|
|
@@ -0,0 +1,509 @@
|
|
|
+#ifdef USE_BITVECTOR
|
|
|
+
|
|
|
+#include "squirrel.h"
|
|
|
+#include <string.h>
|
|
|
+#include <stdio.h>
|
|
|
+#include <stdlib.h> /* for malloc */
|
|
|
+#include <assert.h> /* for a few sanity tests */
|
|
|
+
|
|
|
+#include "sqlite3.h"
|
|
|
+
|
|
|
+//copy from sqliteInt.h
|
|
|
+#ifndef UINT32_TYPE
|
|
|
+# ifdef HAVE_UINT32_T
|
|
|
+# define UINT32_TYPE uint32_t
|
|
|
+# else
|
|
|
+# define UINT32_TYPE unsigned int
|
|
|
+# endif
|
|
|
+#endif
|
|
|
+#ifndef UINT16_TYPE
|
|
|
+# ifdef HAVE_UINT16_T
|
|
|
+# define UINT16_TYPE uint16_t
|
|
|
+# else
|
|
|
+# define UINT16_TYPE unsigned short int
|
|
|
+# endif
|
|
|
+#endif
|
|
|
+#ifndef INT16_TYPE
|
|
|
+# ifdef HAVE_INT16_T
|
|
|
+# define INT16_TYPE int16_t
|
|
|
+# else
|
|
|
+# define INT16_TYPE short int
|
|
|
+# endif
|
|
|
+#endif
|
|
|
+#ifndef UINT8_TYPE
|
|
|
+# ifdef HAVE_UINT8_T
|
|
|
+# define UINT8_TYPE uint8_t
|
|
|
+# else
|
|
|
+# define UINT8_TYPE unsigned char
|
|
|
+# endif
|
|
|
+#endif
|
|
|
+#ifndef INT8_TYPE
|
|
|
+# ifdef HAVE_INT8_T
|
|
|
+# define INT8_TYPE int8_t
|
|
|
+# else
|
|
|
+# define INT8_TYPE signed char
|
|
|
+# endif
|
|
|
+#endif
|
|
|
+#ifndef LONGDOUBLE_TYPE
|
|
|
+# define LONGDOUBLE_TYPE long double
|
|
|
+#endif
|
|
|
+//typedef sqlite_int64 i64; /* 8-byte signed integer */
|
|
|
+//typedef sqlite_uint64 u64; /* 8-byte unsigned integer */
|
|
|
+typedef UINT32_TYPE u32; /* 4-byte unsigned integer */
|
|
|
+typedef UINT16_TYPE u16; /* 2-byte unsigned integer */
|
|
|
+typedef INT16_TYPE i16; /* 2-byte signed integer */
|
|
|
+typedef UINT8_TYPE u8; /* 1-byte unsigned integer */
|
|
|
+typedef INT8_TYPE i8; /* 1-byte signed integer */
|
|
|
+
|
|
|
+void *sqlite3MallocZero(size_t size)
|
|
|
+{
|
|
|
+ void *p = sq_malloc(size);
|
|
|
+ memset(p, 0, size);
|
|
|
+ return p;
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+** SQLITE_MAX_U32 is a u64 constant that is the maximum u64 value
|
|
|
+** that can be stored in a u32 without loss of data. The value
|
|
|
+** is 0x00000000ffffffff. But because of quirks of some compilers, we
|
|
|
+** have to specify the value in the less intuitive manner shown:
|
|
|
+*/
|
|
|
+#define SQLITE_MAX_U32 ((((u64)1)<<32)-1)
|
|
|
+
|
|
|
+/*
|
|
|
+** On systems with ample stack space and that support alloca(), make
|
|
|
+** use of alloca() to obtain space for large automatic objects. By default,
|
|
|
+** obtain space from malloc().
|
|
|
+**
|
|
|
+** The alloca() routine never returns NULL. This will cause code paths
|
|
|
+** that deal with sqlite3StackAlloc() failures to be unreachable.
