PhysicsWorld.cpp 34 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927
  1. //
  2. // Copyright (c) 2008-2014 the Urho3D project.
  3. //
  4. // Permission is hereby granted, free of charge, to any person obtaining a copy
  5. // of this software and associated documentation files (the "Software"), to deal
  6. // in the Software without restriction, including without limitation the rights
  7. // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  8. // copies of the Software, and to permit persons to whom the Software is
  9. // furnished to do so, subject to the following conditions:
  10. //
  11. // The above copyright notice and this permission notice shall be included in
  12. // all copies or substantial portions of the Software.
  13. //
  14. // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15. // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16. // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  17. // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  18. // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  19. // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  20. // THE SOFTWARE.
  21. //
  22. #include "Precompiled.h"
  23. #include "CollisionShape.h"
  24. #include "Constraint.h"
  25. #include "Context.h"
  26. #include "DebugRenderer.h"
  27. #include "Log.h"
  28. #include "Model.h"
  29. #include "Mutex.h"
  30. #include "PhysicsEvents.h"
  31. #include "PhysicsUtils.h"
  32. #include "PhysicsWorld.h"
  33. #include "Profiler.h"
  34. #include "Ray.h"
  35. #include "RigidBody.h"
  36. #include "Scene.h"
  37. #include "SceneEvents.h"
  38. #include "Sort.h"
  39. #include <BulletCollision/BroadphaseCollision/btDbvtBroadphase.h>
  40. #include <BulletCollision/BroadphaseCollision/btBroadphaseProxy.h>
  41. #include <BulletCollision/CollisionDispatch/btDefaultCollisionConfiguration.h>
  42. #include <BulletCollision/CollisionDispatch/btInternalEdgeUtility.h>
  43. #include <BulletCollision/CollisionShapes/btBoxShape.h>
  44. #include <BulletCollision/CollisionShapes/btSphereShape.h>
  45. #include <BulletDynamics/ConstraintSolver/btSequentialImpulseConstraintSolver.h>
  46. #include <BulletDynamics/Dynamics/btDiscreteDynamicsWorld.h>
  47. extern ContactAddedCallback gContactAddedCallback;
  48. namespace Urho3D
  49. {
  50. const char* PHYSICS_CATEGORY = "Physics";
  51. extern const char* SUBSYSTEM_CATEGORY;
  52. static const int MAX_SOLVER_ITERATIONS = 256;
  53. static const int DEFAULT_FPS = 60;
  54. static const Vector3 DEFAULT_GRAVITY = Vector3(0.0f, -9.81f, 0.0f);
  55. static bool CompareRaycastResults(const PhysicsRaycastResult& lhs, const PhysicsRaycastResult& rhs)
  56. {
  57. return lhs.distance_ < rhs.distance_;
  58. }
  59. void InternalPreTickCallback(btDynamicsWorld *world, btScalar timeStep)
  60. {
  61. static_cast<PhysicsWorld*>(world->getWorldUserInfo())->PreStep(timeStep);
  62. }
  63. void InternalTickCallback(btDynamicsWorld *world, btScalar timeStep)
  64. {
  65. static_cast<PhysicsWorld*>(world->getWorldUserInfo())->PostStep(timeStep);
  66. }
  67. static bool CustomMaterialCombinerCallback(btManifoldPoint& cp, const btCollisionObjectWrapper* colObj0Wrap, int partId0, int index0, const btCollisionObjectWrapper* colObj1Wrap, int partId1, int index1)
  68. {
  69. btAdjustInternalEdgeContacts(cp, colObj1Wrap, colObj0Wrap, partId1, index1);
  70. cp.m_combinedFriction = colObj0Wrap->getCollisionObject()->getFriction() * colObj1Wrap->getCollisionObject()->getFriction();
  71. cp.m_combinedRestitution = colObj0Wrap->getCollisionObject()->getRestitution() * colObj1Wrap->getCollisionObject()->getRestitution();
  72. return true;
  73. }
  74. /// Callback for physics world queries.
  75. struct PhysicsQueryCallback : public btCollisionWorld::ContactResultCallback
  76. {
  77. /// Construct.
  78. PhysicsQueryCallback(PODVector<RigidBody*>& result, unsigned collisionMask) : result_(result),
  79. collisionMask_(collisionMask)
  80. {
  81. }
  82. /// Add a contact result.
