Browse Source

Replaced Simplex noise with Perlin noise for the 3D and 4D variants of love.math.noise, to avoid patent-infringement issues (resolves issue #997.)

Alex Szpakowski 10 years ago
parent
commit
97806f87c0

+ 2 - 0
CMakeLists.txt

@@ -1108,6 +1108,8 @@ add_library(love_3p_lz4 ${LOVE_SRC_3P_LZ4})
 #
 
 set(LOVE_SRC_3P_NOISE1234
+	src/libraries/noise1234/noise1234.cpp
+	src/libraries/noise1234/noise1234.h
 	src/libraries/noise1234/simplexnoise1234.cpp
 	src/libraries/noise1234/simplexnoise1234.h
 )

+ 10 - 0
platform/xcode/liblove.xcodeproj/project.pbxproj

@@ -834,6 +834,9 @@
 		FA577ACA16C7514100860150 /* OpenGL.framework in Frameworks */ = {isa = PBXBuildFile; fileRef = FA577A7C16C71A2600860150 /* OpenGL.framework */; };
 		FA577ACB16C7514400860150 /* physfs.framework in Frameworks */ = {isa = PBXBuildFile; fileRef = FA577A7316C719F900860150 /* physfs.framework */; };
 		FA577ACD16C7514C00860150 /* Vorbis.framework in Frameworks */ = {isa = PBXBuildFile; fileRef = FA577A7716C71A0800860150 /* Vorbis.framework */; };
+		FA57FB981AE1993600F2AD6D /* noise1234.cpp in Sources */ = {isa = PBXBuildFile; fileRef = FA57FB961AE1993600F2AD6D /* noise1234.cpp */; };
+		FA57FB991AE1993600F2AD6D /* noise1234.cpp in Sources */ = {isa = PBXBuildFile; fileRef = FA57FB961AE1993600F2AD6D /* noise1234.cpp */; };
+		FA57FB9A1AE1993600F2AD6D /* noise1234.h in Headers */ = {isa = PBXBuildFile; fileRef = FA57FB971AE1993600F2AD6D /* noise1234.h */; };
 		FA5D24B01A96D2EC00C6FC8F /* libFreetype2.a in Frameworks */ = {isa = PBXBuildFile; fileRef = FA5D24A51A96D2EC00C6FC8F /* libFreetype2.a */; };
 		FA5D24B21A96D2EC00C6FC8F /* libluajit.a in Frameworks */ = {isa = PBXBuildFile; fileRef = FA5D24A91A96D2EC00C6FC8F /* libluajit.a */; };
 		FA5D24B31A96D2EC00C6FC8F /* libogg.a in Frameworks */ = {isa = PBXBuildFile; fileRef = FA5D24AB1A96D2EC00C6FC8F /* libogg.a */; };
@@ -1490,6 +1493,8 @@
 		FA577A8D16C71D3600860150 /* boot.lua */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = text; path = boot.lua; sourceTree = "<group>"; };
 		FA577A8E16C71D3600860150 /* graphics.lua */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = text; path = graphics.lua; sourceTree = "<group>"; };
 		FA577AAF16C7507900860150 /* love.framework */ = {isa = PBXFileReference; explicitFileType = wrapper.framework; includeInIndex = 0; path = love.framework; sourceTree = BUILT_PRODUCTS_DIR; };
+		FA57FB961AE1993600F2AD6D /* noise1234.cpp */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.cpp; path = noise1234.cpp; sourceTree = "<group>"; };
+		FA57FB971AE1993600F2AD6D /* noise1234.h */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.h; path = noise1234.h; sourceTree = "<group>"; };
 		FA5D24A51A96D2EC00C6FC8F /* libFreetype2.a */ = {isa = PBXFileReference; lastKnownFileType = archive.ar; path = libFreetype2.a; sourceTree = "<group>"; };
 		FA5D24A91A96D2EC00C6FC8F /* libluajit.a */ = {isa = PBXFileReference; lastKnownFileType = archive.ar; path = libluajit.a; sourceTree = "<group>"; };
 		FA5D24AB1A96D2EC00C6FC8F /* libogg.a */ = {isa = PBXFileReference; lastKnownFileType = archive.ar; path = libogg.a; sourceTree = "<group>"; };
@@ -1983,6 +1988,8 @@
 		FA0B7A141A958EA3000E1D17 /* noise1234 */ = {
 			isa = PBXGroup;
 			children = (
+				FA57FB961AE1993600F2AD6D /* noise1234.cpp */,
+				FA57FB971AE1993600F2AD6D /* noise1234.h */,
 				FA0B7A151A958EA3000E1D17 /* simplexnoise1234.cpp */,
 				FA0B7A161A958EA3000E1D17 /* simplexnoise1234.h */,
 			);
@@ -3048,6 +3055,7 @@
 				FA0B793D1A958E3B000E1D17 /* runtime.h in Headers */,
 				FA0B7A701A958EA3000E1D17 /* b2WorldCallbacks.h in Headers */,
 				FA0B7A9D1A958EA3000E1D17 /* b2MouseJoint.h in Headers */,
+				FA57FB9A1AE1993600F2AD6D /* noise1234.h in Headers */,
 				FA0B7CED1A95902C000E1D17 /* Event.h in Headers */,
 				FA0B7D811A95902C000E1D17 /* Volatile.h in Headers */,
 				FA0B7B2E1A958EA3000E1D17 /* unchecked.h in Headers */,
@@ -3387,6 +3395,7 @@
 				FA0B7E761A95902C000E1D17 /* wrap_WeldJoint.cpp in Sources */,
 				FA0B7D561A95902C000E1D17 /* GLBuffer.cpp in Sources */,
 				FA0B7A6C1A958EA3000E1D17 /* b2World.cpp in Sources */,
+				FA57FB991AE1993600F2AD6D /* noise1234.cpp in Sources */,
 				FA0B7E221A95902C000E1D17 /* PolygonShape.cpp in Sources */,
 				FA0B7A651A958EA3000E1D17 /* b2Fixture.cpp in Sources */,
 				FA0B7D521A95902C000E1D17 /* Text.cpp in Sources */,
@@ -3672,6 +3681,7 @@
 				FA0B7E751A95902C000E1D17 /* wrap_WeldJoint.cpp in Sources */,
 				FA0B7D551A95902C000E1D17 /* GLBuffer.cpp in Sources */,
 				FA0B7AFF1A958EA3000E1D17 /* options.c in Sources */,
+				FA57FB981AE1993600F2AD6D /* noise1234.cpp in Sources */,
 				FA0B7E211A95902C000E1D17 /* PolygonShape.cpp in Sources */,
 				FA0B7AE41A958EA3000E1D17 /* buffer.c in Sources */,
 				FA0B7D511A95902C000E1D17 /* Text.cpp in Sources */,