|
|
|
+*/
|
|
|
+# define sqlite3StackAllocRaw(D,N) alloca(N)
|
|
|
+# define sqlite3StackAllocZero(D,N) memset(alloca(N), 0, N)
|
|
|
+# define sqlite3StackFree(D,P)
|
|
|
+
|
|
|
+# define SQLITE_NOMEM_BKPT SQLITE_NOMEM
|
|
|
+# define SQLITE_IOERR_NOMEM_BKPT SQLITE_IOERR_NOMEM
|
|
|
+
|
|
|
+/*
|
|
|
+** 2008 February 16
|
|
|
+**
|
|
|
+** The author disclaims copyright to this source code. In place of
|
|
|
+** a legal notice, here is a blessing:
|
|
|
+**
|
|
|
+** May you do good and not evil.
|
|
|
+** May you find forgiveness for yourself and forgive others.
|
|
|
+** May you share freely, never taking more than you give.
|
|
|
+**
|
|
|
+*************************************************************************
|
|
|
+** This file implements an object that represents a fixed-length
|
|
|
+** bitmap. Bits are numbered starting with 1.
|
|
|
+**
|
|
|
+** A bitmap is used to record which pages of a database file have been
|
|
|
+** journalled during a transaction, or which pages have the "dont-write"
|
|
|
+** property. Usually only a few pages are meet either condition.
|
|
|
+** So the bitmap is usually sparse and has low cardinality.
|
|
|
+** But sometimes (for example when during a DROP of a large table) most
|
|
|
+** or all of the pages in a database can get journalled. In those cases,
|
|
|
+** the bitmap becomes dense with high cardinality. The algorithm needs
|
|
|
+** to handle both cases well.
|
|
|
+**
|
|
|
+** The size of the bitmap is fixed when the object is created.
|
|
|
+**
|
|
|
+** All bits are clear when the bitmap is created. Individual bits
|
|
|
+** may be set or cleared one at a time.
|
|
|
+**
|
|
|
+** Test operations are about 100 times more common that set operations.
|
|
|
+** Clear operations are exceedingly rare. There are usually between
|
|
|
+** 5 and 500 set operations per Bitvec object, though the number of sets can
|
|
|
+** sometimes grow into tens of thousands or larger. The size of the
|
|
|
+** Bitvec object is the number of pages in the database file at the
|
|
|
+** start of a transaction, and is thus usually less than a few thousand,
|
|
|
+** but can be as large as 2 billion for a really big database.
|
|
|
+*/
|
|
|
+//#include "sqliteInt.h"
|
|
|
+
|
|
|
+/* Size of the Bitvec structure in bytes. */
|
|
|
+#define BITVEC_SZ 512
|
|
|
+
|
|
|
+/* Round the union size down to the nearest pointer boundary, since that's how
|
|
|
+** it will be aligned within the Bitvec struct. */
|
|
|
+#define BITVEC_USIZE \
|
|
|
+ (((BITVEC_SZ-(3*sizeof(u32)))/sizeof(Bitvec*))*sizeof(Bitvec*))
|
|
|
+
|
|
|
+/* Type of the array "element" for the bitmap representation.
|
|
|
+** Should be a power of 2, and ideally, evenly divide into BITVEC_USIZE.
|
|
|
+** Setting this to the "natural word" size of your CPU may improve
|
|
|
+** performance. */
|
|
|
+#define BITVEC_TELEM u8
|
|
|
+/* Size, in bits, of the bitmap element. */
|
|
|
+#define BITVEC_SZELEM 8
|
|
|
+/* Number of elements in a bitmap array. */
|
|
|
+#define BITVEC_NELEM (BITVEC_USIZE/sizeof(BITVEC_TELEM))
|
|
|
+/* Number of bits in the bitmap array. */
|
|
|
+#define BITVEC_NBIT (BITVEC_NELEM*BITVEC_SZELEM)
|
|
|
+
|
|
|
+/* Number of u32 values in hash table. */
|
|
|
+#define BITVEC_NINT (BITVEC_USIZE/sizeof(u32))
|
|
|
+/* Maximum number of entries in hash table before
|
|
|
+** sub-dividing and re-hashing. */
|
|
|
+#define BITVEC_MXHASH (BITVEC_NINT/2)
|
|
|
+/* Hashing function for the aHash representation.
