Matrix.cpp 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479
  1. /**
  2. * Copyright (c) 2006-2016 LOVE Development Team
  3. *
  4. * This software is provided 'as-is', without any express or implied
  5. * warranty. In no event will the authors be held liable for any damages
  6. * arising from the use of this software.
  7. *
  8. * Permission is granted to anyone to use this software for any purpose,
  9. * including commercial applications, and to alter it and redistribute it
  10. * freely, subject to the following restrictions:
  11. *
  12. * 1. The origin of this software must not be misrepresented; you must not
  13. * claim that you wrote the original software. If you use this software
  14. * in a product, an acknowledgment in the product documentation would be
  15. * appreciated but is not required.
  16. * 2. Altered source versions must be plainly marked as such, and must not be
  17. * misrepresented as being the original software.
  18. * 3. This notice may not be removed or altered from any source distribution.
  19. **/
  20. #include "Matrix.h"
  21. // STD
  22. #include <cstring> // memcpy
  23. #include <cmath>
  24. namespace love
  25. {
  26. // | e0 e4 e8 e12 |
  27. // | e1 e5 e9 e13 |
  28. // | e2 e6 e10 e14 |
  29. // | e3 e7 e11 e15 |
  30. // | e0 e4 e8 e12 |
  31. // | e1 e5 e9 e13 |
  32. // | e2 e6 e10 e14 |
  33. // | e3 e7 e11 e15 |
  34. void Matrix4::multiply(const Matrix4 &a, const Matrix4 &b, float t[16])
  35. {
  36. t[0] = (a.e[0]*b.e[0]) + (a.e[4]*b.e[1]) + (a.e[8]*b.e[2]) + (a.e[12]*b.e[3]);
  37. t[4] = (a.e[0]*b.e[4]) + (a.e[4]*b.e[5]) + (a.e[8]*b.e[6]) + (a.e[12]*b.e[7]);
  38. t[8] = (a.e[0]*b.e[8]) + (a.e[4]*b.e[9]) + (a.e[8]*b.e[10]) + (a.e[12]*b.e[11]);
  39. t[12] = (a.e[0]*b.e[12]) + (a.e[4]*b.e[13]) + (a.e[8]*b.e[14]) + (a.e[12]*b.e[15]);
  40. t[1] = (a.e[1]*b.e[0]) + (a.e[5]*b.e[1]) + (a.e[9]*b.e[2]) + (a.e[13]*b.e[3]);
  41. t[5] = (a.e[1]*b.e[4]) + (a.e[5]*b.e[5]) + (a.e[9]*b.e[6]) + (a.e[13]*b.e[7]);
  42. t[9] = (a.e[1]*b.e[8]) + (a.e[5]*b.e[9]) + (a.e[9]*b.e[10]) + (a.e[13]*b.e[11]);
  43. t[13] = (a.e[1]*b.e[12]) + (a.e[5]*b.e[13]) + (a.e[9]*b.e[14]) + (a.e[13]*b.e[15]);
  44. t[2] = (a.e[2]*b.e[0]) + (a.e[6]*b.e[1]) + (a.e[10]*b.e[2]) + (a.e[14]*b.e[3]);
  45. t[6] = (a.e[2]*b.e[4]) + (a.e[6]*b.e[5]) + (a.e[10]*b.e[6]) + (a.e[14]*b.e[7]);
  46. t[10] = (a.e[2]*b.e[8]) + (a.e[6]*b.e[9]) + (a.e[10]*b.e[10]) + (a.e[14]*b.e[11]);
  47. t[14] = (a.e[2]*b.e[12]) + (a.e[6]*b.e[13]) + (a.e[10]*b.e[14]) + (a.e[14]*b.e[15]);
  48. t[3] = (a.e[3]*b.e[0]) + (a.e[7]*b.e[1]) + (a.e[11]*b.e[2]) + (a.e[15]*b.e[3]);
  49. t[7] = (a.e[3]*b.e[4]) + (a.e[7]*b.e[5]) + (a.e[11]*b.e[6]) + (a.e[15]*b.e[7]);