+ 528 - 0
src/libraries/noise1234/noise1234.cpp

@@ -0,0 +1,528 @@
+// Noise1234
+// Author: Stefan Gustavson ([email protected])
+//
+// This library is public domain software, released by the author
+// into the public domain in February 2011. You may do anything
+// you like with it. You may even remove all attributions,
+// but of course I'd appreciate it if you kept my name somewhere.
+//
+// This library is distributed in the hope that it will be useful,
+// but WITHOUT ANY WARRANTY; without even the implied warranty of
+// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+// General Public License for more details.
+
+/** \file
+		\brief Implements the Noise1234 class for producing Perlin noise.
+		\author Stefan Gustavson ([email protected])
+*/
+
+/*
+ * This implementation is "Improved Noise" as presented by
+ * Ken Perlin at Siggraph 2002. The 3D function is a direct port
+ * of his Java reference code available on www.noisemachine.com
+ * (although I cleaned it up and made the code more readable),
+ * but the 1D, 2D and 4D cases were implemented from scratch
+ * by me.
+ *
+ * This is a highly reusable class. It has no dependencies
+ * on any other file, apart from its own header file.
+ */
+
+
+#include	"noise1234.h"
+
+// This is the new and improved, C(2) continuous interpolant
+#define FADE(t) ( t * t * t * ( t * ( t * 6 - 15 ) + 10 ) )
+
+#define FASTFLOOR(x) ( ((x)>0) ? ((int)x) : ((int)x-1 ) )
+#define LERP(t, a, b) ((a) + (t)*((b)-(a)))
+
+
+//---------------------------------------------------------------------
+// Static data
+
+/*
+ * Permutation table. This is just a random jumble of all numbers 0-255,
+ * repeated twice to avoid wrapping the index at 255 for each lookup.
+ * This needs to be exactly the same for all instances on all platforms,
+ * so it's easiest to just keep it as static explicit data.
+ * This also removes the need for any initialisation of this class.
+ *
+ * Note that making this an int[] instead of a char[] might make the
+ * code run faster on platforms with a high penalty for unaligned single
+ * byte addressing. Intel x86 is generally single-byte-friendly, but
+ * some other CPUs are faster with 4-aligned reads.
+ * However, a char[] is smaller, which avoids cache trashing, and that
+ * is probably the most important aspect on most architectures.
+ * This array is accessed a *lot* by the noise functions.
+ * A vector-valued noise over 3D accesses it 96 times, and a
+ * float-valued 4D noise 64 times. We want this to fit in the cache!
+ */
+unsigned char Noise1234::perm[] = {151,160,137,91,90,15,
+  131,13,201,95,96,53,194,233,7,225,140,36,103,30,69,142,8,99,37,240,21,10,23,
+  190, 6,148,247,120,234,75,0,26,197,62,94,252,219,203,117,35,11,32,57,177,33,
+  88,237,149,56,87,174,20,125,136,171,168, 68,175,74,165,71,134,139,48,27,166,
+  77,146,158,231,83,111,229,122,60,211,133,230,220,105,92,41,55,46,245,40,244,
+  102,143,54, 65,25,63,161, 1,216,80,73,209,76,132,187,208, 89,18,169,200,196,
+  135,130,116,188,159,86,164,100,109,198,173,186, 3,64,52,217,226,250,124,123,
+  5,202,38,147,118,126,255,82,85,212,207,206,59,227,47,16,58,17,182,189,28,42,
+  223,183,170,213,119,248,152, 2,44,154,163, 70,221,153,101,155,167, 43,172,9,
+  129,22,39,253, 19,98,108,110,79,113,224,232,178,185, 112,104,218,246,97,228,
+  251,34,242,193,238,210,144,12,191,179,162,241, 81,51,145,235,249,14,239,107,
+  49,192,214, 31,181,199,106,157,184, 84,204,176,115,121,50,45,127, 4,150,254,
+  138,236,205,93,222,114,67,29,24,72,243,141,128,195,78,66,215,61,156,180,
+  151,160,137,91,90,15,
+  131,13,201,95,96,53,194,233,7,225,140,36,103,30,69,142,8,99,37,240,21,10,23,
+  190, 6,148,247,120,234,75,0,26,197,62,94,252,219,203,117,35,11,32,57,177,33,
+  88,237,149,56,87,174,20,125,136,171,168, 68,175,74,165,71,134,139,48,27,166,
+  77,146,158,231,83,111,229,122,60,211,133,230,220,105,92,41,55,46,245,40,244,
+  102,143,54, 65,25,63,161, 1,216,80,73,209,76,132,187,208, 89,18,169,200,196,
+  135,130,116,188,159,86,164,100,109,198,173,186, 3,64,52,217,226,250,124,123,
+  5,202,38,147,118,126,255,82,85,212,207,206,59,227,47,16,58,17,182,189,28,42,
+  223,183,170,213,119,248,152, 2,44,154,163, 70,221,153,101,155,167, 43,172,9,
+  129,22,39,253, 19,98,108,110,79,113,224,232,178,185, 112,104,218,246,97,228,
+  251,34,242,193,238,210,144,12,191,179,162,241, 81,51,145,235,249,14,239,107,
+  49,192,214, 31,181,199,106,157,184, 84,204,176,115,121,50,45,127, 4,150,254,
+  138,236,205,93,222,114,67,29,24,72,243,141,128,195,78,66,215,61,156,180
+};
+
+//---------------------------------------------------------------------
+
+/*
+ * Helper functions to compute gradients-dot-residualvectors (1D to 4D)
+ * Note that these generate gradients of more than unit length. To make
+ * a close match with the value range of classic Perlin noise, the final
+ * noise values need to be rescaled. To match the RenderMan noise in a
+ * statistical sense, the approximate scaling values (empirically
+ * determined from test renderings) are:
+ * 1D noise needs rescaling with 0.188
+ * 2D noise needs rescaling with 0.507
+ * 3D noise needs rescaling with 0.936