  83. virtual btScalar addSingleResult(btManifoldPoint &, const btCollisionObjectWrapper *colObj0Wrap, int, int, const btCollisionObjectWrapper *colObj1Wrap, int, int)
  84. {
  85. RigidBody* body = reinterpret_cast<RigidBody*>(colObj0Wrap->getCollisionObject()->getUserPointer());
  86. if (body && !result_.Contains(body) && (body->GetCollisionLayer() & collisionMask_))
  87. result_.Push(body);
  88. body = reinterpret_cast<RigidBody*>(colObj1Wrap->getCollisionObject()->getUserPointer());
  89. if (body && !result_.Contains(body) && (body->GetCollisionLayer() & collisionMask_))
  90. result_.Push(body);
  91. return 0.0f;
  92. }
  93. /// Found rigid bodies.
  94. PODVector<RigidBody*>& result_;
  95. /// Collision mask for the query.
  96. unsigned collisionMask_;
  97. };
  98. PhysicsWorld::PhysicsWorld(Context* context) :
  99. Component(context),
  100. collisionConfiguration_(0),
  101. collisionDispatcher_(0),
  102. broadphase_(0),
  103. solver_(0),
  104. world_(0),
  105. fps_(DEFAULT_FPS),
  106. maxSubSteps_(0),
  107. timeAcc_(0.0f),
  108. maxNetworkAngularVelocity_(DEFAULT_MAX_NETWORK_ANGULAR_VELOCITY),
  109. interpolation_(true),
  110. internalEdge_(true),
  111. applyingTransforms_(false),
  112. debugRenderer_(0),
  113. debugMode_(btIDebugDraw::DBG_DrawWireframe | btIDebugDraw::DBG_DrawConstraints | btIDebugDraw::DBG_DrawConstraintLimits)
  114. {
  115. gContactAddedCallback = CustomMaterialCombinerCallback;
  116. collisionConfiguration_ = new btDefaultCollisionConfiguration();
  117. collisionDispatcher_ = new btCollisionDispatcher(collisionConfiguration_);
  118. broadphase_ = new btDbvtBroadphase();
  119. solver_ = new btSequentialImpulseConstraintSolver();
  120. world_ = new btDiscreteDynamicsWorld(collisionDispatcher_, broadphase_, solver_, collisionConfiguration_);
  121. world_->setGravity(ToBtVector3(DEFAULT_GRAVITY));
  122. world_->getDispatchInfo().m_useContinuous = true;
  123. world_->getSolverInfo().m_splitImpulse = false; // Disable by default for performance
  124. world_->setDebugDrawer(this);
  125. world_->setInternalTickCallback(InternalPreTickCallback, static_cast<void*>(this), true);
  126. world_->setInternalTickCallback(InternalTickCallback, static_cast<void*>(this), false);
  127. }
  128. PhysicsWorld::~PhysicsWorld()
  129. {
  130. if (scene_)
  131. {
  132. // Force all remaining constraints, rigid bodies and collision shapes to release themselves
  133. for (PODVector<Constraint*>::Iterator i = constraints_.Begin(); i != constraints_.End(); ++i)
  134. (*i)->ReleaseConstraint();
  135. for (PODVector<RigidBody*>::Iterator i = rigidBodies_.Begin(); i != rigidBodies_.End(); ++i)
  136. (*i)->ReleaseBody();
  137. for (PODVector<CollisionShape*>::Iterator i = collisionShapes_.Begin(); i != collisionShapes_.End(); ++i)
  138. (*i)->ReleaseShape();
  139. }
  140. delete world_;
  141. world_ = 0;
  142. delete solver_;
  143. solver_ = 0;
  144. delete broadphase_;
  145. broadphase_ = 0;
  146. delete collisionDispatcher_;
  147. collisionDispatcher_ = 0;
  148. delete collisionConfiguration_;
  149. collisionConfiguration_ = 0;
  150. }
  151. void PhysicsWorld::RegisterObject(Context* context)
  152. {
  153. context->RegisterFactory<PhysicsWorld>(SUBSYSTEM_CATEGORY);
  154. MIXED_ACCESSOR_ATTRIBUTE("Gravity", GetGravity, SetGravity, Vector3, DEFAULT_GRAVITY, AM_DEFAULT);
  155. ATTRIBUTE("Physics FPS", int, fps_, DEFAULT_FPS, AM_DEFAULT);
  156. ATTRIBUTE("Max Substeps", int, maxSubSteps_, 0, AM_DEFAULT);
