1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495 |
- #pragma once
- #include <cmath>
- #include "types.h"
- #include "Vector2.hpp"
- // Parameters for iterative search of closest point on a cubic Bezier curve. Increase for higher precision.
- #define MSDFGEN_CUBIC_SEARCH_STARTS 4
- #define MSDFGEN_CUBIC_SEARCH_STEPS 4
- #define MSDFGEN_QUADRATIC_RATIO_LIMIT ::msdfgen::real(1e8)
- #ifndef MSDFGEN_CUBE_ROOT
- #define MSDFGEN_CUBE_ROOT(x) pow((x), ::msdfgen::real(1)/::msdfgen::real(3))
- #endif
- namespace msdfgen {
- /**
- * Returns the parameter for the quadratic Bezier curve (P0, P1, P2) for the point closest to point P. May be outside the (0, 1) range.
- * p = P-P0
- * q = 2*P1-2*P0
- * r = P2-2*P1+P0
- */
- inline real quadraticNearPoint(const Vector2 p, const Vector2 q, const Vector2 r) {
- real qq = q.squaredLength();
- real rr = r.squaredLength();
- if (qq >= MSDFGEN_QUADRATIC_RATIO_LIMIT*rr)
- return dotProduct(p, q)/qq;
- real norm = real(.5)/rr;
- real a = real(3)*norm*dotProduct(q, r);
- real b = norm*(qq-real(2)*dotProduct(p, r));
- real c = norm*dotProduct(p, q);
- real aa = a*a;
- real g = real(1)/real(9)*(aa-real(3)*b);
- real h = real(1)/real(54)*(a*(aa+aa-real(9)*b)-real(27)*c);
- real hh = h*h;
- real ggg = g*g*g;
- a *= real(1)/real(3);
- if (hh < ggg) {
- real u = real(1)/real(3)*acos(h/sqrt(ggg));
- g = real(-2)*sqrt(g);
- if (h >= real(0)) {
- real t = g*cos(u)-a;
- if (t >= real(0))
- return t;
- return g*cos(u+real(2.0943951023931954923))-a; // 2.094 = PI*2/3
- } else {
- real t = g*cos(u+real(2.0943951023931954923))-a;
- if (t <= real(1))
- return t;
- return g*cos(u)-a;
- }
- }
- real s = (h < real(0) ? real(1) : real(-1))*MSDFGEN_CUBE_ROOT(fabs(h)+sqrt(hh-ggg));
- return s+g/s-a;
- }
- /**
- * Returns the parameter for the cubic Bezier curve (P0, P1, P2, P3) for the point closest to point P. Squared distance is provided as optional output parameter.
- * p = P-P0
- * q = 3*P1-3*P0
- * r = 3*P2-6*P1+3*P0
- * s = P3-3*P2+3*P1-P0
- */
- inline real cubicNearPoint(const Vector2 p, const Vector2 q, const Vector2 r, const Vector2 s, real &squaredDistance) {
- squaredDistance = p.squaredLength();
- real bestT = 0;
- for (int i = 0; i <= MSDFGEN_CUBIC_SEARCH_STARTS; ++i) {
- real t = real(1)/real(MSDFGEN_CUBIC_SEARCH_STARTS)*real(i);
- Vector2 curP = p-(q+(r+s*t)*t)*t;
- for (int step = 0; step < MSDFGEN_CUBIC_SEARCH_STEPS; ++step) {
- Vector2 d0 = q+(r+r+real(3)*s*t)*t;
- Vector2 d1 = r+r+real(6)*s*t;
- t += dotProduct(curP, d0)/(d0.squaredLength()-dotProduct(curP, d1));
- if (t <= real(0) || t >= real(1))
- break;
- curP = p-(q+(r+s*t)*t)*t;
- real curSquaredDistance = curP.squaredLength();
- if (curSquaredDistance < squaredDistance) {
- squaredDistance = curSquaredDistance;
- bestT = t;
- }
- }
- }
- return bestT;
- }
- inline real cubicNearPoint(const Vector2 p, const Vector2 q, const Vector2 r, const Vector2 s) {
- real squaredDistance;
- return cubicNearPoint(p, q, r, s, squaredDistance);
- }
- }
|