+ * 4D noise needs rescaling with 0.87
+ * Note that these noise functions are the most practical and useful
+ * signed version of Perlin noise. To return values according to the
+ * RenderMan specification from the SL noise() and pnoise() functions,
+ * the noise values need to be scaled and offset to [0,1], like this:
+ * float SLnoise = (Noise1234::noise(x,y,z) + 1.0) * 0.5;
+ */
+
+float  Noise1234::grad( int hash, float x ) {
+    int h = hash & 15;
+    float grad = 1.0 + (h & 7);  // Gradient value 1.0, 2.0, ..., 8.0
+    if (h&8) grad = -grad;         // and a random sign for the gradient
+    return ( grad * x );           // Multiply the gradient with the distance
+}
+
+float  Noise1234::grad( int hash, float x, float y ) {
+    int h = hash & 7;      // Convert low 3 bits of hash code
+    float u = h<4 ? x : y;  // into 8 simple gradient directions,
+    float v = h<4 ? y : x;  // and compute the dot product with (x,y).
+    return ((h&1)? -u : u) + ((h&2)? -2.0*v : 2.0*v);
+}
+
+float  Noise1234::grad( int hash, float x, float y , float z ) {
+    int h = hash & 15;     // Convert low 4 bits of hash code into 12 simple
+    float u = h<8 ? x : y; // gradient directions, and compute dot product.
+    float v = h<4 ? y : h==12||h==14 ? x : z; // Fix repeats at h = 12 to 15
+    return ((h&1)? -u : u) + ((h&2)? -v : v);
+}
+
+float  Noise1234::grad( int hash, float x, float y, float z, float t ) {
+    int h = hash & 31;      // Convert low 5 bits of hash code into 32 simple
+    float u = h<24 ? x : y; // gradient directions, and compute dot product.
+    float v = h<16 ? y : z;
+    float w = h<8 ? z : t;
+    return ((h&1)? -u : u) + ((h&2)? -v : v) + ((h&4)? -w : w);
+}
+
+//---------------------------------------------------------------------
+/** 1D float Perlin noise, SL "noise()"
+ */
+float Noise1234::noise( float x )
+{
+    int ix0, ix1;
+    float fx0, fx1;
+    float s, n0, n1;
+
+    ix0 = FASTFLOOR( x ); // Integer part of x
+    fx0 = x - ix0;       // Fractional part of x
+    fx1 = fx0 - 1.0f;
+    ix1 = ( ix0+1 ) & 0xff;
+    ix0 = ix0 & 0xff;    // Wrap to 0..255
+
+    s = FADE( fx0 );
+
+    n0 = grad( perm[ ix0 ], fx0 );
+    n1 = grad( perm[ ix1 ], fx1 );
+    return 0.188f * ( LERP( s, n0, n1 ) );
+}
+
+//---------------------------------------------------------------------
+/** 1D float Perlin periodic noise, SL "pnoise()"
+ */
+float Noise1234::pnoise( float x, int px )
+{
+    int ix0, ix1;
+    float fx0, fx1;
+    float s, n0, n1;
+
+    ix0 = FASTFLOOR( x ); // Integer part of x
+    fx0 = x - ix0;       // Fractional part of x
+    fx1 = fx0 - 1.0f;
+    ix1 = (( ix0 + 1 ) % px) & 0xff; // Wrap to 0..px-1 *and* wrap to 0..255
+    ix0 = ( ix0 % px ) & 0xff;      // (because px might be greater than 256)
+
+    s = FADE( fx0 );
+
+    n0 = grad( perm[ ix0 ], fx0 );
+    n1 = grad( perm[ ix1 ], fx1 );
+    return 0.188f * ( LERP( s, n0, n1 ) );
+}
+
+
+//---------------------------------------------------------------------
+/** 2D float Perlin noise.
+ */
+float Noise1234::noise( float x, float y )
+{
+    int ix0, iy0, ix1, iy1;
+    float fx0, fy0, fx1, fy1;
+    float s, t, nx0, nx1, n0, n1;
+
+    ix0 = FASTFLOOR( x ); // Integer part of x
+    iy0 = FASTFLOOR( y ); // Integer part of y
+    fx0 = x - ix0;        // Fractional part of x
+    fy0 = y - iy0;        // Fractional part of y
+    fx1 = fx0 - 1.0f;
+    fy1 = fy0 - 1.0f;
+    ix1 = (ix0 + 1) & 0xff;  // Wrap to 0..255
+    iy1 = (iy0 + 1) & 0xff;
+    ix0 = ix0 & 0xff;
+    iy0 = iy0 & 0xff;
+    
+    t = FADE( fy0 );
+    s = FADE( fx0 );
+
+    nx0 = grad(perm[ix0 + perm[iy0]], fx0, fy0);
+    nx1 = grad(perm[ix0 + perm[iy1]], fx0, fy1);
+    n0 = LERP( t, nx0, nx1 );
+
+    nx0 = grad(perm[ix1 + perm[iy0]], fx1, fy0);
+    nx1 = grad(perm[ix1 + perm[iy1]], fx1, fy1);
+    n1 = LERP(t, nx0, nx1);
+
+    return 0.507f * ( LERP( s, n0, n1 ) );
+}
+
+//---------------------------------------------------------------------
+/** 2D float Perlin periodic noise.
+ */
+float Noise1234::pnoise( float x, float y, int px, int py )
+{
+    int ix0, iy0, ix1, iy1;
+    float fx0, fy0, fx1, fy1;
+    float s, t, nx0, nx1, n0, n1;
+
+    ix0 = FASTFLOOR( x ); // Integer part of x
+    iy0 = FASTFLOOR( y ); // Integer part of y
+    fx0 = x - ix0;        // Fractional part of x
+    fy0 = y - iy0;        // Fractional part of y
+    fx1 = fx0 - 1.0f;
+    fy1 = fy0 - 1.0f;
+    ix1 = (( ix0 + 1 ) % px) & 0xff;  // Wrap to 0..px-1 and wrap to 0..255
+    iy1 = (( iy0 + 1 ) % py) & 0xff;  // Wrap to 0..py-1 and wrap to 0..255
+    ix0 = ( ix0 % px ) & 0xff;
+    iy0 = ( iy0 % py ) & 0xff;
+    
+    t = FADE( fy0 );
+    s = FADE( fx0 );
+
+    nx0 = grad(perm[ix0 + perm[iy0]], fx0, fy0);
+    nx1 = grad(perm[ix0 + perm[iy1]], fx0, fy1);
+    n0 = LERP( t, nx0, nx1 );
+
+    nx0 = grad(perm[ix1 + perm[iy0]], fx1, fy0);
+    nx1 = grad(perm[ix1 + perm[iy1]], fx1, fy1);
+    n1 = LERP(t, nx0, nx1);
+
+    return 0.507f * ( LERP( s, n0, n1 ) );
+}
+
+
+//---------------------------------------------------------------------
