#WebRTC #networking #p2p #tcp #udp #rtcpeerconnection

Filip Klembara cf9e57564e Add python scripts to generate h264 and opus samples 4 yıl önce
.github 44bf8b99ef Added /MP to nmake build 4 yıl önce
cmake e7cf4182ef Added FindSRTP.cmake 5 yıl önce
deps 4d93303be8 Updated libjuice to v0.6.2 4 yıl önce
examples cf9e57564e Add python scripts to generate h264 and opus samples 4 yıl önce
include 1d27f5b876 Add h264 and opus streaming support to libdatachannel 4 yıl önce
src 1d27f5b876 Add h264 and opus streaming support to libdatachannel 4 yıl önce
test d8515b6362 Some cleanup 4 yıl önce
.clang-format 17f99252cd clang-format does not support python 5 yıl önce
.editorconfig ea8cd06964 Converted web example to WebSocket signaling 5 yıl önce
.gitignore 28e3fad254 Add .idea to .gitignore 4 yıl önce
.gitmodules 3e70af915f Compiling libsrtp inline 4 yıl önce
CMakeLists.txt d9aa1818b2 Add example project for h264 and opus streaming 4 yıl önce
Jamfile ad54321c7a Introduced USE_NICE flag 5 yıl önce
LICENSE f844c71e0f Initial commit 6 yıl önce
Makefile 54dbb360b7 Replaced compilation flag USE_JUICE with USE_NICE 5 yıl önce
README.md cb591de15f Added DiffServ QoS in features 4 yıl önce

README.md

libdatachannel - C/C++ WebRTC Data Channels

libdatachannel is a standalone implementation of WebRTC Data Channels, WebRTC Media Transport, and WebSockets in C++17 with C bindings for POSIX platforms (including GNU/Linux, Android, and Apple macOS) and Microsoft Windows. It enables direct connectivity between native applications and web browsers without the pain of importing the entire WebRTC stack. The interface consists of simplified versions of the JavaScript WebRTC and WebSocket APIs present in browsers, in order to ease the design of cross-environment applications. It can be compiled with multiple backends:

  • The security layer can be provided through OpenSSL or GnuTLS.
  • The connectivity for WebRTC can be provided through my ad-hoc ICE library libjuice as submodule or through libnice.

This projet is originally inspired by librtcdcpp, however it is a complete rewrite from scratch, because the messy architecture of librtcdcpp made solving its implementation issues difficult.

Licensed under LGPLv2, see LICENSE.

Compatibility

The library aims at implementing the following communication protocols:

WebRTC Data Channels and Media Transport

The WebRTC stack has been tested to be compatible with Firefox and Chromium.

Protocol stack:

Features:

Note only SDP BUNDLE mode is supported for media multiplexing (draft-ietf-mmusic-sdp-bundle-negotiation-54). The behavior is equivalent to the JSEP bundle-only policy: the library always negociates one unique network component, where SRTP media streams are multiplexed with SRTCP control packets (RFC5761) and SCTP/DTLS data traffic (RFC5764).

WebSocket

WebSocket is the protocol of choice for WebRTC signaling. The support is optional and can be disabled at compile time.

Protocol stack:

  • WebSocket protocol (RFC6455), client-side only
  • HTTP over TLS (RFC2818)

Features:

  • IPv6 and IPv4/IPv6 dual-stack support
  • Keepalive with ping/pong

Dependencies

Dependencies:

Submodules:

Optional dependencies:

Building

Clone repository and submodules

$ git clone https://github.com/paullouisageneau/libdatachannel.git
$ cd libdatachannel
$ git submodule update --init --recursive

Building with CMake

The CMake library targets libdatachannel and libdatachannel-static respectively correspond to the shared and static libraries. The default target will build tests and examples. The option USE_GNUTLS allows to switch between OpenSSL (default) and GnuTLS, and the option USE_NICE allows to switch between libjuice as submodule (default) and libnice.