|
|
|
+** Empirical testing showed that the *37 multiplier
|
|
|
+** (an arbitrary prime)in the hash function provided
|
|
|
+** no fewer collisions than the no-op *1. */
|
|
|
+#define BITVEC_HASH(X) (((X)*1)%BITVEC_NINT)
|
|
|
+
|
|
|
+#define BITVEC_NPTR (BITVEC_USIZE/sizeof(Bitvec *))
|
|
|
+
|
|
|
+
|
|
|
+/*
|
|
|
+** A bitmap is an instance of the following structure.
|
|
|
+**
|
|
|
+** This bitmap records the existence of zero or more bits
|
|
|
+** with values between 1 and iSize, inclusive.
|
|
|
+**
|
|
|
+** There are three possible representations of the bitmap.
|
|
|
+** If iSize<=BITVEC_NBIT, then Bitvec.u.aBitmap[] is a straight
|
|
|
+** bitmap. The least significant bit is bit 1.
|
|
|
+**
|
|
|
+** If iSize>BITVEC_NBIT and iDivisor==0 then Bitvec.u.aHash[] is
|
|
|
+** a hash table that will hold up to BITVEC_MXHASH distinct values.
|
|
|
+**
|
|
|
+** Otherwise, the value i is redirected into one of BITVEC_NPTR
|
|
|
+** sub-bitmaps pointed to by Bitvec.u.apSub[]. Each subbitmap
|
|
|
+** handles up to iDivisor separate values of i. apSub[0] holds
|
|
|
+** values between 1 and iDivisor. apSub[1] holds values between
|
|
|
+** iDivisor+1 and 2*iDivisor. apSub[N] holds values between
|
|
|
+** N*iDivisor+1 and (N+1)*iDivisor. Each subbitmap is normalized
|
|
|
+** to hold deal with values between 1 and iDivisor.
|
|
|
+*/
|
|
|
+struct Bitvec {
|
|
|
+ u32 iSize; /* Maximum bit index. Max iSize is 4,294,967,296. */
|
|
|
+ u32 nSet; /* Number of bits that are set - only valid for aHash
|
|
|
+ ** element. Max is BITVEC_NINT. For BITVEC_SZ of 512,
|
|
|
+ ** this would be 125. */
|
|
|
+ u32 iDivisor; /* Number of bits handled by each apSub[] entry. */
|
|
|
+ /* Should >=0 for apSub element. */
|
|
|
+ /* Max iDivisor is max(u32) / BITVEC_NPTR + 1. */
|
|
|
+ /* For a BITVEC_SZ of 512, this would be 34,359,739. */
|
|
|
+ union {
|
|
|
+ BITVEC_TELEM aBitmap[BITVEC_NELEM]; /* Bitmap representation */
|
|
|
+ u32 aHash[BITVEC_NINT]; /* Hash table representation */
|
|
|
+ Bitvec *apSub[BITVEC_NPTR]; /* Recursive representation */
|
|
|
+ } u;
|
|
|
+};
|
|
|
+
|
|
|
+/*
|
|
|
+** Create a new bitmap object able to handle bits between 0 and iSize,
|
|
|
+** inclusive. Return a pointer to the new object. Return NULL if
|
|
|
+** malloc fails.
|
|
|
+*/
|
|
|
+static Bitvec *sqlite3BitvecCreate(u32 iSize){
|
|
|
+ Bitvec *p;
|
|
|
+ assert( sizeof(*p)==BITVEC_SZ );
|
|
|
+ p = (Bitvec*)sqlite3MallocZero( sizeof(*p) );
|
|
|
+ if( p ){
|
|
|
+ p->iSize = iSize;
|
|
|
+ }
|
|
|
+ return p;
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+** Check to see if the i-th bit is set. Return true or false.