+/** 3D float Perlin noise.
+ */
+float Noise1234::noise( float x, float y, float z )
+{
+    int ix0, iy0, ix1, iy1, iz0, iz1;
+    float fx0, fy0, fz0, fx1, fy1, fz1;
+    float s, t, r;
+    float nxy0, nxy1, nx0, nx1, n0, n1;
+
+    ix0 = FASTFLOOR( x ); // Integer part of x
+    iy0 = FASTFLOOR( y ); // Integer part of y
+    iz0 = FASTFLOOR( z ); // Integer part of z
+    fx0 = x - ix0;        // Fractional part of x
+    fy0 = y - iy0;        // Fractional part of y
+    fz0 = z - iz0;        // Fractional part of z
+    fx1 = fx0 - 1.0f;
+    fy1 = fy0 - 1.0f;
+    fz1 = fz0 - 1.0f;
+    ix1 = ( ix0 + 1 ) & 0xff; // Wrap to 0..255
+    iy1 = ( iy0 + 1 ) & 0xff;
+    iz1 = ( iz0 + 1 ) & 0xff;
+    ix0 = ix0 & 0xff;
+    iy0 = iy0 & 0xff;
+    iz0 = iz0 & 0xff;
+    
+    r = FADE( fz0 );
+    t = FADE( fy0 );
+    s = FADE( fx0 );
+
+    nxy0 = grad(perm[ix0 + perm[iy0 + perm[iz0]]], fx0, fy0, fz0);
+    nxy1 = grad(perm[ix0 + perm[iy0 + perm[iz1]]], fx0, fy0, fz1);
+    nx0 = LERP( r, nxy0, nxy1 );
+
+    nxy0 = grad(perm[ix0 + perm[iy1 + perm[iz0]]], fx0, fy1, fz0);
+    nxy1 = grad(perm[ix0 + perm[iy1 + perm[iz1]]], fx0, fy1, fz1);
+    nx1 = LERP( r, nxy0, nxy1 );
+
+    n0 = LERP( t, nx0, nx1 );
+
+    nxy0 = grad(perm[ix1 + perm[iy0 + perm[iz0]]], fx1, fy0, fz0);
+    nxy1 = grad(perm[ix1 + perm[iy0 + perm[iz1]]], fx1, fy0, fz1);
+    nx0 = LERP( r, nxy0, nxy1 );
+
+    nxy0 = grad(perm[ix1 + perm[iy1 + perm[iz0]]], fx1, fy1, fz0);
+    nxy1 = grad(perm[ix1 + perm[iy1 + perm[iz1]]], fx1, fy1, fz1);
+    nx1 = LERP( r, nxy0, nxy1 );
+
+    n1 = LERP( t, nx0, nx1 );
+    
+    return 0.936f * ( LERP( s, n0, n1 ) );
+}
+
+//---------------------------------------------------------------------
+/** 3D float Perlin periodic noise.
+ */
+float Noise1234::pnoise( float x, float y, float z, int px, int py, int pz )
+{
+    int ix0, iy0, ix1, iy1, iz0, iz1;
+    float fx0, fy0, fz0, fx1, fy1, fz1;
+    float s, t, r;
+    float nxy0, nxy1, nx0, nx1, n0, n1;
+
+    ix0 = FASTFLOOR( x ); // Integer part of x
+    iy0 = FASTFLOOR( y ); // Integer part of y
+    iz0 = FASTFLOOR( z ); // Integer part of z
+    fx0 = x - ix0;        // Fractional part of x
+    fy0 = y - iy0;        // Fractional part of y
+    fz0 = z - iz0;        // Fractional part of z
+    fx1 = fx0 - 1.0f;
+    fy1 = fy0 - 1.0f;
+    fz1 = fz0 - 1.0f;
+    ix1 = (( ix0 + 1 ) % px ) & 0xff; // Wrap to 0..px-1 and wrap to 0..255
+    iy1 = (( iy0 + 1 ) % py ) & 0xff; // Wrap to 0..py-1 and wrap to 0..255
+    iz1 = (( iz0 + 1 ) % pz ) & 0xff; // Wrap to 0..pz-1 and wrap to 0..255
+    ix0 = ( ix0 % px ) & 0xff;
+    iy0 = ( iy0 % py ) & 0xff;
+    iz0 = ( iz0 % pz ) & 0xff;
+    
+    r = FADE( fz0 );
+    t = FADE( fy0 );
+    s = FADE( fx0 );
+
+    nxy0 = grad(perm[ix0 + perm[iy0 + perm[iz0]]], fx0, fy0, fz0);
+    nxy1 = grad(perm[ix0 + perm[iy0 + perm[iz1]]], fx0, fy0, fz1);
+    nx0 = LERP( r, nxy0, nxy1 );
+
+    nxy0 = grad(perm[ix0 + perm[iy1 + perm[iz0]]], fx0, fy1, fz0);
+    nxy1 = grad(perm[ix0 + perm[iy1 + perm[iz1]]], fx0, fy1, fz1);
+    nx1 = LERP( r, nxy0, nxy1 );
+
+    n0 = LERP( t, nx0, nx1 );
+
+    nxy0 = grad(perm[ix1 + perm[iy0 + perm[iz0]]], fx1, fy0, fz0);
+    nxy1 = grad(perm[ix1 + perm[iy0 + perm[iz1]]], fx1, fy0, fz1);
+    nx0 = LERP( r, nxy0, nxy1 );
+
+    nxy0 = grad(perm[ix1 + perm[iy1 + perm[iz0]]], fx1, fy1, fz0);
+    nxy1 = grad(perm[ix1 + perm[iy1 + perm[iz1]]], fx1, fy1, fz1);
+    nx1 = LERP( r, nxy0, nxy1 );
+
+    n1 = LERP( t, nx0, nx1 );
+    
+    return 0.936f * ( LERP( s, n0, n1 ) );
+}
+
+
+//---------------------------------------------------------------------
+/** 4D float Perlin noise.
+ */
+
+float Noise1234::noise( float x, float y, float z, float w )
+{
+    int ix0, iy0, iz0, iw0, ix1, iy1, iz1, iw1;
+    float fx0, fy0, fz0, fw0, fx1, fy1, fz1, fw1;
+    float s, t, r, q;
+    float nxyz0, nxyz1, nxy0, nxy1, nx0, nx1, n0, n1;
+
+    ix0 = FASTFLOOR( x ); // Integer part of x
+    iy0 = FASTFLOOR( y ); // Integer part of y
+    iz0 = FASTFLOOR( z ); // Integer part of y
+    iw0 = FASTFLOOR( w ); // Integer part of w
+    fx0 = x - ix0;        // Fractional part of x
+    fy0 = y - iy0;        // Fractional part of y
+    fz0 = z - iz0;        // Fractional part of z
+    fw0 = w - iw0;        // Fractional part of w
+    fx1 = fx0 - 1.0f;
+    fy1 = fy0 - 1.0f;
+    fz1 = fz0 - 1.0f;
+    fw1 = fw0 - 1.0f;
+    ix1 = ( ix0 + 1 ) & 0xff;  // Wrap to 0..255
+    iy1 = ( iy0 + 1 ) & 0xff;
+    iz1 = ( iz0 + 1 ) & 0xff;
+    iw1 = ( iw0 + 1 ) & 0xff;
+    ix0 = ix0 & 0xff;
+    iy0 = iy0 & 0xff;
+    iz0 = iz0 & 0xff;
+    iw0 = iw0 & 0xff;
+
+    q = FADE( fw0 );
+    r = FADE( fz0 );
+    t = FADE( fy0 );
+    s = FADE( fx0 );
+
+    nxyz0 = grad(perm[ix0 + perm[iy0 + perm[iz0 + perm[iw0]]]], fx0, fy0, fz0, fw0);
+    nxyz1 = grad(perm[ix0 + perm[iy0 + perm[iz0 + perm[iw1]]]], fx0, fy0, fz0, fw1);
+    nxy0 = LERP( q, nxyz0, nxyz1 );
+        
+    nxyz0 = grad(perm[ix0 + perm[iy0 + perm[iz1 + perm[iw0]]]], fx0, fy0, fz1, fw0);
+    nxyz1 = grad(perm[ix0 + perm[iy0 + perm[iz1 + perm[iw1]]]], fx0, fy0, fz1, fw1);
