages 7c75864ea7 Updated doc 2 ani în urmă
src 55f67c2a6d Refactored SCTP shutdown 2 ani în urmă
test 595e766149 Cleaned up media declaration in track test 2 ani în urmă
.clang-format 17f99252cd clang-format does not support python 5 ani în urmă
.editorconfig ea8cd06964 Converted web example to WebSocket signaling 5 ani în urmă
.gitignore b592e5fc09 Updated .gitignore for Python 4 ani în urmă
.gitmodules 4c3b0b2f11 Mark external dependency submodules as shallow to speed up the cloning process 3 ani în urmă
.travis.yml 5c12b25717 Added .travis.yml for FreeBSD build 3 ani în urmă
BUILDING.md f2bd0897a0 Building: Enhanced info and examples 3 ani în urmă
CMakeLists.txt ac963d7a14 Merge branch 'v0.17' 2 ani în urmă
DOC.md 7c75864ea7 Updated doc 2 ani în urmă
Jamfile 58b0432ac9 Disabled unneeded usrsctp options inet and inet6 3 ani în urmă
LICENSE f844c71e0f Initial commit 6 ani în urmă
Makefile 58b0432ac9 Disabled unneeded usrsctp options inet and inet6 3 ani în urmă
README.md e1163795cd Readme: Fixed typo 3 ani în urmă

README.md

libdatachannel - C/C++ WebRTC network library

Build with OpenSSL Build with GnuTLS Gitter Discord

AUR package FreeBSD port Vcpkg package

libdatachannel is a standalone implementation of WebRTC Data Channels, WebRTC Media Transport, and WebSockets in C++17 with C bindings for POSIX platforms (including GNU/Linux, Android, FreeBSD, Apple macOS and iOS) and Microsoft Windows. WebRTC is a W3C and IETF standard enabling real-time peer-to-peer data and media exchange between two devices.

The library aims at being both straightforward and lightweight with minimal external dependencies, to enable direct connectivity between native applications and web browsers without the pain of importing Google's bloated reference library. The interface consists of somewhat simplified versions of the JavaScript WebRTC and WebSocket APIs present in browsers, in order to ease the design of cross-environment applications.

It can be compiled with multiple backends:

  • The security layer can be provided through OpenSSL or GnuTLS.
  • The connectivity for WebRTC can be provided through my ad-hoc ICE library libjuice as submodule or through libnice.

The WebRTC stack is fully compatible with browsers like Firefox and Chromium, see Compatibility below. Additionally, code using Data Channels and WebSockets from the library may be compiled as is to WebAssembly for browsers with datachannel-wasm.

libdatachannel is licensed under LGPLv2.1 or later, see LICENSE.

libdatachannel is available on AUR, vcpkg, and FreeBSD ports. Bindings are available for Rust and Node.js.

Dependencies

Only GnuTLS or OpenSSL is necessary. Optionally, libnice can be selected as an alternative ICE backend instead of libjuice.

Submodules:

Building

See BUILDING.md for building instructions.

Examples

See examples for complete usage examples with signaling server (under GPLv2).

Additionally, you might want to have a look at the C API documentation.

Signal a PeerConnection

#include "rtc/rtc.hpp"
rtc::Configuration config;
config.iceServers.emplace_back("mystunserver.org:3478");

rtc::PeerConnection pc(config);

pc.onLocalDescription([](rtc::Description sdp) {
    // Send the SDP to the remote peer
    MY_SEND_DESCRIPTION_TO_REMOTE(std::string(sdp));
});

pc.onLocalCandidate([](rtc::Candidate candidate) {
    // Send the candidate to the remote peer
    MY_SEND_CANDIDATE_TO_REMOTE(candidate.candidate(), candidate.mid());
});

MY_ON_RECV_DESCRIPTION_FROM_REMOTE([&pc](std::string sdp) {
    pc.setRemoteDescription(rtc::Description(sdp));
});

MY_ON_RECV_CANDIDATE_FROM_REMOTE([&pc](std::string candidate, std::string mid) {
    pc.addRemoteCandidate(rtc::Candidate(candidate, mid));
});

Observe the PeerConnection state

pc.onStateChange([](rtc::PeerConnection::State state) {
    std::cout << "State: " << state << std::endl;
});

pc.onGatheringStateChange([](rtc::PeerConnection::GatheringState state) {
    std::cout << "Gathering state: " << state << std::endl;
});

Create a DataChannel

auto dc = pc.createDataChannel("test");

dc->onOpen([]() {
    std::cout << "Open" << std::endl;
});

dc->onMessage([](std::variant<rtc::binary, rtc::string> message) {
    if (std::holds_alternative<rtc::string>(message)) {
        std::cout << "Received: " << get<rtc::string>(message) << std::endl;
    }
});

Receive a DataChannel

std::shared_ptr<rtc::DataChannel> dc;
pc.onDataChannel([&dc](std::shared_ptr<rtc::DataChannel> incoming) {
    dc = incoming;
    dc->send("Hello world!");
});

Open a WebSocket

rtc::WebSocket ws;

ws.onOpen([]() {
    std::cout << "WebSocket open" << std::endl;
});

ws.onMessage([](std::variant<rtc::binary, rtc::string> message) {
    if (std::holds_alternative<rtc::string>(message)) {
        std::cout << "WebSocket received: " << std::get<rtc::string>(message) << endl;
    }
});

ws.open("wss://my.websocket/service");

Compatibility

The library implements the following communication protocols:

WebRTC Data Channels and Media Transport

WebRTC allows real-time data and media exchange between two devices through a Peer Connection (or RTCPeerConnection), a signaled peer-to-peer connection which can carry both Data Channels and media tracks. It is compatible with browsers Firefox, Chromium, and Safari, and other WebRTC libraries (see webrtc-echoes). Media transport is optional and can be disabled at compile time.

Protocol stack:

Features:

  • Full IPv6 support (as mandated by RFC8835)
  • Trickle ICE (RFC8838)
  • JSEP-compatible session establishment with SDP (RFC8829)
  • SCTP over DTLS with SDP offer/answer (RFC8841)
  • DTLS with ECDSA or RSA keys (RFC8827)
  • SRTP and SRTCP key derivation from DTLS (RFC5764)
  • Differentiated Services QoS (RFC8837) where possible
  • Multicast DNS candidates (draft-ietf-rtcweb-mdns-ice-candidates-04)
  • Multiplexing connections on a single UDP port with libjuice as ICE backend

Note only SDP BUNDLE mode is supported for media multiplexing (RFC8843). The behavior is equivalent to the JSEP bundle-only policy: the library always negotiates one unique network component, where SRTP media streams are multiplexed with SRTCP control packets (RFC5761) and SCTP/DTLS data traffic (RFC8261).

WebSocket

WebSocket is the protocol of choice for WebRTC signaling. The support is optional and can be disabled at compile time.

Protocol stack:

  • WebSocket protocol (RFC6455), client and server side
  • HTTP over TLS (RFC2818)

Features:

  • IPv6 and IPv4/IPv6 dual-stack support
  • Keepalive with ping/pong

External resources

Thanks

Thanks to Streamr, Vagon, Deon Botha, and Michael Cho for sponsoring this work!