|
|
|
+** If p is NULL (if the bitmap has not been created) or if
|
|
|
+** i is out of range, then return false.
|
|
|
+*/
|
|
|
+static int sqlite3BitvecTestNotNull(Bitvec *p, u32 i){
|
|
|
+ assert( p!=0 );
|
|
|
+ i--;
|
|
|
+ if( i>=p->iSize ) return 0;
|
|
|
+ while( p->iDivisor ){
|
|
|
+ u32 bin = i/p->iDivisor;
|
|
|
+ i = i%p->iDivisor;
|
|
|
+ p = p->u.apSub[bin];
|
|
|
+ if (!p) {
|
|
|
+ return 0;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ if( p->iSize<=BITVEC_NBIT ){
|
|
|
+ return (p->u.aBitmap[i/BITVEC_SZELEM] & (1<<(i&(BITVEC_SZELEM-1))))!=0;
|
|
|
+ } else{
|
|
|
+ u32 h = BITVEC_HASH(i++);
|
|
|
+ while( p->u.aHash[h] ){
|
|
|
+ if( p->u.aHash[h]==i ) return 1;
|
|
|
+ h = (h+1) % BITVEC_NINT;
|
|
|
+ }
|
|
|
+ return 0;
|
|
|
+ }
|
|
|
+}
|
|
|
+static int sqlite3BitvecTest(Bitvec *p, u32 i){
|
|
|
+ return p!=0 && sqlite3BitvecTestNotNull(p,i);
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+** Set the i-th bit. Return 0 on success and an error code if
|
|
|
+** anything goes wrong.
|
|
|
+**
|
|
|
+** This routine might cause sub-bitmaps to be allocated. Failing
|
|
|
+** to get the memory needed to hold the sub-bitmap is the only
|
|
|
+** that can go wrong with an insert, assuming p and i are valid.
|
|
|
+**
|
|
|
+** The calling function must ensure that p is a valid Bitvec object
|
|
|
+** and that the value for "i" is within range of the Bitvec object.
|
|
|
+** Otherwise the behavior is undefined.
|
|
|
+*/
|
|
|
+static int sqlite3BitvecSet(Bitvec *p, u32 i){
|
|
|
+ u32 h;
|
|
|
+ if( p==0 ) return SQLITE_OK;
|
|
|
+ assert( i>0 );
|
|
|
+ assert( i<=p->iSize );
|
|
|
+ i--;
|
|
|
+ while((p->iSize > BITVEC_NBIT) && p->iDivisor) {
|
|
|
+ u32 bin = i/p->iDivisor;
|
|
|
+ i = i%p->iDivisor;
|
|
|
+ if( p->u.apSub[bin]==0 ){
|
|
|
+ p->u.apSub[bin] = sqlite3BitvecCreate( p->iDivisor );
|
|
|
+ if( p->u.apSub[bin]==0 ) return SQLITE_NOMEM_BKPT;
|
|
|
+ }
|
|
|
+ p = p->u.apSub[bin];
|
|
|
+ }
|
|
|
+ if( p->iSize<=BITVEC_NBIT ){
|
|
|
+ p->u.aBitmap[i/BITVEC_SZELEM] |= 1 << (i&(BITVEC_SZELEM-1));
|
|
|
+ return SQLITE_OK;
|
|
|
+ }
|
|
|
+ h = BITVEC_HASH(i++);
|
|
|
+ /* if there wasn't a hash collision, and this doesn't */
|
|
|
+ /* completely fill the hash, then just add it without */
|
|
|
+ /* worring about sub-dividing and re-hashing. */
|
|
|
+ if( !p->u.aHash[h] ){
|
|
|
+ if (p->nSet<(BITVEC_NINT-1)) {
|
|
|
+ goto bitvec_set_end;
|
|
|
+ } else {
|
|
|