+    nxy1 = LERP( q, nxyz0, nxyz1 );
+        
+    nx0 = LERP ( r, nxy0, nxy1 );
+
+    nxyz0 = grad(perm[ix0 + perm[iy1 + perm[iz0 + perm[iw0]]]], fx0, fy1, fz0, fw0);
+    nxyz1 = grad(perm[ix0 + perm[iy1 + perm[iz0 + perm[iw1]]]], fx0, fy1, fz0, fw1);
+    nxy0 = LERP( q, nxyz0, nxyz1 );
+        
+    nxyz0 = grad(perm[ix0 + perm[iy1 + perm[iz1 + perm[iw0]]]], fx0, fy1, fz1, fw0);
+    nxyz1 = grad(perm[ix0 + perm[iy1 + perm[iz1 + perm[iw1]]]], fx0, fy1, fz1, fw1);
+    nxy1 = LERP( q, nxyz0, nxyz1 );
+
+    nx1 = LERP ( r, nxy0, nxy1 );
+
+    n0 = LERP( t, nx0, nx1 );
+
+    nxyz0 = grad(perm[ix1 + perm[iy0 + perm[iz0 + perm[iw0]]]], fx1, fy0, fz0, fw0);
+    nxyz1 = grad(perm[ix1 + perm[iy0 + perm[iz0 + perm[iw1]]]], fx1, fy0, fz0, fw1);
+    nxy0 = LERP( q, nxyz0, nxyz1 );
+        
+    nxyz0 = grad(perm[ix1 + perm[iy0 + perm[iz1 + perm[iw0]]]], fx1, fy0, fz1, fw0);
+    nxyz1 = grad(perm[ix1 + perm[iy0 + perm[iz1 + perm[iw1]]]], fx1, fy0, fz1, fw1);
+    nxy1 = LERP( q, nxyz0, nxyz1 );
+
+    nx0 = LERP ( r, nxy0, nxy1 );
+
+    nxyz0 = grad(perm[ix1 + perm[iy1 + perm[iz0 + perm[iw0]]]], fx1, fy1, fz0, fw0);
+    nxyz1 = grad(perm[ix1 + perm[iy1 + perm[iz0 + perm[iw1]]]], fx1, fy1, fz0, fw1);
+    nxy0 = LERP( q, nxyz0, nxyz1 );
+        
+    nxyz0 = grad(perm[ix1 + perm[iy1 + perm[iz1 + perm[iw0]]]], fx1, fy1, fz1, fw0);
+    nxyz1 = grad(perm[ix1 + perm[iy1 + perm[iz1 + perm[iw1]]]], fx1, fy1, fz1, fw1);
+    nxy1 = LERP( q, nxyz0, nxyz1 );
+
+    nx1 = LERP ( r, nxy0, nxy1 );
+
+    n1 = LERP( t, nx0, nx1 );
+
+    return 0.87f * ( LERP( s, n0, n1 ) );
+}
+
+//---------------------------------------------------------------------
+/** 4D float Perlin periodic noise.
+ */
+
+float Noise1234::pnoise( float x, float y, float z, float w,
+                            int px, int py, int pz, int pw )
+{
+    int ix0, iy0, iz0, iw0, ix1, iy1, iz1, iw1;
+    float fx0, fy0, fz0, fw0, fx1, fy1, fz1, fw1;
+    float s, t, r, q;
+    float nxyz0, nxyz1, nxy0, nxy1, nx0, nx1, n0, n1;
+
+    ix0 = FASTFLOOR( x ); // Integer part of x
+    iy0 = FASTFLOOR( y ); // Integer part of y
+    iz0 = FASTFLOOR( z ); // Integer part of y
+    iw0 = FASTFLOOR( w ); // Integer part of w
+    fx0 = x - ix0;        // Fractional part of x
+    fy0 = y - iy0;        // Fractional part of y
+    fz0 = z - iz0;        // Fractional part of z
+    fw0 = w - iw0;        // Fractional part of w
+    fx1 = fx0 - 1.0f;
+    fy1 = fy0 - 1.0f;
+    fz1 = fz0 - 1.0f;
+    fw1 = fw0 - 1.0f;
+    ix1 = (( ix0 + 1 ) % px ) & 0xff;  // Wrap to 0..px-1 and wrap to 0..255
+    iy1 = (( iy0 + 1 ) % py ) & 0xff;  // Wrap to 0..py-1 and wrap to 0..255
+    iz1 = (( iz0 + 1 ) % pz ) & 0xff;  // Wrap to 0..pz-1 and wrap to 0..255
+    iw1 = (( iw0 + 1 ) % pw ) & 0xff;  // Wrap to 0..pw-1 and wrap to 0..255
+    ix0 = ( ix0 % px ) & 0xff;
+    iy0 = ( iy0 % py ) & 0xff;
+    iz0 = ( iz0 % pz ) & 0xff;
+    iw0 = ( iw0 % pw ) & 0xff;
+
+    q = FADE( fw0 );
+    r = FADE( fz0 );
+    t = FADE( fy0 );
+    s = FADE( fx0 );
+
+    nxyz0 = grad(perm[ix0 + perm[iy0 + perm[iz0 + perm[iw0]]]], fx0, fy0, fz0, fw0);
+    nxyz1 = grad(perm[ix0 + perm[iy0 + perm[iz0 + perm[iw1]]]], fx0, fy0, fz0, fw1);
+    nxy0 = LERP( q, nxyz0, nxyz1 );
+        
+    nxyz0 = grad(perm[ix0 + perm[iy0 + perm[iz1 + perm[iw0]]]], fx0, fy0, fz1, fw0);
+    nxyz1 = grad(perm[ix0 + perm[iy0 + perm[iz1 + perm[iw1]]]], fx0, fy0, fz1, fw1);
+    nxy1 = LERP( q, nxyz0, nxyz1 );
+        
+    nx0 = LERP ( r, nxy0, nxy1 );
+
+    nxyz0 = grad(perm[ix0 + perm[iy1 + perm[iz0 + perm[iw0]]]], fx0, fy1, fz0, fw0);
+    nxyz1 = grad(perm[ix0 + perm[iy1 + perm[iz0 + perm[iw1]]]], fx0, fy1, fz0, fw1);
+    nxy0 = LERP( q, nxyz0, nxyz1 );
+        
+    nxyz0 = grad(perm[ix0 + perm[iy1 + perm[iz1 + perm[iw0]]]], fx0, fy1, fz1, fw0);
+    nxyz1 = grad(perm[ix0 + perm[iy1 + perm[iz1 + perm[iw1]]]], fx0, fy1, fz1, fw1);
+    nxy1 = LERP( q, nxyz0, nxyz1 );
+
+    nx1 = LERP ( r, nxy0, nxy1 );
+
+    n0 = LERP( t, nx0, nx1 );
+
+    nxyz0 = grad(perm[ix1 + perm[iy0 + perm[iz0 + perm[iw0]]]], fx1, fy0, fz0, fw0);
+    nxyz1 = grad(perm[ix1 + perm[iy0 + perm[iz0 + perm[iw1]]]], fx1, fy0, fz0, fw1);
+    nxy0 = LERP( q, nxyz0, nxyz1 );
+        
+    nxyz0 = grad(perm[ix1 + perm[iy0 + perm[iz1 + perm[iw0]]]], fx1, fy0, fz1, fw0);
+    nxyz1 = grad(perm[ix1 + perm[iy0 + perm[iz1 + perm[iw1]]]], fx1, fy0, fz1, fw1);
+    nxy1 = LERP( q, nxyz0, nxyz1 );
+
+    nx0 = LERP ( r, nxy0, nxy1 );
+
+    nxyz0 = grad(perm[ix1 + perm[iy1 + perm[iz0 + perm[iw0]]]], fx1, fy1, fz0, fw0);
+    nxyz1 = grad(perm[ix1 + perm[iy1 + perm[iz0 + perm[iw1]]]], fx1, fy1, fz0, fw1);
+    nxy0 = LERP( q, nxyz0, nxyz1 );
+        
+    nxyz0 = grad(perm[ix1 + perm[iy1 + perm[iz1 + perm[iw0]]]], fx1, fy1, fz1, fw0);
+    nxyz1 = grad(perm[ix1 + perm[iy1 + perm[iz1 + perm[iw1]]]], fx1, fy1, fz1, fw1);
+    nxy1 = LERP( q, nxyz0, nxyz1 );
+
+    nx1 = LERP ( r, nxy0, nxy1 );
+
+    n1 = LERP( t, nx0, nx1 );
+
+    return 0.87f * ( LERP( s, n0, n1 ) );
+}
+
+//---------------------------------------------------------------------

