#WebRTC #networking #p2p #tcp #udp #rtcpeerconnection

cheungxiongwei ec9538345c add qt signaling-server 3 years ago
.github 798279916f Merge branch 'v0.16' 3 years ago
cmake 7aced2860c Match Upstream LibSRTP CMake Targets 3 years ago
deps 8838e56643 Updated libjuice to v1.0.0 3 years ago
examples ec9538345c add qt signaling-server 3 years ago
include 8343a566ea Cleaned up synchronized_callback<>::wrap() 3 years ago
pages 175cf9460c Updated documentation 3 years ago
src 8712a64d69 Prevent any state change after close in PeerConnection (Fix #600) 3 years ago
test ffc137ac80 Check track is closed in track test 3 years ago
.clang-format 17f99252cd clang-format does not support python 5 years ago
.editorconfig ea8cd06964 Converted web example to WebSocket signaling 5 years ago
.gitignore b592e5fc09 Updated .gitignore for Python 4 years ago
.gitmodules c7dda5113c Fixed libjuice submodule URL 3 years ago
.travis.yml 5c12b25717 Added .travis.yml for FreeBSD build 3 years ago
BUILDING.md 55ae3c012f Added --depth 1 to submodule update in workflows 3 years ago
CMakeLists.txt cb2d43b091 Bumped version to 0.17.0 3 years ago
DOC.md 175cf9460c Updated documentation 3 years ago
Jamfile 6cea78c618 support finding openssl form homebrew on M1 Macs 4 years ago
LICENSE f844c71e0f Initial commit 6 years ago
Makefile f1beef9d96 Makefile: cleanup libsrtp2.a 3 years ago
README.md 7d150208c9 Changed non-drafts RFC links to canonical location rfc-editor.org 3 years ago

README.md

libdatachannel - C/C++ WebRTC network library

Build with OpenSSL Build with GnuTLS Discord

AUR package FreeBSD port Vcpkg package

libdatachannel is a standalone implementation of WebRTC Data Channels, WebRTC Media Transport, and WebSockets in C++17 with C bindings for POSIX platforms (including GNU/Linux, Android, FreeBSD, Apple macOS and iOS) and Microsoft Windows. WebRTC is a W3C and IETF standard enabling real-time peer-to-peer data and media exchange between two devices.

The library aims at being both straightforward and lightweight with minimal external dependencies, to enable direct connectivity between native applications and web browsers without the pain of importing Google's bloated reference library. The interface consists of somewhat simplified versions of the JavaScript WebRTC and WebSocket APIs present in browsers, in order to ease the design of cross-environment applications.

It can be compiled with multiple backends:

  • The security layer can be provided through OpenSSL or GnuTLS.
  • The connectivity for WebRTC can be provided through my ad-hoc ICE library libjuice as submodule or through libnice.

The WebRTC stack is fully compatible with browsers like Firefox and Chromium, see Compatibility below. Additionally, code using Data Channels and WebSockets from the library may be compiled as is to WebAssembly for browsers with datachannel-wasm.

libdatachannel is licensed under LGPLv2, see LICENSE.

libdatachannel is available on AUR, vcpkg, and FreeBSD ports. Bindings are available for Rust and Node.js.

Dependencies

Only GnuTLS or OpenSSL are necessary. Optionally, libnice can be selected as an alternative ICE backend instead of libjuice.

Submodules:

Building

See BUILDING.md for building instructions.

Examples

See examples for complete usage examples with signaling server (under GPLv2).

Additionnaly, you might want to have a look at the C API documentation.

Signal a PeerConnection

#include "rtc/rtc.hpp"
rtc::Configuration config;
config.iceServers.emplace_back("mystunserver.org:3478");

rtc::PeerConnection pc(config);

pc.onLocalDescription([](rtc::Description sdp) {
    // Send the SDP to the remote peer
    MY_SEND_DESCRIPTION_TO_REMOTE(std::string(sdp));
});

pc.onLocalCandidate([](rtc::Candidate candidate) {
    // Send the candidate to the remote peer
    MY_SEND_CANDIDATE_TO_REMOTE(candidate.candidate(), candidate.mid());
});

MY_ON_RECV_DESCRIPTION_FROM_REMOTE([&pc](std::string sdp) {
    pc.setRemoteDescription(rtc::Description(sdp));
});

MY_ON_RECV_CANDIDATE_FROM_REMOTE([&pc](std::string candidate, std::string mid) {
    pc.addRemoteCandidate(rtc::Candidate(candidate, mid));
});

Observe the PeerConnection state

pc.onStateChange([](rtc::PeerConnection::State state) {
    std::cout << "State: " << state << std::endl;
});

pc.onGatheringStateChange([](rtc::PeerConnection::GatheringState state) {
    std::cout << "Gathering state: " << state << std::endl;
});

Create a DataChannel

auto dc = pc.createDataChannel("test");

dc->onOpen([]() {
    std::cout << "Open" << std::endl;
});

dc->onMessage([](std::variant<rtc::binary, rtc::string> message) {
    if (std::holds_alternative<rtc::string>(message)) {
        std::cout << "Received: " << get<rtc::string>(message) << std::endl;
    }
});

Receive a DataChannel

std::shared_ptr<rtc::DataChannel> dc;
pc.onDataChannel([&dc](std::shared_ptr<rtc::DataChannel> incoming) {
    dc = incoming;
    dc->send("Hello world!");
});

Open a WebSocket

rtc::WebSocket ws;

ws.onOpen([]() {
    std::cout << "WebSocket open" << std::endl;
});

ws.onMessage([](std::variant<rtc::binary, rtc::string> message) {
    if (std::holds_alternative<rtc::string>(message)) {
        std::cout << "WebSocket received: " << std::get<rtc::string>(message) << endl;
    }
});

ws.open("wss://my.websocket/service");

Compatibility

The library implements the following communication protocols:

WebRTC Data Channels and Media Transport

WebRTC allows real-time data and media exchange between two devices through a Peer Connection (or RTCPeerConnection), a signaled peer-to-peer connection which can carry both Data Channels and media tracks. It is compatible with browsers Firefox, Chromium, and Safari, and other WebRTC libraries (see webrtc-echoes). Media transport is optional and can be disabled at compile time.

Protocol stack:

Features:

  • Full IPv6 support (as mandated by RFC8835)
  • Trickle ICE (RFC8838)
  • JSEP-compatible session establishment with SDP (RFC8829)
  • SCTP over DTLS with SDP offer/answer (RFC8841)
  • DTLS with ECDSA or RSA keys (RFC8824)
  • SRTP and SRTCP key derivation from DTLS (RFC5764)
  • Differentiated Services QoS (RFC8837) where possible
  • Multicast DNS candidates (draft-ietf-rtcweb-mdns-ice-candidates-04)
  • Multiplexing connections on a single UDP port with libjuice as ICE backend

Note only SDP BUNDLE mode is supported for media multiplexing (RFC8843). The behavior is equivalent to the JSEP bundle-only policy: the library always negociates one unique network component, where SRTP media streams are multiplexed with SRTCP control packets (RFC5761) and SCTP/DTLS data traffic (RFC8261).

WebSocket

WebSocket is the protocol of choice for WebRTC signaling. The support is optional and can be disabled at compile time.

Protocol stack:

  • WebSocket protocol (RFC6455), client and server side
  • HTTP over TLS (RFC2818)

Features:

  • IPv6 and IPv4/IPv6 dual-stack support
  • Keepalive with ping/pong

External resources

Thanks

Thanks to Streamr for sponsoring this work!