+ goto bitvec_set_rehash;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ /* there was a collision, check to see if it's already */
|
|
|
+ /* in hash, if not, try to find a spot for it */
|
|
|
+ do {
|
|
|
+ if( p->u.aHash[h]==i ) return SQLITE_OK;
|
|
|
+ h++;
|
|
|
+ if( h>=BITVEC_NINT ) h = 0;
|
|
|
+ } while( p->u.aHash[h] );
|
|
|
+ /* we didn't find it in the hash. h points to the first */
|
|
|
+ /* available free spot. check to see if this is going to */
|
|
|
+ /* make our hash too "full". */
|
|
|
+bitvec_set_rehash:
|
|
|
+ if( p->nSet>=BITVEC_MXHASH ){
|
|
|
+ unsigned int j;
|
|
|
+ int rc;
|
|
|
+ u32 *aiValues = (u32*)sqlite3StackAllocRaw(0, sizeof(p->u.aHash));
|
|
|
+ if( aiValues==0 ){
|
|
|
+ return SQLITE_NOMEM_BKPT;
|
|
|
+ }else{
|
|
|
+ memcpy(aiValues, p->u.aHash, sizeof(p->u.aHash));
|
|
|
+ memset(p->u.apSub, 0, sizeof(p->u.apSub));
|
|
|
+ p->iDivisor = (p->iSize + BITVEC_NPTR - 1)/BITVEC_NPTR;
|
|
|
+ rc = sqlite3BitvecSet(p, i);
|
|
|
+ for(j=0; j<BITVEC_NINT; j++){
|
|
|
+ if( aiValues[j] ) rc |= sqlite3BitvecSet(p, aiValues[j]);
|
|
|
+ }
|
|
|
+ sqlite3StackFree(0, aiValues);
|
|
|
+ return rc;
|
|
|
+ }
|
|
|
+ }
|
|
|
+bitvec_set_end:
|
|
|
+ p->nSet++;
|
|
|
+ p->u.aHash[h] = i;
|
|
|
+ return SQLITE_OK;
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+** Clear the i-th bit.
|
|
|
+**
|
|
|
+** pBuf must be a pointer to at least BITVEC_SZ bytes of temporary storage
|
|
|
+** that BitvecClear can use to rebuilt its hash table.
|
|
|
+*/
|
|
|
+static void sqlite3BitvecClear(Bitvec *p, u32 i, void *pBuf){
|
|
|
+ if( p==0 ) return;
|
|
|
+ assert( i>0 );
|
|
|
+ i--;
|
|
|
+ while( p->iDivisor ){
|
|
|
+ u32 bin = i/p->iDivisor;
|
|
|
+ i = i%p->iDivisor;
|
|
|
+ p = p->u.apSub[bin];
|
|
|
+ if (!p) {
|
|
|
+ return;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ if( p->iSize<=BITVEC_NBIT ){
|
|
|
+ p->u.aBitmap[i/BITVEC_SZELEM] &= ~(1 << (i&(BITVEC_SZELEM-1)));
|
|
|
+ }else{
|
|
|
+ unsigned int j;
|
|
|
+ u32 *aiValues = (u32*)pBuf;
|
|
|
+ memcpy(aiValues, p->u.aHash, sizeof(p->u.aHash));
|
|
|
+ memset(p->u.aHash, 0, sizeof(p->u.aHash));
|
|
|
+ p->nSet = 0;
|
|
|
+ for(j=0; j<BITVEC_NINT; j++){
|
|
|
+ if( aiValues[j] && aiValues[j]!=(i+1) ){
|
|
|
+ u32 h = BITVEC_HASH(aiValues[j]-1);
|
|
|
+ p->nSet++;
|
|
|
+ while( p->u.aHash[h] ){
|
|
|
+ h++;
|
|
|
+ if( h>=BITVEC_NINT ) h = 0;
|
|
|
+ }
|
|
|
+ p->u.aHash[h] = aiValues[j];
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+** Destroy a bitmap object. Reclaim all memory used.