+ 57 - 0
src/libraries/noise1234/noise1234.h

@@ -0,0 +1,57 @@
+// Noise1234
+// Author: Stefan Gustavson ([email protected])
+//
+// This library is public domain software, released by the author
+// into the public domain in February 2011. You may do anything
+// you like with it. You may even remove all attributions,
+// but of course I'd appreciate it if you kept my name somewhere.
+//
+// This library is distributed in the hope that it will be useful,
+// but WITHOUT ANY WARRANTY; without even the implied warranty of
+// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+// General Public License for more details.
+
+/** \file
+		\brief Declares the Noise1234 class for producing Perlin noise.
+		\author Stefan Gustavson ([email protected])
+*/
+
+/*
+ * This is a clean, fast, modern and free Perlin noise class in C++.
+ * Being a stand-alone class with no external dependencies, it is
+ * highly reusable without source code modifications.
+ *
+ * Note:
+ * Replacing the "float" type with "double" can actually make this run faster
+ * on some platforms. A templatized version of Noise1234 could be useful.
+ */
+
+class Noise1234 {
+
+  public:
+    Noise1234() {}
+    ~Noise1234() {}
+
+/** 1D, 2D, 3D and 4D float Perlin noise, SL "noise()"
+ */
+    static float noise( float x );
+    static float noise( float x, float y );
+    static float noise( float x, float y, float z );
+    static float noise( float x, float y, float z, float w );
+
+/** 1D, 2D, 3D and 4D float Perlin periodic noise, SL "pnoise()"
+ */
+    static float pnoise( float x, int px );
+    static float pnoise( float x, float y, int px, int py );
+    static float pnoise( float x, float y, float z, int px, int py, int pz );
+    static float pnoise( float x, float y, float z, float w,
+                              int px, int py, int pz, int pw );
+
+  private:
+    static unsigned char perm[];
+    static float  grad( int hash, float x );
+    static float  grad( int hash, float x, float y );
+    static float  grad( int hash, float x, float y , float z );
+    static float  grad( int hash, float x, float y, float z, float t );
+
+};

+ 3 - 263
src/libraries/noise1234/simplexnoise1234.cpp

@@ -13,6 +13,9 @@
 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 // General Public License for more details.
 
+// Modified by the LOVE Development Team to remove 3D and 4D implementations due
+// to patent issues.
+
 /** \file
 		\brief Implements the SimplexNoise1234 class for producing Perlin simplex noise.
 		\author Stefan Gustavson ([email protected])
@@ -114,34 +117,6 @@ float  SimplexNoise1234::grad( int hash, float x, float y ) {
     return ((h&1)? -u : u) + ((h&2)? -2.0f*v : 2.0f*v);
 }
 
-float  SimplexNoise1234::grad( int hash, float x, float y , float z ) {
-    int h = hash & 15;     // Convert low 4 bits of hash code into 12 simple
-    float u = h<8 ? x : y; // gradient directions, and compute dot product.
-    float v = h<4 ? y : h==12||h==14 ? x : z; // Fix repeats at h = 12 to 15
-    return ((h&1)? -u : u) + ((h&2)? -v : v);
-}
-
-float  SimplexNoise1234::grad( int hash, float x, float y, float z, float t ) {
-    int h = hash & 31;      // Convert low 5 bits of hash code into 32 simple
-    float u = h<24 ? x : y; // gradient directions, and compute dot product.
-    float v = h<16 ? y : z;
-    float w = h<8 ? z : t;
-    return ((h&1)? -u : u) + ((h&2)? -v : v) + ((h&4)? -w : w);
-}
-
-  // A lookup table to traverse the simplex around a given point in 4D.
-  // Details can be found where this table is used, in the 4D noise method.
-  /* TODO: This should not be required, backport it from Bill's GLSL code! */
-  static unsigned char simplex[64][4] = {
-    {0,1,2,3},{0,1,3,2},{0,0,0,0},{0,2,3,1},{0,0,0,0},{0,0,0,0},{0,0,0,0},{1,2,3,0},
-    {0,2,1,3},{0,0,0,0},{0,3,1,2},{0,3,2,1},{0,0,0,0},{0,0,0,0},{0,0,0,0},{1,3,2,0},
-    {0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},
-    {1,2,0,3},{0,0,0,0},{1,3,0,2},{0,0,0,0},{0,0,0,0},{0,0,0,0},{2,3,0,1},{2,3,1,0},
-    {1,0,2,3},{1,0,3,2},{0,0,0,0},{0,0,0,0},{0,0,0,0},{2,0,3,1},{0,0,0,0},{2,1,3,0},
-    {0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},
-    {2,0,1,3},{0,0,0,0},{0,0,0,0},{0,0,0,0},{3,0,1,2},{3,0,2,1},{0,0,0,0},{3,1,2,0},
-    {2,1,0,3},{0,0,0,0},{0,0,0,0},{0,0,0,0},{3,1,0,2},{0,0,0,0},{3,2,0,1},{3,2,1,0}};
-
 // 1D simplex noise
 float SimplexNoise1234::noise(float x) {
 