  157. ACCESSOR_ATTRIBUTE("Solver Iterations", GetNumIterations, SetNumIterations, int, 10, AM_DEFAULT);
  158. ATTRIBUTE("Net Max Angular Vel.", float, maxNetworkAngularVelocity_, DEFAULT_MAX_NETWORK_ANGULAR_VELOCITY, AM_DEFAULT);
  159. ATTRIBUTE("Interpolation", bool, interpolation_, true, AM_FILE);
  160. ATTRIBUTE("Internal Edge Utility", bool, internalEdge_, true, AM_DEFAULT);
  161. ACCESSOR_ATTRIBUTE("Split Impulse", GetSplitImpulse, SetSplitImpulse, bool, false, AM_DEFAULT);
  162. }
  163. bool PhysicsWorld::isVisible(const btVector3& aabbMin, const btVector3& aabbMax)
  164. {
  165. if (debugRenderer_)
  166. return debugRenderer_->IsInside(BoundingBox(ToVector3(aabbMin), ToVector3(aabbMax)));
  167. else
  168. return false;
  169. }
  170. void PhysicsWorld::drawLine(const btVector3& from, const btVector3& to, const btVector3& color)
  171. {
  172. if (debugRenderer_)
  173. debugRenderer_->AddLine(ToVector3(from), ToVector3(to), Color(color.x(), color.y(), color.z()), debugDepthTest_);
  174. }
  175. void PhysicsWorld::DrawDebugGeometry(DebugRenderer* debug, bool depthTest)
  176. {
  177. if (debug)
  178. {
  179. PROFILE(PhysicsDrawDebug);
  180. debugRenderer_ = debug;
  181. debugDepthTest_ = depthTest;
  182. world_->debugDrawWorld();
  183. debugRenderer_ = 0;
  184. }
  185. }
  186. void PhysicsWorld::reportErrorWarning(const char* warningString)
  187. {
  188. LOGWARNING("Physics: " + String(warningString));
  189. }
  190. void PhysicsWorld::drawContactPoint(const btVector3& pointOnB, const btVector3& normalOnB, btScalar distance, int lifeTime, const btVector3& color)
  191. {
  192. }
  193. void PhysicsWorld::draw3dText(const btVector3& location, const char* textString)
  194. {
  195. }
  196. void PhysicsWorld::Update(float timeStep)
  197. {
  198. PROFILE(UpdatePhysics);
  199. float internalTimeStep = 1.0f / fps_;
  200. int maxSubSteps = (int)(timeStep * fps_) + 1;
  201. if (maxSubSteps_ < 0)
  202. {
  203. internalTimeStep = timeStep;
  204. maxSubSteps = 1;
  205. }
  206. else if (maxSubSteps_ > 0)
  207. maxSubSteps = Min(maxSubSteps, maxSubSteps_);
  208. delayedWorldTransforms_.Clear();
  209. if (interpolation_)
  210. world_->stepSimulation(timeStep, maxSubSteps, internalTimeStep);
  211. else
  212. {
  213. timeAcc_ += timeStep;
  214. while (timeAcc_ >= internalTimeStep && maxSubSteps > 0)
  215. {
  216. world_->stepSimulation(internalTimeStep, 0, internalTimeStep);
  217. timeAcc_ -= internalTimeStep;
  218. --maxSubSteps;
  219. }
  220. }
  221. // Apply delayed (parented) world transforms now
  222. while (!delayedWorldTransforms_.Empty())
  223. {
  224. for (HashMap<RigidBody*, DelayedWorldTransform>::Iterator i = delayedWorldTransforms_.Begin();
  225. i != delayedWorldTransforms_.End(); ++i)
  226. {
  227. const DelayedWorldTransform& transform = i->second_;
  228. // If parent's transform has already been assigned, can proceed
  229. if (!delayedWorldTransforms_.Contains(transform.parentRigidBody_))
  230. {
  231. transform.rigidBody_->ApplyWorldTransform(transform.worldPosition_, transform.worldRotation_);
  232. delayedWorldTransforms_.Erase(i);
  233. }
  234. }
  235. }
  236. }
  237. void PhysicsWorld::UpdateCollisions()
  238. {
  239. world_->performDiscreteCollisionDetection();
  240. }
  241. void PhysicsWorld::SetFps(int fps)
  242. {
  243. fps_ = Clamp(fps, 1, 1000);
  244. MarkNetworkUpdate();
  245. }
  246. void PhysicsWorld::SetGravity(const Vector3& gravity)
  247. {