On Windows, the DLL resulting from the shared library build only exposes the C API, use the static library for the C++ API.

POSIX-compliant operating systems (including Linux and Apple macOS)

$ cmake -B build -DUSE_GNUTLS=1 -DUSE_NICE=0
$ cd build
$ make -j2

Apple macOS with XCode project

$ cmake -B "$BUILD_DIR" -DUSE_GNUTLS=0 -DUSE_NICE=0 -G Xcode

Xcode project is generated in build/ directory.

Solving Could NOT find OpenSSL error

You need to add OpenSSL root directory if your build fails with the following message:

Could NOT find OpenSSL, try to set the path to OpenSSL root folder in the
system variable OPENSSL_ROOT_DIR (missing: OPENSSL_CRYPTO_LIBRARY
OPENSSL_INCLUDE_DIR)

for example:

$ cmake -B build -DUSE_GNUTLS=0 -DUSE_NICE=0 -G Xcode -DOPENSSL_ROOT_DIR=/usr/local/Cellar/openssl\@1.1/1.1.1h/

Microsoft Windows with MinGW cross-compilation

$ cmake -B build -DCMAKE_TOOLCHAIN_FILE=/usr/share/mingw/toolchain-x86_64-w64-mingw32.cmake # replace with your toolchain file
$ cd build
$ make -j2

Microsoft Windows with Microsoft Visual C++

$ cmake -B build -G "NMake Makefiles"
$ cd build
$ nmake

Building directly with Make (Linux only)

The option USE_GNUTLS allows to switch between OpenSSL (default) and GnuTLS, and the option USE_NICE allows to switch between libjuice as submodule (default) and libnice.

$ make USE_GNUTLS=1 USE_NICE=0

Examples

See examples for a complete usage example with signaling server (under GPLv2).

Additionnaly, you might want to have a look at the C API.

Signal a PeerConnection

#include "rtc/rtc.hpp"
rtc::Configuration config;
config.iceServers.emplace_back("mystunserver.org:3478");

auto pc = make_shared<rtc::PeerConnection>(config);

pc->onLocalDescription([](rtc::Description sdp) {
    // Send the SDP to the remote peer
    MY_SEND_DESCRIPTION_TO_REMOTE(string(sdp));
});

pc->onLocalCandidate([](rtc::Candidate candidate) {
    // Send the candidate to the remote peer
    MY_SEND_CANDIDATE_TO_REMOTE(candidate.candidate(), candidate.mid());
});

MY_ON_RECV_DESCRIPTION_FROM_REMOTE([pc](string sdp) {
    pc->setRemoteDescription(rtc::Description(sdp));
});

MY_ON_RECV_CANDIDATE_FROM_REMOTE([pc](string candidate, string mid) {
    pc->addRemoteCandidate(rtc::Candidate(candidate, mid));
});

Observe the PeerConnection state

pc->onStateChange([](PeerConnection::State state) {
    cout << "State: " << state << endl;
});

pc->onGatheringStateChange([](PeerConnection::GatheringState state) {
    cout << "Gathering state: " << state << endl;
});

Create a DataChannel

auto dc = pc->createDataChannel("test");

dc->onOpen([]() {
    cout << "Open" << endl;
});

dc->onMessage([](variant<binary, string> message) {
    if (holds_alternative<string>(message)) {
        cout << "Received: " << get<string>(message) << endl;
    }
});

Receive a DataChannel

shared_ptr<rtc::DataChannel> dc;
pc->onDataChannel([&dc](shared_ptr<rtc::DataChannel> incoming) {
    dc = incoming;
    dc->send("Hello world!");
});

Open a WebSocket

auto ws = make_shared<rtc::WebSocket>();

ws->onOpen([]() {
	cout << "WebSocket open" << endl;
});

ws->onMessage([](variant<binary, string> message) {
    if (holds_alternative<string>(message)) {
        cout << "WebSocket received: " << get<string>(message) << endl;
    }
});

ws->open("wss://my.websocket/service");

External resources