|
|
|
+*/
|
|
|
+static void sqlite3BitvecDestroy(Bitvec *p){
|
|
|
+ if( p==0 ) return;
|
|
|
+ if( p->iDivisor ){
|
|
|
+ unsigned int i;
|
|
|
+ for(i=0; i<BITVEC_NPTR; i++){
|
|
|
+ sqlite3BitvecDestroy(p->u.apSub[i]);
|
|
|
+ }
|
|
|
+ }
|
|
|
+ sq_free(p, 0);
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+** Return the value of the iSize parameter specified when Bitvec *p
|
|
|
+** was created.
|
|
|
+*/
|
|
|
+static u32 sqlite3BitvecSize(Bitvec *p){
|
|
|
+ return p->iSize;
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+** Return the value of the BITVEC_SZ.
|
|
|
+*/
|
|
|
+static u32 sqlite3BITVEC_SZ(){
|
|
|
+ return BITVEC_SZ;
|
|
|
+}
|
|
|
+
|
|
|
+
|
|
|
+//SQ_OPT_STRING_STRLEN();
|
|
|
+
|
|
|
+static const SQChar SQ_LIBNAME[] = _SC("BitVector");
|
|
|
+
|
|
|
+static const SQChar BitVector_Tag[] = _SC("BitVector_TAG");
|
|
|
+#define GET_BitVector_INSTANCE() SQ_GET_INSTANCE(v, 1, Bitvec, BitVector_Tag) \
|
|
|
+ if(self == NULL) return sq_throwerror(v, _SC("BitVector object already closed"));
|
|
|
+
|
|
|
+
|
|
|
+static SQRESULT BitVector_release_hook(SQUserPointer p, SQInteger size, void */*ep*/)
|
|
|
+{
|
|
|
+ Bitvec *self = (Bitvec*)p;
|
|
|
+ if(self) sqlite3BitvecDestroy(self);
|
|
|
+ return 0;
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+static SQRESULT BitVector_free(HSQUIRRELVM v)
|
|
|
+{
|
|
|
+ SQ_FUNC_VARS_NO_TOP(v);
|
|
|
+ GET_BitVector_INSTANCE();
|
|
|
+ BitVector_release_hook(self, 0, v);
|
|
|
+ sq_setinstanceup(v, 1, 0);
|
|
|
+ return 0;
|
|
|
+}
|
|
|
+*/
|
|
|
+
|
|
|
+static SQRESULT sq_BitVector_constructor(HSQUIRRELVM v){
|
|
|
+ SQ_FUNC_VARS_NO_TOP(v);
|
|
|
+ SQ_GET_INTEGER(v, 2, int_size);
|
|
|
+// Bitvec *sqlite3BitvecCreate(u32)
|
|
|
+ Bitvec *bv = sqlite3BitvecCreate((u32)int_size);
|
|
|
+ SQInteger rc = sq_setinstanceup(v, 1, bv);
|
|
|
+ sq_setreleasehook(v,1, BitVector_release_hook);
|
|
|
+ return rc;
|
|
|
+}
|
|
|
+
|
|
|
+static SQRESULT sq_BitVector_clear(HSQUIRRELVM v){
|
|
|
+ SQ_FUNC_VARS_NO_TOP(v);
|
|
|
+ GET_BitVector_INSTANCE();
|
|
|
+
|
|
|
+ SQ_GET_INTEGER(v, 2, int_pos);
|
|
|
+// void sqlite3BitvecClear(Bitvec*, u32, void*)
|
|
|
+ SQChar *bv_buf = sq_getscratchpad(v, sqlite3BITVEC_SZ());
|
|
|
+
|
|
|
+ sqlite3BitvecClear(self, int_pos, bv_buf);
|
|
|
+ return 0;
|
|
|
+}
|
|
|
+
|
|
|