@@ -233,238 +208,3 @@ float SimplexNoise1234::noise(float x, float y) {
     // The result is scaled to return values in the interval [-1,1].
     return 45.23f * (n0 + n1 + n2); // TODO: The scale factor is preliminary!
   }
-
-// 3D simplex noise
-float SimplexNoise1234::noise(float x, float y, float z) {
-
-// Simple skewing factors for the 3D case
-#define F3 0.333333333
-#define G3 0.166666667
-
-    float n0, n1, n2, n3; // Noise contributions from the four corners
-
-    // Skew the input space to determine which simplex cell we're in
-    float s = (x+y+z)*F3; // Very nice and simple skew factor for 3D
-    float xs = x+s;
-    float ys = y+s;
-    float zs = z+s;
-    int i = FASTFLOOR(xs);
-    int j = FASTFLOOR(ys);
-    int k = FASTFLOOR(zs);
-
-    float t = (float)(i+j+k)*G3; 
-    float X0 = i-t; // Unskew the cell origin back to (x,y,z) space
-    float Y0 = j-t;
-    float Z0 = k-t;
-    float x0 = x-X0; // The x,y,z distances from the cell origin
-    float y0 = y-Y0;
-    float z0 = z-Z0;
-
-    // For the 3D case, the simplex shape is a slightly irregular tetrahedron.
-    // Determine which simplex we are in.
-    int i1, j1, k1; // Offsets for second corner of simplex in (i,j,k) coords
-    int i2, j2, k2; // Offsets for third corner of simplex in (i,j,k) coords
-
-/* This code would benefit from a backport from the GLSL version! */
-    if(x0>=y0) {
-      if(y0>=z0)
-        { i1=1; j1=0; k1=0; i2=1; j2=1; k2=0; } // X Y Z order
-        else if(x0>=z0) { i1=1; j1=0; k1=0; i2=1; j2=0; k2=1; } // X Z Y order
-        else { i1=0; j1=0; k1=1; i2=1; j2=0; k2=1; } // Z X Y order
-      }
-    else { // x0<y0
-      if(y0<z0) { i1=0; j1=0; k1=1; i2=0; j2=1; k2=1; } // Z Y X order
-      else if(x0<z0) { i1=0; j1=1; k1=0; i2=0; j2=1; k2=1; } // Y Z X order
-      else { i1=0; j1=1; k1=0; i2=1; j2=1; k2=0; } // Y X Z order
-    }
-
-    // A step of (1,0,0) in (i,j,k) means a step of (1-c,-c,-c) in (x,y,z),
-    // a step of (0,1,0) in (i,j,k) means a step of (-c,1-c,-c) in (x,y,z), and
-    // a step of (0,0,1) in (i,j,k) means a step of (-c,-c,1-c) in (x,y,z), where
-    // c = 1/6.
-
-    float x1 = x0 - i1 + G3; // Offsets for second corner in (x,y,z) coords
-    float y1 = y0 - j1 + G3;
-    float z1 = z0 - k1 + G3;
-    float x2 = x0 - i2 + 2.0f*G3; // Offsets for third corner in (x,y,z) coords
-    float y2 = y0 - j2 + 2.0f*G3;
-    float z2 = z0 - k2 + 2.0f*G3;
-    float x3 = x0 - 1.0f + 3.0f*G3; // Offsets for last corner in (x,y,z) coords
-    float y3 = y0 - 1.0f + 3.0f*G3;
-    float z3 = z0 - 1.0f + 3.0f*G3;
-
-    // Wrap the integer indices at 256, to avoid indexing perm[] out of bounds
-    int ii = i & 0xff;
-    int jj = j & 0xff;
-    int kk = k & 0xff;
-
-    // Calculate the contribution from the four corners
-    float t0 = 0.6f - x0*x0 - y0*y0 - z0*z0;
-    if(t0 < 0.0f) n0 = 0.0f;
-    else {
-      t0 *= t0;
-      n0 = t0 * t0 * grad(perm[ii+perm[jj+perm[kk]]], x0, y0, z0);
-    }
-
-    float t1 = 0.6f - x1*x1 - y1*y1 - z1*z1;
-    if(t1 < 0.0f) n1 = 0.0f;
-    else {
-      t1 *= t1;
-      n1 = t1 * t1 * grad(perm[ii+i1+perm[jj+j1+perm[kk+k1]]], x1, y1, z1);
-    }
-
-    float t2 = 0.6f - x2*x2 - y2*y2 - z2*z2;
-    if(t2 < 0.0f) n2 = 0.0f;
-    else {
-      t2 *= t2;
-      n2 = t2 * t2 * grad(perm[ii+i2+perm[jj+j2+perm[kk+k2]]], x2, y2, z2);
-    }
-
-    float t3 = 0.6f - x3*x3 - y3*y3 - z3*z3;
-    if(t3<0.0f) n3 = 0.0f;
-    else {
-      t3 *= t3;
-      n3 = t3 * t3 * grad(perm[ii+1+perm[jj+1+perm[kk+1]]], x3, y3, z3);
-    }
-
-    // Add contributions from each corner to get the final noise value.
-    // The result is scaled to stay just inside [-1,1]
-    return 32.74f * (n0 + n1 + n2 + n3); // TODO: The scale factor is preliminary!
-  }
-
-
-// 4D simplex noise
-float SimplexNoise1234::noise(float x, float y, float z, float w) {
-  
-  // The skewing and unskewing factors are hairy again for the 4D case
-#define F4 0.309016994 // F4 = (Math.sqrt(5.0)-1.0)/4.0
-#define G4 0.138196601 // G4 = (5.0-Math.sqrt(5.0))/20.0
-
-    float n0, n1, n2, n3, n4; // Noise contributions from the five corners
-
-    // Skew the (x,y,z,w) space to determine which cell of 24 simplices we're in
-    float s = (x + y + z + w) * F4; // Factor for 4D skewing
-    float xs = x + s;
-    float ys = y + s;
-    float zs = z + s;
-    float ws = w + s;
-    int i = FASTFLOOR(xs);
-    int j = FASTFLOOR(ys);
-    int k = FASTFLOOR(zs);
-    int l = FASTFLOOR(ws);
-
-    float t = (i + j + k + l) * G4; // Factor for 4D unskewing
-    float X0 = i - t; // Unskew the cell origin back to (x,y,z,w) space
-    float Y0 = j - t;
-    float Z0 = k - t;
-    float W0 = l - t;
-
-    float x0 = x - X0;  // The x,y,z,w distances from the cell origin
-    float y0 = y - Y0;
-    float z0 = z - Z0;
-    float w0 = w - W0;
-
-    // For the 4D case, the simplex is a 4D shape I won't even try to describe.
-    // To find out which of the 24 possible simplices we're in, we need to
-    // determine the magnitude ordering of x0, y0, z0 and w0.
-    // The method below is a good way of finding the ordering of x,y,z,w and
-    // then find the correct traversal order for the simplex we’re in.
-    // First, six pair-wise comparisons are performed between each possible pair
-    // of the four coordinates, and the results are used to add up binary bits
-    // for an integer index.
-    int c1 = (x0 > y0) ? 32 : 0;
-    int c2 = (x0 > z0) ? 16 : 0;
-    int c3 = (y0 > z0) ? 8 : 0;
-    int c4 = (x0 > w0) ? 4 : 0;
-    int c5 = (y0 > w0) ? 2 : 0;
-    int c6 = (z0 > w0) ? 1 : 0;
-    int c = c1 + c2 + c3 + c4 + c5 + c6;
-
-    int i1, j1, k1, l1; // The integer offsets for the second simplex corner
-    int i2, j2, k2, l2; // The integer offsets for the third simplex corner
-    int i3, j3, k3, l3; // The integer offsets for the fourth simplex corner
-
-    // simplex[c] is a 4-vector with the numbers 0, 1, 2 and 3 in some order.
-    // Many values of c will never occur, since e.g. x>y>z>w makes x<z, y<w and x<w
-    // impossible. Only the 24 indices which have non-zero entries make any sense.
-    // We use a thresholding to set the coordinates in turn from the largest magnitude.
-    // The number 3 in the "simplex" array is at the position of the largest coordinate.
-    i1 = simplex[c][0]>=3 ? 1 : 0;
-    j1 = simplex[c][1]>=3 ? 1 : 0;
-    k1 = simplex[c][2]>=3 ? 1 : 0;
-    l1 = simplex[c][3]>=3 ? 1 : 0;
-    // The number 2 in the "simplex" array is at the second largest coordinate.
-    i2 = simplex[c][0]>=2 ? 1 : 0;
-    j2 = simplex[c][1]>=2 ? 1 : 0;
-    k2 = simplex[c][2]>=2 ? 1 : 0;
-    l2 = simplex[c][3]>=2 ? 1 : 0;
-    // The number 1 in the "simplex" array is at the second smallest coordinate.
-    i3 = simplex[c][0]>=1 ? 1 : 0;
-    j3 = simplex[c][1]>=1 ? 1 : 0;
-    k3 = simplex[c][2]>=1 ? 1 : 0;
-    l3 = simplex[c][3]>=1 ? 1 : 0;
-    // The fifth corner has all coordinate offsets = 1, so no need to look that up.
-
-    float x1 = x0 - i1 + G4; // Offsets for second corner in (x,y,z,w) coords
-    float y1 = y0 - j1 + G4;
-    float z1 = z0 - k1 + G4;
-    float w1 = w0 - l1 + G4;
-    float x2 = x0 - i2 + 2.0f*G4; // Offsets for third corner in (x,y,z,w) coords
-    float y2 = y0 - j2 + 2.0f*G4;
-    float z2 = z0 - k2 + 2.0f*G4;
-    float w2 = w0 - l2 + 2.0f*G4;
-    float x3 = x0 - i3 + 3.0f*G4; // Offsets for fourth corner in (x,y,z,w) coords
-    float y3 = y0 - j3 + 3.0f*G4;
-    float z3 = z0 - k3 + 3.0f*G4;
-    float w3 = w0 - l3 + 3.0f*G4;
-    float x4 = x0 - 1.0f + 4.0f*G4; // Offsets for last corner in (x,y,z,w) coords
-    float y4 = y0 - 1.0f + 4.0f*G4;
-    float z4 = z0 - 1.0f + 4.0f*G4;
-    float w4 = w0 - 1.0f + 4.0f*G4;
-
-    // Wrap the integer indices at 256, to avoid indexing perm[] out of bounds
-    int ii = i & 0xff;
-    int jj = j & 0xff;
-    int kk = k & 0xff;
-    int ll = l & 0xff;
-
-    // Calculate the contribution from the five corners
-    float t0 = 0.6f - x0*x0 - y0*y0 - z0*z0 - w0*w0;
-    if(t0 < 0.0f) n0 = 0.0f;
-    else {
-      t0 *= t0;
-      n0 = t0 * t0 * grad(perm[ii+perm[jj+perm[kk+perm[ll]]]], x0, y0, z0, w0);
-    }
-
-   float t1 = 0.6f - x1*x1 - y1*y1 - z1*z1 - w1*w1;
-    if(t1 < 0.0f) n1 = 0.0f;
-    else {
-      t1 *= t1;
-      n1 = t1 * t1 * grad(perm[ii+i1+perm[jj+j1+perm[kk+k1+perm[ll+l1]]]], x1, y1, z1, w1);
-    }
-
-   float t2 = 0.6f - x2*x2 - y2*y2 - z2*z2 - w2*w2;
-    if(t2 < 0.0f) n2 = 0.0f;
-    else {
-      t2 *= t2;
-      n2 = t2 * t2 * grad(perm[ii+i2+perm[jj+j2+perm[kk+k2+perm[ll+l2]]]], x2, y2, z2, w2);
-    }
-
-   float t3 = 0.6f - x3*x3 - y3*y3 - z3*z3 - w3*w3;
-    if(t3 < 0.0f) n3 = 0.0f;
-    else {
-      t3 *= t3;
-      n3 = t3 * t3 * grad(perm[ii+i3+perm[jj+j3+perm[kk+k3+perm[ll+l3]]]], x3, y3, z3, w3);
-    }
-
-   float t4 = 0.6f - x4*x4 - y4*y4 - z4*z4 - w4*w4;
-    if(t4 < 0.0f) n4 = 0.0f;
-    else {
-      t4 *= t4;
-      n4 = t4 * t4 * grad(perm[ii+1+perm[jj+1+perm[kk+1+perm[ll+1]]]], x4, y4, z4, w4);
-    }
-
-    // Sum up and scale the result to cover the range [-1,1]
-    return 27.3f * (n0 + n1 + n2 + n3 + n4); // TODO: The scale factor is preliminary!
-  }
-//---------------------------------------------------------------------