  248. world_->setGravity(ToBtVector3(gravity));
  249. MarkNetworkUpdate();
  250. }
  251. void PhysicsWorld::SetMaxSubSteps(int num)
  252. {
  253. maxSubSteps_ = num;
  254. MarkNetworkUpdate();
  255. }
  256. void PhysicsWorld::SetNumIterations(int num)
  257. {
  258. num = Clamp(num, 1, MAX_SOLVER_ITERATIONS);
  259. world_->getSolverInfo().m_numIterations = num;
  260. MarkNetworkUpdate();
  261. }
  262. void PhysicsWorld::SetInterpolation(bool enable)
  263. {
  264. interpolation_ = enable;
  265. }
  266. void PhysicsWorld::SetInternalEdge(bool enable)
  267. {
  268. internalEdge_ = enable;
  269. MarkNetworkUpdate();
  270. }
  271. void PhysicsWorld::SetSplitImpulse(bool enable)
  272. {
  273. world_->getSolverInfo().m_splitImpulse = enable;
  274. MarkNetworkUpdate();
  275. }
  276. void PhysicsWorld::SetMaxNetworkAngularVelocity(float velocity)
  277. {
  278. maxNetworkAngularVelocity_ = Clamp(velocity, 1.0f, 32767.0f);
  279. MarkNetworkUpdate();
  280. }
  281. void PhysicsWorld::Raycast(PODVector<PhysicsRaycastResult>& result, const Ray& ray, float maxDistance, unsigned collisionMask)
  282. {
  283. PROFILE(PhysicsRaycast);
  284. btCollisionWorld::AllHitsRayResultCallback rayCallback(ToBtVector3(ray.origin_), ToBtVector3(ray.origin_ +
  285. maxDistance * ray.direction_));
  286. rayCallback.m_collisionFilterGroup = (short)0xffff;
  287. rayCallback.m_collisionFilterMask = collisionMask;
  288. world_->rayTest(rayCallback.m_rayFromWorld, rayCallback.m_rayToWorld, rayCallback);
  289. for (int i = 0; i < rayCallback.m_collisionObjects.size(); ++i)
  290. {
  291. PhysicsRaycastResult newResult;
  292. newResult.body_ = static_cast<RigidBody*>(rayCallback.m_collisionObjects[i]->getUserPointer());
  293. newResult.position_ = ToVector3(rayCallback.m_hitPointWorld[i]);
  294. newResult.normal_ = ToVector3(rayCallback.m_hitNormalWorld[i]);
  295. newResult.distance_ = (newResult.position_ - ray.origin_).Length();
  296. result.Push(newResult);
  297. }
  298. Sort(result.Begin(), result.End(), CompareRaycastResults);
  299. }
  300. void PhysicsWorld::RaycastSingle(PhysicsRaycastResult& result, const Ray& ray, float maxDistance, unsigned collisionMask)
  301. {
  302. PROFILE(PhysicsRaycastSingle);
  303. btCollisionWorld::ClosestRayResultCallback rayCallback(ToBtVector3(ray.origin_), ToBtVector3(ray.origin_ +
  304. maxDistance * ray.direction_));
  305. rayCallback.m_collisionFilterGroup = (short)0xffff;
  306. rayCallback.m_collisionFilterMask = collisionMask;
  307. world_->rayTest(rayCallback.m_rayFromWorld, rayCallback.m_rayToWorld, rayCallback);
  308. if (rayCallback.hasHit())
  309. {
  310. result.position_ = ToVector3(rayCallback.m_hitPointWorld);
  311. result.normal_ = ToVector3(rayCallback.m_hitNormalWorld);
  312. result.distance_ = (result.position_ - ray.origin_).Length();
  313. result.body_ = static_cast<RigidBody*>(rayCallback.m_collisionObject->getUserPointer());
  314. }
  315. else
  316. {
  317. result.position_ = Vector3::ZERO;
  318. result.normal_ = Vector3::ZERO;
  319. result.distance_ = M_INFINITY;
  320. result.body_ = 0;
  321. }
  322. }
  323. void PhysicsWorld::SphereCast(PhysicsRaycastResult& result, const Ray& ray, float radius, float maxDistance, unsigned collisionMask)
  324. {
  325. PROFILE(PhysicsSphereCast);
  326. btSphereShape shape(radius);
  327. btCollisionWorld::ClosestConvexResultCallback convexCallback(ToBtVector3(ray.origin_), ToBtVector3(ray.origin_ +
  328. maxDistance * ray.direction_));
