123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198 |
- /**
- * Copyright (c) 2006-2012 LOVE Development Team
- *
- * This software is provided 'as-is', without any express or implied
- * warranty. In no event will the authors be held liable for any damages
- * arising from the use of this software.
- *
- * Permission is granted to anyone to use this software for any purpose,
- * including commercial applications, and to alter it and redistribute it
- * freely, subject to the following restrictions:
- *
- * 1. The origin of this software must not be misrepresented; you must not
- * claim that you wrote the original software. If you use this software
- * in a product, an acknowledgment in the product documentation would be
- * appreciated but is not required.
- * 2. Altered source versions must be plainly marked as such, and must not be
- * misrepresented as being the original software.
- * 3. This notice may not be removed or altered from any source distribution.
- **/
- #include "Matrix.h"
- // STD
- #include <cstring> // memcpy
- #include <cmath>
- namespace love
- {
- // | e0 e4 e8 e12 |
- // | e1 e5 e9 e13 |
- // | e2 e6 e10 e14 |
- // | e3 e7 e11 e15 |
- Matrix::Matrix()
- {
- setIdentity();
- }
- Matrix::~Matrix()
- {
- }
- // | e0 e4 e8 e12 |
- // | e1 e5 e9 e13 |
- // | e2 e6 e10 e14 |
- // | e3 e7 e11 e15 |
- // | e0 e4 e8 e12 |
- // | e1 e5 e9 e13 |
- // | e2 e6 e10 e14 |
- // | e3 e7 e11 e15 |
- Matrix Matrix::operator * (const Matrix &m) const
- {
- Matrix t;
- t.e[0] = (e[0]*m.e[0]) + (e[4]*m.e[1]) + (e[8]*m.e[2]) + (e[12]*m.e[3]);
- t.e[4] = (e[0]*m.e[4]) + (e[4]*m.e[5]) + (e[8]*m.e[6]) + (e[12]*m.e[7]);
- t.e[8] = (e[0]*m.e[8]) + (e[4]*m.e[9]) + (e[8]*m.e[10]) + (e[12]*m.e[11]);
- t.e[12] = (e[0]*m.e[12]) + (e[4]*m.e[13]) + (e[8]*m.e[14]) + (e[12]*m.e[15]);
- t.e[1] = (e[1]*m.e[0]) + (e[5]*m.e[1]) + (e[9]*m.e[2]) + (e[13]*m.e[3]);
- t.e[5] = (e[1]*m.e[4]) + (e[5]*m.e[5]) + (e[9]*m.e[6]) + (e[13]*m.e[7]);
- t.e[9] = (e[1]*m.e[8]) + (e[5]*m.e[9]) + (e[9]*m.e[10]) + (e[13]*m.e[11]);
- t.e[13] = (e[1]*m.e[12]) + (e[5]*m.e[13]) + (e[9]*m.e[14]) + (e[13]*m.e[15]);
- t.e[2] = (e[2]*m.e[0]) + (e[6]*m.e[1]) + (e[10]*m.e[2]) + (e[14]*m.e[3]);
- t.e[6] = (e[2]*m.e[4]) + (e[6]*m.e[5]) + (e[10]*m.e[6]) + (e[14]*m.e[7]);
- t.e[10] = (e[2]*m.e[8]) + (e[6]*m.e[9]) + (e[10]*m.e[10]) + (e[14]*m.e[11]);
- t.e[14] = (e[2]*m.e[12]) + (e[6]*m.e[13]) + (e[10]*m.e[14]) + (e[14]*m.e[15]);
- t.e[3] = (e[3]*m.e[0]) + (e[7]*m.e[1]) + (e[11]*m.e[2]) + (e[15]*m.e[3]);
- t.e[7] = (e[3]*m.e[4]) + (e[7]*m.e[5]) + (e[11]*m.e[6]) + (e[15]*m.e[7]);
- t.e[11] = (e[3]*m.e[8]) + (e[7]*m.e[9]) + (e[11]*m.e[10]) + (e[15]*m.e[11]);
- t.e[15] = (e[3]*m.e[12]) + (e[7]*m.e[13]) + (e[11]*m.e[14]) + (e[15]*m.e[15]);
- return t;
- }
- void Matrix::operator *= (const Matrix &m)
- {
- Matrix t = (*this) * m;
- memcpy((void *)this->e, (void *)t.e, sizeof(float)*16);
- }
- const float *Matrix::getElements() const
- {
- return e;
- }
- void Matrix::setIdentity()
- {
- memset(e, 0, sizeof(float)*16);
- e[0] = e[5] = e[10] = e[15] = 1;
- }
- void Matrix::setTranslation(float x, float y)
- {
- setIdentity();
- e[12] = x;
- e[13] = y;
- }
- void Matrix::setRotation(float rad)
- {
- setIdentity();
- float c = cos(rad), s = sin(rad);
- e[0] = c;
- e[4] = -s;
- e[1] = s;
- e[5] = c;
- }
- void Matrix::setScale(float sx, float sy)
- {
- setIdentity();
- e[0] = sx;
- e[5] = sy;
- }
- void Matrix::setShear(float kx, float ky)
- {
- setIdentity();
- e[1] = ky;
- e[4] = kx;
- }
- void Matrix::setTransformation(float x, float y, float angle, float sx, float sy, float ox, float oy, float kx, float ky)
- {
- memset(e, 0, sizeof(float)*16); // zero out matrix
- float c = cos(angle), s = sin(angle);
- // matrix multiplication carried out on paper:
- // |1 x| |c -s | |sx | | 1 ky | |1 -ox|
- // | 1 y| |s c | | sy | |kx 1 | | 1 -oy|
- // | 1 | | 1 | | 1 | | 1 | | 1 |
- // | 1| | 1| | 1| | 1| | 1 |
- // move rotate scale skew origin
- e[10] = e[15] = 1.0f;
- e[0] = c * sx - ky * s * sy; // = a
- e[1] = s * sx + ky * c * sy; // = b
- e[4] = kx * c * sx - s * sy; // = c
- e[5] = kx * s * sx + c * sy; // = d
- e[12] = x - ox * e[0] - oy * e[4];
- e[13] = y - ox * e[1] - oy * e[5];
- }
- void Matrix::translate(float x, float y)
- {
- Matrix t;
- t.setTranslation(x, y);
- this->operator *=(t);
- }
- void Matrix::rotate(float rad)
- {
- Matrix t;
- t.setRotation(rad);
- this->operator *=(t);
- }
- void Matrix::scale(float sx, float sy)
- {
- Matrix t;
- t.setScale(sx, sy);
- this->operator *=(t);
- }
- void Matrix::shear(float kx, float ky)
- {
- Matrix t;
- t.setShear(kx,ky);
- this->operator *=(t);
- }
- // | x |
- // | y |
- // | 0 |
- // | 1 |
- // | e0 e4 e8 e12 |
- // | e1 e5 e9 e13 |
- // | e2 e6 e10 e14 |
- // | e3 e7 e11 e15 |
- void Matrix::transform(vertex *dst, const vertex *src, int size) const
- {
- for (int i = 0; i<size; i++)
- {
- // Store in temp variables in case src = dst
- float x = (e[0]*src[i].x) + (e[4]*src[i].y) + (0) + (e[12]);
- float y = (e[1]*src[i].x) + (e[5]*src[i].y) + (0) + (e[13]);
- dst[i].x = x;
- dst[i].y = y;
- }
- }
- } // love
|