+ 4 - 13
src/libraries/noise1234/simplexnoise1234.h

@@ -13,6 +13,9 @@
 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 // General Public License for more details.
 
+// Modified by the LOVE Development Team to remove 3D and 4D implementations due
+// to patent issues.
+
 /** \file
 		\brief Declares the SimplexNoise1234 class for producing Perlin simplex noise.
 		\author Stefan Gustavson ([email protected])
@@ -35,26 +38,14 @@ class SimplexNoise1234 {
     SimplexNoise1234() {}
     ~SimplexNoise1234() {}
 
-/** 1D, 2D, 3D and 4D float Perlin noise
+/** 1D and 2D float Perlin noise
  */
     static float noise( float x );
     static float noise( float x, float y );
-    static float noise( float x, float y, float z );
-    static float noise( float x, float y, float z, float w );
-
-/** 1D, 2D, 3D and 4D float Perlin noise, with a specified integer period
- */
-    static float pnoise( float x, int px );
-    static float pnoise( float x, float y, int px, int py );
-    static float pnoise( float x, float y, float z, int px, int py, int pz );
-    static float pnoise( float x, float y, float z, float w,
-                              int px, int py, int pz, int pw );
 
   private:
     static unsigned char perm[];
     static float  grad( int hash, float x );
     static float  grad( int hash, float x, float y );
-    static float  grad( int hash, float x, float y , float z );
-    static float  grad( int hash, float x, float y, float z, float t );
 
 };

+ 7 - 3
src/modules/math/MathModule.h

@@ -32,6 +32,7 @@
 #include "common/int.h"
 
 // Noise
+#include "libraries/noise1234/noise1234.h"
 #include "libraries/noise1234/simplexnoise1234.h"
 
 // STL
@@ -154,7 +155,7 @@ public:
 	float linearToGamma(float c) const;
 
 	/**
-	 * Calculate Simplex noise for the specified coordinate(s).
+	 * Calculate noise for the specified coordinate(s).
 	 *
 	 * @return Noise value in the range of [0, 1].
 	 **/
@@ -218,14 +219,17 @@ inline float Math::noise(float x, float y) const
 	return SimplexNoise1234::noise(x, y) * 0.5f + 0.5f;
 }
 
+// Perlin noise is used instead of Simplex noise in the 3D and 4D cases to avoid
+// patent issues.
+
 inline float Math::noise(float x, float y, float z) const
 {
-	return SimplexNoise1234::noise(x, y, z) * 0.5f + 0.5f;
+	return Noise1234::noise(x, y, z) * 0.5f + 0.5f;
 }
 
 inline float Math::noise(float x, float y, float z, float w) const
 {
-	return SimplexNoise1234::noise(x, y, z, w) * 0.5f + 0.5f;
+	return Noise1234::noise(x, y, z, w) * 0.5f + 0.5f;
 }
 
 } // math