  329. convexCallback.m_collisionFilterGroup = (short)0xffff;
  330. convexCallback.m_collisionFilterMask = collisionMask;
  331. world_->convexSweepTest(&shape, btTransform(btQuaternion::getIdentity(), convexCallback.m_convexFromWorld),
  332. btTransform(btQuaternion::getIdentity(), convexCallback.m_convexToWorld), convexCallback);
  333. if (convexCallback.hasHit())
  334. {
  335. result.body_ = static_cast<RigidBody*>(convexCallback.m_hitCollisionObject->getUserPointer());
  336. result.position_ = ToVector3(convexCallback.m_hitPointWorld);
  337. result.normal_ = ToVector3(convexCallback.m_hitNormalWorld);
  338. result.distance_ = (result.position_ - ray.origin_).Length();
  339. }
  340. else
  341. {
  342. result.body_ = 0;
  343. result.position_ = Vector3::ZERO;
  344. result.normal_ = Vector3::ZERO;
  345. result.distance_ = M_INFINITY;
  346. }
  347. }
  348. void PhysicsWorld::ConvexCast(PhysicsRaycastResult& result, CollisionShape* shape, const Vector3& startPos, const Quaternion& startRot, const Vector3& endPos, const Quaternion& endRot, unsigned collisionMask)
  349. {
  350. if (!shape || !shape->GetCollisionShape())
  351. {
  352. LOGERROR("Null collision shape for convex cast");
  353. result.body_ = 0;
  354. result.position_ = Vector3::ZERO;
  355. result.normal_ = Vector3::ZERO;
  356. result.distance_ = M_INFINITY;
  357. return;
  358. }
  359. // If shape is attached in a rigidbody, set its collision group temporarily to 0 to make sure it is not returned in the sweep result
  360. RigidBody* bodyComp = shape->GetComponent<RigidBody>();
  361. btRigidBody* body = bodyComp ? bodyComp->GetBody() : (btRigidBody*)0;
  362. btBroadphaseProxy* proxy = body ? body->getBroadphaseProxy() : (btBroadphaseProxy*)0;
  363. short group = 0;
  364. if (proxy)
  365. {
  366. group = proxy->m_collisionFilterGroup;
  367. proxy->m_collisionFilterGroup = 0;
  368. }
  369. ConvexCast(result, shape->GetCollisionShape(), startPos, startRot, endPos, endRot, collisionMask);
  370. // Restore the collision group
  371. if (proxy)
  372. proxy->m_collisionFilterGroup = group;
  373. }
  374. void PhysicsWorld::ConvexCast(PhysicsRaycastResult& result, btCollisionShape* shape, const Vector3& startPos, const Quaternion& startRot, const Vector3& endPos, const Quaternion& endRot, unsigned collisionMask)
  375. {
  376. if (!shape)
  377. {
  378. LOGERROR("Null collision shape for convex cast");
  379. result.body_ = 0;
  380. result.position_ = Vector3::ZERO;
  381. result.normal_ = Vector3::ZERO;
  382. result.distance_ = M_INFINITY;
  383. return;
  384. }
  385. if (!shape->isConvex())
  386. {
  387. LOGERROR("Can not use non-convex collision shape for convex cast");
  388. result.body_ = 0;
  389. result.position_ = Vector3::ZERO;
  390. result.normal_ = Vector3::ZERO;
  391. result.distance_ = M_INFINITY;
  392. return;
  393. }
  394. PROFILE(PhysicsConvexCast);
  395. btCollisionWorld::ClosestConvexResultCallback convexCallback(ToBtVector3(startPos), ToBtVector3(endPos));
  396. convexCallback.m_collisionFilterGroup = (short)0xffff;
  397. convexCallback.m_collisionFilterMask = collisionMask;
  398. world_->convexSweepTest(static_cast<btConvexShape*>(shape), btTransform(ToBtQuaternion(startRot),
  399. convexCallback.m_convexFromWorld), btTransform(ToBtQuaternion(endRot), convexCallback.m_convexToWorld),
  400. convexCallback);
  401. if (convexCallback.hasHit())
  402. {
  403. result.body_ = static_cast<RigidBody*>(convexCallback.m_hitCollisionObject->getUserPointer());