  50. t[11] = (a.e[3]*b.e[8]) + (a.e[7]*b.e[9]) + (a.e[11]*b.e[10]) + (a.e[15]*b.e[11]);
  51. t[15] = (a.e[3]*b.e[12]) + (a.e[7]*b.e[13]) + (a.e[11]*b.e[14]) + (a.e[15]*b.e[15]);
  52. }
  53. void Matrix4::multiply(const Matrix4 &a, const Matrix4 &b, Matrix4 &t)
  54. {
  55. multiply(a, b, t.e);
  56. }
  57. // | e0 e4 e8 e12 |
  58. // | e1 e5 e9 e13 |
  59. // | e2 e6 e10 e14 |
  60. // | e3 e7 e11 e15 |
  61. Matrix4::Matrix4()
  62. {
  63. setIdentity();
  64. }
  65. Matrix4::Matrix4(const float elements[16])
  66. {
  67. memcpy(e, elements, sizeof(float) * 16);
  68. }
  69. Matrix4::Matrix4(float t00, float t10, float t01, float t11, float x, float y)
  70. {
  71. setRawTransformation(t00, t10, t01, t11, x, y);
  72. }
  73. Matrix4::Matrix4(float x, float y, float angle, float sx, float sy, float ox, float oy, float kx, float ky)
  74. {
  75. setTransformation(x, y, angle, sx, sy, ox, oy, kx, ky);
  76. }
  77. Matrix4::~Matrix4()
  78. {
  79. }
  80. Matrix4 Matrix4::operator * (const Matrix4 &m) const
  81. {
  82. Matrix4 t;
  83. multiply(*this, m, t);
  84. return t;
  85. }
  86. void Matrix4::operator *= (const Matrix4 &m)
  87. {
  88. float t[16];
  89. multiply(*this, m, t);
  90. memcpy(this->e, t, sizeof(float)*16);
  91. }
  92. const float *Matrix4::getElements() const
  93. {
  94. return e;
  95. }
  96. void Matrix4::setIdentity()
  97. {
  98. memset(e, 0, sizeof(float)*16);
  99. e[15] = e[10] = e[5] = e[0] = 1;
  100. }
  101. void Matrix4::setTranslation(float x, float y)
  102. {
  103. setIdentity();
  104. e[12] = x;
  105. e[13] = y;
  106. }
  107. void Matrix4::setRotation(float rad)
  108. {
  109. setIdentity();
  110. float c = cosf(rad), s = sinf(rad);
  111. e[0] = c;
  112. e[4] = -s;
  113. e[1] = s;
  114. e[5] = c;
  115. }
  116. void Matrix4::setScale(float sx, float sy)
  117. {
  118. setIdentity();
  119. e[0] = sx;
  120. e[5] = sy;
  121. }
  122. void Matrix4::setShear(float kx, float ky)
  123. {
  124. setIdentity();
  125. e[1] = ky;
  126. e[4] = kx;
  127. }
  128. void Matrix4::getApproximateScale(float &sx, float &sy) const
  129. {
  130. sx = sqrtf(e[0] * e[0] + e[4] * e[4]);
  131. sy = sqrtf(e[1] * e[1] + e[5] * e[5]);
  132. }
  133. void Matrix4::setRawTransformation(float t00, float t10, float t01, float t11, float x, float y)
  134. {
  135. memset(e, 0, sizeof(float)*16); // zero out matrix
  136. e[10] = e[15] = 1.0f;
  137. e[0] = t00;
  138. e[1] = t10;
  139. e[4] = t01;
  140. e[5] = t11;
  141. e[12] = x;
  142. e[13] = y;
  143. }
  144. void Matrix4::setTransformation(float x, float y, float angle, float sx, float sy, float ox, float oy, float kx, float ky)