+static SQRESULT sq_BitVector_set(HSQUIRRELVM v){
|
|
|
+ SQ_FUNC_VARS_NO_TOP(v);
|
|
|
+ GET_BitVector_INSTANCE();
|
|
|
+
|
|
|
+ SQ_GET_INTEGER(v, 2, int_pos);
|
|
|
+// int sqlite3BitvecSet(Bitvec*, u32)
|
|
|
+ sq_pushinteger(v, sqlite3BitvecSet(self, (u32)int_pos));
|
|
|
+ return 1;
|
|
|
+}
|
|
|
+
|
|
|
+static SQRESULT sq_BitVector_size(HSQUIRRELVM v){
|
|
|
+ SQ_FUNC_VARS_NO_TOP(v);
|
|
|
+ GET_BitVector_INSTANCE();
|
|
|
+
|
|
|
+// u32 sqlite3BitvecSize(Bitvec*)
|
|
|
+ sq_pushinteger(v, sqlite3BitvecSize(self));
|
|
|
+ return 1;
|
|
|
+}
|
|
|
+
|
|
|
+static SQRESULT sq_BitVector_test(HSQUIRRELVM v){
|
|
|
+ SQ_FUNC_VARS_NO_TOP(v);
|
|
|
+ GET_BitVector_INSTANCE();
|
|
|
+
|
|
|
+ SQ_GET_INTEGER(v, 2, int_pos);
|
|
|
+// int sqlite3BitvecTest(Bitvec*, u32)
|
|
|
+ sq_pushinteger(v, sqlite3BitvecTest(self, (u32)int_pos));
|
|
|
+ return 1;
|
|
|
+}
|
|
|
+
|
|
|
+static SQRESULT sq_BitVector_test_not_null(HSQUIRRELVM v){
|
|
|
+ SQ_FUNC_VARS_NO_TOP(v);
|
|
|
+ GET_BitVector_INSTANCE();
|
|
|
+
|
|
|
+ SQ_GET_INTEGER(v, 2, int_pos);
|
|
|
+// int sqlite3BitvecTestNotNull(Bitvec*, u32)
|
|
|
+ sq_pushinteger(v, sqlite3BitvecTestNotNull(self, (u32)int_pos));
|
|
|
+ return 1;
|
|
|
+}
|
|
|
+
|
|
|
+#define _DECL_BITVECTOR_FUNC(name,nparams,pmask) {_SC(#name),sq_BitVector_##name,nparams,pmask}
|
|
|
+static SQRegFunction BitVector_obj_funcs[]={
|
|
|
+
|
|
|
+ _DECL_BITVECTOR_FUNC(constructor, 2, _SC("xi")),
|
|
|
+ _DECL_BITVECTOR_FUNC(clear, 2, _SC("xi")),
|
|
|
+ _DECL_BITVECTOR_FUNC(set, 2, _SC("xi")),
|
|
|
+ _DECL_BITVECTOR_FUNC(size, 1, _SC("x")),
|
|
|
+ _DECL_BITVECTOR_FUNC(test, 2, _SC("xi")),
|
|
|
+ _DECL_BITVECTOR_FUNC(test_not_null, 2, _SC("xi")),
|
|
|
+ {0,0}
|
|
|
+};
|
|
|
+#undef _DECL_BITVECTOR_FUNC
|
|
|
+
|
|
|
+extern "C" {
|
|
|
+
|
|
|
+ /* This defines a function that opens up your library. */
|
|
|
+ SQRESULT sqext_register_BitVector (HSQUIRRELVM v) {
|
|
|
+ //add a namespace BitVector
|
|
|
+ sq_pushstring(v, SQ_LIBNAME, -1);
|
|
|
+ sq_newclass(v,SQFalse);
|
|
|
+ sq_settypetag(v,-1,(SQUserPointer)BitVector_Tag);
|
|
|
+
|
|
|
+ sq_insert_reg_funcs(v, BitVector_obj_funcs);
|
|
|
+
|
|
|
+ sq_newslot(v,-3,SQFalse); //add BitVector table to the root table
|
|
|
+
|
|
|
+ return SQ_OK;
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+#endif //USE_BITVECTOR
|