  404. result.position_ = ToVector3(convexCallback.m_hitPointWorld);
  405. result.normal_ = ToVector3(convexCallback.m_hitNormalWorld);
  406. result.distance_ = (result.position_ - startPos).Length();
  407. }
  408. else
  409. {
  410. result.body_ = 0;
  411. result.position_ = Vector3::ZERO;
  412. result.normal_ = Vector3::ZERO;
  413. result.distance_ = M_INFINITY;
  414. }
  415. }
  416. void PhysicsWorld::RemoveCachedGeometry(Model* model)
  417. {
  418. for (HashMap<Pair<Model*, unsigned>, SharedPtr<CollisionGeometryData> >::Iterator i = triMeshCache_.Begin();
  419. i != triMeshCache_.End();)
  420. {
  421. HashMap<Pair<Model*, unsigned>, SharedPtr<CollisionGeometryData> >::Iterator current = i++;
  422. if (current->first_.first_ == model)
  423. triMeshCache_.Erase(current);
  424. }
  425. for (HashMap<Pair<Model*, unsigned>, SharedPtr<CollisionGeometryData> >::Iterator i = convexCache_.Begin();
  426. i != convexCache_.End();)
  427. {
  428. HashMap<Pair<Model*, unsigned>, SharedPtr<CollisionGeometryData> >::Iterator current = i++;
  429. if (current->first_.first_ == model)
  430. convexCache_.Erase(current);
  431. }
  432. }
  433. void PhysicsWorld::GetRigidBodies(PODVector<RigidBody*>& result, const Sphere& sphere, unsigned collisionMask)
  434. {
  435. PROFILE(PhysicsSphereQuery);
  436. result.Clear();
  437. btSphereShape sphereShape(sphere.radius_);
  438. btRigidBody* tempRigidBody = new btRigidBody(1.0f, 0, &sphereShape);
  439. tempRigidBody->setWorldTransform(btTransform(btQuaternion::getIdentity(), ToBtVector3(sphere.center_)));
  440. // Need to activate the temporary rigid body to get reliable results from static, sleeping objects
  441. tempRigidBody->activate();
  442. world_->addRigidBody(tempRigidBody);
  443. PhysicsQueryCallback callback(result, collisionMask);
  444. world_->contactTest(tempRigidBody, callback);
  445. world_->removeRigidBody(tempRigidBody);
  446. delete tempRigidBody;
  447. }
  448. void PhysicsWorld::GetRigidBodies(PODVector<RigidBody*>& result, const BoundingBox& box, unsigned collisionMask)
  449. {
  450. PROFILE(PhysicsBoxQuery);
  451. result.Clear();
  452. btBoxShape boxShape(ToBtVector3(box.HalfSize()));
  453. btRigidBody* tempRigidBody = new btRigidBody(1.0f, 0, &boxShape);
  454. tempRigidBody->setWorldTransform(btTransform(btQuaternion::getIdentity(), ToBtVector3(box.Center())));
  455. tempRigidBody->activate();
  456. world_->addRigidBody(tempRigidBody);
  457. PhysicsQueryCallback callback(result, collisionMask);
  458. world_->contactTest(tempRigidBody, callback);
  459. world_->removeRigidBody(tempRigidBody);
  460. delete tempRigidBody;
  461. }
  462. void PhysicsWorld::GetRigidBodies(PODVector<RigidBody*>& result, const RigidBody* body)
  463. {
  464. PROFILE(GetCollidingBodies);
  465. result.Clear();
  466. for (HashMap<Pair<WeakPtr<RigidBody>, WeakPtr<RigidBody> >, btPersistentManifold*>::Iterator i = currentCollisions_.Begin();
  467. i != currentCollisions_.End(); ++i)
  468. {
  469. if (i->first_.first_ == body)
  470. result.Push(i->first_.second_);
  471. else if (i->first_.second_ == body)
  472. result.Push(i->first_.first_);
  473. }
  474. }
  475. Vector3 PhysicsWorld::GetGravity() const
  476. {
  477. return ToVector3(world_->getGravity());
  478. }
  479. int PhysicsWorld::GetNumIterations() const
  480. {
  481. return world_->getSolverInfo().m_numIterations;
  482. }
  483. bool PhysicsWorld::GetSplitImpulse() const
  484. {
  485. return world_->getSolverInfo().m_splitImpulse != 0;