  145. {
  146. memset(e, 0, sizeof(float)*16); // zero out matrix
  147. float c = cosf(angle), s = sinf(angle);
  148. // matrix multiplication carried out on paper:
  149. // |1 x| |c -s | |sx | | 1 ky | |1 -ox|
  150. // | 1 y| |s c | | sy | |kx 1 | | 1 -oy|
  151. // | 1 | | 1 | | 1 | | 1 | | 1 |
  152. // | 1| | 1| | 1| | 1| | 1 |
  153. // move rotate scale skew origin
  154. e[10] = e[15] = 1.0f;
  155. e[0] = c * sx - ky * s * sy; // = a
  156. e[1] = s * sx + ky * c * sy; // = b
  157. e[4] = kx * c * sx - s * sy; // = c
  158. e[5] = kx * s * sx + c * sy; // = d
  159. e[12] = x - ox * e[0] - oy * e[4];
  160. e[13] = y - ox * e[1] - oy * e[5];
  161. }
  162. void Matrix4::translate(float x, float y)
  163. {
  164. Matrix4 t;
  165. t.setTranslation(x, y);
  166. this->operator *=(t);
  167. }
  168. void Matrix4::rotate(float rad)
  169. {
  170. Matrix4 t;
  171. t.setRotation(rad);
  172. this->operator *=(t);
  173. }
  174. void Matrix4::scale(float sx, float sy)
  175. {
  176. Matrix4 t;
  177. t.setScale(sx, sy);
  178. this->operator *=(t);
  179. }
  180. void Matrix4::shear(float kx, float ky)
  181. {
  182. Matrix4 t;
  183. t.setShear(kx,ky);
  184. this->operator *=(t);
  185. }
  186. Matrix4 Matrix4::inverse() const
  187. {
  188. Matrix4 inv;
  189. inv.e[0] = e[5] * e[10] * e[15] -
  190. e[5] * e[11] * e[14] -
  191. e[9] * e[6] * e[15] +
  192. e[9] * e[7] * e[14] +
  193. e[13] * e[6] * e[11] -
  194. e[13] * e[7] * e[10];
  195. inv.e[4] = -e[4] * e[10] * e[15] +
  196. e[4] * e[11] * e[14] +
  197. e[8] * e[6] * e[15] -
  198. e[8] * e[7] * e[14] -
  199. e[12] * e[6] * e[11] +
  200. e[12] * e[7] * e[10];
  201. inv.e[8] = e[4] * e[9] * e[15] -
  202. e[4] * e[11] * e[13] -
  203. e[8] * e[5] * e[15] +
  204. e[8] * e[7] * e[13] +
  205. e[12] * e[5] * e[11] -
  206. e[12] * e[7] * e[9];
  207. inv.e[12] = -e[4] * e[9] * e[14] +
  208. e[4] * e[10] * e[13] +
  209. e[8] * e[5] * e[14] -
  210. e[8] * e[6] * e[13] -
  211. e[12] * e[5] * e[10] +
  212. e[12] * e[6] * e[9];
  213. inv.e[1] = -e[1] * e[10] * e[15] +
  214. e[1] * e[11] * e[14] +
  215. e[9] * e[2] * e[15] -
  216. e[9] * e[3] * e[14] -
  217. e[13] * e[2] * e[11] +
  218. e[13] * e[3] * e[10];
  219. inv.e[5] = e[0] * e[10] * e[15] -
  220. e[0] * e[11] * e[14] -
  221. e[8] * e[2] * e[15] +
  222. e[8] * e[3] * e[14] +
  223. e[12] * e[2] * e[11] -
  224. e[12] * e[3] * e[10];
  225. inv.e[9] = -e[0] * e[9] * e[15] +
  226. e[0] * e[11] * e[13] +
  227. e[8] * e[1] * e[15] -
  228. e[8] * e[3] * e[13] -
  229. e[12] * e[1] * e[11] +
  230. e[12] * e[3] * e[9];
  231. inv.e[13] = e[0] * e[9] * e[14] -
  232. e[0] * e[10] * e[13] -
  233. e[8] * e[1] * e[14] +
  234. e[8] * e[2] * e[13] +
  235. e[12] * e[1] * e[10] -
  236. e[12] * e[2] * e[9];
  237. inv.e[2] = e[1] * e[6] * e[15] -
  238. e[1] * e[7] * e[14] -
  239. e[5] * e[2] * e[15] +
  240. e[5] * e[3] * e[14] +
  241. e[13] * e[2] * e[7] -
  242. e[13] * e[3] * e[6];
  243. inv.e[6] = -e[0] * e[6] * e[15] +
  244. e[0] * e[7] * e[14] +
  245. e[4] * e[2] * e[15] -
  246. e[4] * e[3] * e[14] -
  247. e[12] * e[2] * e[7] +
  248. e[12] * e[3] * e[6];
  249. inv.e[10] = e[0] * e[5] * e[15] -
  250. e[0] * e[7] * e[13] -
  251. e[4] * e[1] * e[15] +
  252. e[4] * e[3] * e[13] +
  253. e[12] * e[1] * e[7] -
  254. e[12] * e[3] * e[5];
  255. inv.e[14] = -e[0] * e[5] * e[14] +
  256. e[0] * e[6] * e[13] +
  257. e[4] * e[1] * e[14] -
  258. e[4] * e[2] * e[13] -
  259. e[12] * e[1] * e[6] +
  260. e[12] * e[2] * e[5];
  261. inv.e[3] = -e[1] * e[6] * e[11] +
  262. e[1] * e[7] * e[10] +
  263. e[5] * e[2] * e[11] -
  264. e[5] * e[3] * e[10] -
  265. e[9] * e[2] * e[7] +
  266. e[9] * e[3] * e[6];
  267. inv.e[7] = e[0] * e[6] * e[11] -
  268. e[0] * e[7] * e[10] -
  269. e[4] * e[2] * e[11] +
  270. e[4] * e[3] * e[10] +
  271. e[8] * e[2] * e[7] -
  272. e[8] * e[3] * e[6];
  273. inv.e[11] = -e[0] * e[5] * e[11] +
  274. e[0] * e[7] * e[9] +
  275. e[4] * e[1] * e[11] -
  276. e[4] * e[3] * e[9] -
  277. e[8] * e[1] * e[7] +
  278. e[8] * e[3] * e[5];
  279. inv.e[15] = e[0] * e[5] * e[10] -
  280. e[0] * e[6] * e[9] -
  281. e[4] * e[1] * e[10] +
  282. e[4] * e[2] * e[9] +
  283. e[8] * e[1] * e[6] -
  284. e[8] * e[2] * e[5];
  285. float det = e[0] * inv.e[0] + e[1] * inv.e[4] + e[2] * inv.e[8] + e[3] * inv.e[12];
  286. float invdet = 1.0f / det;
  287. for (int i = 0; i < 16; i++)
  288. inv.e[i] *= invdet;
  289. return inv;
  290. }
  291. Matrix4 Matrix4::ortho(float left, float right, float bottom, float top)
  292. {
  293. Matrix4 m;
  294. m.e[0] = 2.0f / (right - left);
  295. m.e[5] = 2.0f / (top - bottom);
  296. m.e[10] = -1.0;
  297. m.e[12] = -(right + left) / (right - left);
  298. m.e[13] = -(top + bottom) / (top - bottom);
  299. return m;
  300. }
  301. /**
  302. * | e0 e3 e6 |
  303. * | e1 e4 e7 |
  304. * | e2 e5 e8 |
  305. **/
  306. Matrix3::Matrix3()
  307. {
  308. setIdentity();
  309. }
  310. Matrix3::Matrix3(const Matrix4 &mat4)
  311. {
  312. const float *mat4elems = mat4.getElements();
  313. // Column 0.
  314. e[0] = mat4elems[0];
  315. e[1] = mat4elems[1];
  316. e[2] = mat4elems[2];
  317. // Column 1.
  318. e[3] = mat4elems[4];
  319. e[4] = mat4elems[5];
  320. e[5] = mat4elems[6];
  321. // Column 2.