  486. }
  487. void PhysicsWorld::AddRigidBody(RigidBody* body)
  488. {
  489. rigidBodies_.Push(body);
  490. }
  491. void PhysicsWorld::RemoveRigidBody(RigidBody* body)
  492. {
  493. rigidBodies_.Remove(body);
  494. // Remove possible dangling pointer from the delayedWorldTransforms structure
  495. delayedWorldTransforms_.Erase(body);
  496. }
  497. void PhysicsWorld::AddCollisionShape(CollisionShape* shape)
  498. {
  499. collisionShapes_.Push(shape);
  500. }
  501. void PhysicsWorld::RemoveCollisionShape(CollisionShape* shape)
  502. {
  503. collisionShapes_.Remove(shape);
  504. }
  505. void PhysicsWorld::AddConstraint(Constraint* constraint)
  506. {
  507. constraints_.Push(constraint);
  508. }
  509. void PhysicsWorld::RemoveConstraint(Constraint* constraint)
  510. {
  511. constraints_.Remove(constraint);
  512. }
  513. void PhysicsWorld::AddDelayedWorldTransform(const DelayedWorldTransform& transform)
  514. {
  515. delayedWorldTransforms_[transform.rigidBody_] = transform;
  516. }
  517. void PhysicsWorld::DrawDebugGeometry(bool depthTest)
  518. {
  519. DebugRenderer* debug = GetComponent<DebugRenderer>();
  520. DrawDebugGeometry(debug, depthTest);
  521. }
  522. void PhysicsWorld::SetDebugRenderer(DebugRenderer* debug)
  523. {
  524. debugRenderer_ = debug;
  525. }
  526. void PhysicsWorld::SetDebugDepthTest(bool enable)
  527. {
  528. debugDepthTest_ = enable;
  529. }
  530. void PhysicsWorld::CleanupGeometryCache()
  531. {
  532. // Remove cached shapes whose only reference is the cache itself
  533. for (HashMap<Pair<Model*, unsigned>, SharedPtr<CollisionGeometryData> >::Iterator i = triMeshCache_.Begin();
  534. i != triMeshCache_.End();)
  535. {
  536. HashMap<Pair<Model*, unsigned>, SharedPtr<CollisionGeometryData> >::Iterator current = i++;
  537. if (current->second_.Refs() == 1)
  538. triMeshCache_.Erase(current);
  539. }
  540. for (HashMap<Pair<Model*, unsigned>, SharedPtr<CollisionGeometryData> >::Iterator i = convexCache_.Begin();
  541. i != convexCache_.End();)
  542. {
  543. HashMap<Pair<Model*, unsigned>, SharedPtr<CollisionGeometryData> >::Iterator current = i++;
  544. if (current->second_.Refs() == 1)
  545. convexCache_.Erase(current);
  546. }
  547. }
  548. void PhysicsWorld::OnNodeSet(Node* node)
  549. {
  550. // Subscribe to the scene subsystem update, which will trigger the physics simulation step
  551. if (node)
  552. {
  553. scene_ = GetScene();
  554. SubscribeToEvent(node, E_SCENESUBSYSTEMUPDATE, HANDLER(PhysicsWorld, HandleSceneSubsystemUpdate));
  555. }
  556. }
  557. void PhysicsWorld::HandleSceneSubsystemUpdate(StringHash eventType, VariantMap& eventData)
  558. {
  559. using namespace SceneSubsystemUpdate;
  560. Update(eventData[P_TIMESTEP].GetFloat());
  561. }
  562. void PhysicsWorld::PreStep(float timeStep)
  563. {
  564. // Send pre-step event
  565. using namespace PhysicsPreStep;
  566. VariantMap& eventData = GetEventDataMap();
  567. eventData[P_WORLD] = this;
  568. eventData[P_TIMESTEP] = timeStep;
  569. SendEvent(E_PHYSICSPRESTEP, eventData);
  570. // Start profiling block for the actual simulation step
  571. #ifdef URHO3D_PROFILING
  572. Profiler* profiler = GetSubsystem<Profiler>();
  573. if (profiler)
  574. profiler->BeginBlock("StepSimulation");
  575. #endif
  576. }
  577. void PhysicsWorld::PostStep(float timeStep)
  578. {
  579. #ifdef URHO3D_PROFILING
  580. Profiler* profiler = GetSubsystem<Profiler>();
  581. if (profiler)