  322. e[6] = mat4elems[8];
  323. e[7] = mat4elems[9];
  324. e[8] = mat4elems[10];
  325. }
  326. Matrix3::Matrix3(float x, float y, float angle, float sx, float sy, float ox, float oy, float kx, float ky)
  327. {
  328. setTransformation(x, y, angle, sx, sy, ox, oy, kx, ky);
  329. }
  330. Matrix3::~Matrix3()
  331. {
  332. }
  333. void Matrix3::setIdentity()
  334. {
  335. memset(e, 0, sizeof(float) * 9);
  336. e[8] = e[4] = e[0] = 1.0f;
  337. }
  338. Matrix3 Matrix3::operator * (const love::Matrix3 &m) const
  339. {
  340. Matrix3 t;
  341. t.e[0] = (e[0]*m.e[0]) + (e[3]*m.e[1]) + (e[6]*m.e[2]);
  342. t.e[3] = (e[0]*m.e[3]) + (e[3]*m.e[4]) + (e[6]*m.e[5]);
  343. t.e[6] = (e[0]*m.e[6]) + (e[3]*m.e[7]) + (e[6]*m.e[8]);
  344. t.e[1] = (e[1]*m.e[0]) + (e[4]*m.e[1]) + (e[7]*m.e[2]);
  345. t.e[4] = (e[1]*m.e[3]) + (e[4]*m.e[4]) + (e[7]*m.e[5]);
  346. t.e[7] = (e[1]*m.e[6]) + (e[4]*m.e[7]) + (e[7]*m.e[8]);
  347. t.e[2] = (e[2]*m.e[0]) + (e[5]*m.e[1]) + (e[8]*m.e[2]);
  348. t.e[5] = (e[2]*m.e[3]) + (e[5]*m.e[4]) + (e[8]*m.e[5]);
  349. t.e[8] = (e[2]*m.e[6]) + (e[5]*m.e[7]) + (e[8]*m.e[8]);
  350. return t;
  351. }
  352. void Matrix3::operator *= (const Matrix3 &m)
  353. {
  354. Matrix3 t = (*this) * m;
  355. memcpy(e, t.e, sizeof(float) * 9);
  356. }
  357. const float *Matrix3::getElements() const
  358. {
  359. return e;
  360. }
  361. Matrix3 Matrix3::transposedInverse() const
  362. {
  363. // e0 e3 e6
  364. // e1 e4 e7
  365. // e2 e5 e8
  366. float det = e[0] * (e[4]*e[8] - e[7]*e[5])
  367. - e[1] * (e[3]*e[8] - e[5]*e[6])
  368. + e[2] * (e[3]*e[7] - e[4]*e[6]);
  369. float invdet = 1.0f / det;
  370. Matrix3 m;
  371. m.e[0] = invdet * (e[4]*e[8] - e[7]*e[5]);
  372. m.e[3] = -invdet * (e[1]*e[8] - e[2]*e[7]);
  373. m.e[6] = invdet * (e[1]*e[5] - e[2]*e[4]);
  374. m.e[1] = -invdet * (e[3]*e[8] - e[5]*e[6]);
  375. m.e[4] = invdet * (e[0]*e[8] - e[2]*e[6]);
  376. m.e[7] = -invdet * (e[0]*e[5] - e[3]*e[2]);
  377. m.e[2] = invdet * (e[3]*e[7] - e[6]*e[4]);
  378. m.e[5] = -invdet * (e[0]*e[7] - e[6]*e[1]);
  379. m.e[8] = invdet * (e[0]*e[4] - e[3]*e[1]);
  380. return m;
  381. }
  382. void Matrix3::setTransformation(float x, float y, float angle, float sx, float sy, float ox, float oy, float kx, float ky)
  383. {
  384. float c = cosf(angle), s = sinf(angle);
  385. // matrix multiplication carried out on paper:
  386. // |1 x| |c -s | |sx | | 1 ky | |1 -ox|
  387. // | 1 y| |s c | | sy | |kx 1 | | 1 -oy|
  388. // | 1| | 1| | 1| | 1| | 1 |
  389. // move rotate scale skew origin
  390. e[0] = c * sx - ky * s * sy; // = a
  391. e[1] = s * sx + ky * c * sy; // = b
  392. e[3] = kx * c * sx - s * sy; // = c
  393. e[4] = kx * s * sx + c * sy; // = d
  394. e[6] = x - ox * e[0] - oy * e[3];
  395. e[7] = y - ox * e[1] - oy * e[4];
  396. e[2] = e[5] = 0.0f;
  397. e[8] = 1.0f;
  398. }
  399. } // love