  582. profiler->EndBlock();
  583. #endif
  584. SendCollisionEvents();
  585. // Send post-step event
  586. using namespace PhysicsPreStep;
  587. VariantMap& eventData = GetEventDataMap();
  588. eventData[P_WORLD] = this;
  589. eventData[P_TIMESTEP] = timeStep;
  590. SendEvent(E_PHYSICSPOSTSTEP, eventData);
  591. }
  592. void PhysicsWorld::SendCollisionEvents()
  593. {
  594. PROFILE(SendCollisionEvents);
  595. currentCollisions_.Clear();
  596. physicsCollisionData_.Clear();
  597. nodeCollisionData_.Clear();
  598. int numManifolds = collisionDispatcher_->getNumManifolds();
  599. if (numManifolds)
  600. {
  601. physicsCollisionData_[PhysicsCollision::P_WORLD] = this;
  602. for (int i = 0; i < numManifolds; ++i)
  603. {
  604. btPersistentManifold* contactManifold = collisionDispatcher_->getManifoldByIndexInternal(i);
  605. // First check that there are actual contacts, as the manifold exists also when objects are close but not touching
  606. if (!contactManifold->getNumContacts())
  607. continue;
  608. const btCollisionObject* objectA = contactManifold->getBody0();
  609. const btCollisionObject* objectB = contactManifold->getBody1();
  610. RigidBody* bodyA = static_cast<RigidBody*>(objectA->getUserPointer());
  611. RigidBody* bodyB = static_cast<RigidBody*>(objectB->getUserPointer());
  612. // If it's not a rigidbody, maybe a ghost object
  613. if (!bodyA || !bodyB)
  614. continue;
  615. // Skip collision event signaling if both objects are static, or if collision event mode does not match
  616. if (bodyA->GetMass() == 0.0f && bodyB->GetMass() == 0.0f)
  617. continue;
  618. if (bodyA->GetCollisionEventMode() == COLLISION_NEVER || bodyB->GetCollisionEventMode() == COLLISION_NEVER)
  619. continue;
  620. if (bodyA->GetCollisionEventMode() == COLLISION_ACTIVE && bodyB->GetCollisionEventMode() == COLLISION_ACTIVE &&
  621. !bodyA->IsActive() && !bodyB->IsActive())
  622. continue;
  623. WeakPtr<RigidBody> bodyWeakA(bodyA);
  624. WeakPtr<RigidBody> bodyWeakB(bodyB);
  625. Pair<WeakPtr<RigidBody>, WeakPtr<RigidBody> > bodyPair;
  626. if (bodyA < bodyB)
  627. bodyPair = MakePair(bodyWeakA, bodyWeakB);
  628. else
  629. bodyPair = MakePair(bodyWeakB, bodyWeakA);
  630. // First only store the collision pair as weak pointers and the manifold pointer, so user code can safely destroy
  631. // objects during collision event handling
  632. currentCollisions_[bodyPair] = contactManifold;
  633. }
  634. for (HashMap<Pair<WeakPtr<RigidBody>, WeakPtr<RigidBody> >, btPersistentManifold*>::Iterator i = currentCollisions_.Begin();
  635. i != currentCollisions_.End(); ++i)
  636. {
  637. RigidBody* bodyA = i->first_.first_;
  638. RigidBody* bodyB = i->first_.second_;
  639. if (!bodyA || !bodyB)
  640. continue;
  641. btPersistentManifold* contactManifold = i->second_;
  642. Node* nodeA = bodyA->GetNode();
  643. Node* nodeB = bodyB->GetNode();
  644. WeakPtr<Node> nodeWeakA(nodeA);
  645. WeakPtr<Node> nodeWeakB(nodeB);
  646. bool trigger = bodyA->IsTrigger() || bodyB->IsTrigger();
  647. bool newCollision = !previousCollisions_.Contains(i->first_);
  648. physicsCollisionData_[PhysicsCollision::P_NODEA] = nodeA;
  649. physicsCollisionData_[PhysicsCollision::P_NODEB] = nodeB;
  650. physicsCollisionData_[PhysicsCollision::P_BODYA] = bodyA;
  651. physicsCollisionData_[PhysicsCollision::P_BODYB] = bodyB;
  652. physicsCollisionData_[PhysicsCollision::P_TRIGGER] = trigger;
  653. contacts_.Clear();
  654. for (int j = 0; j < contactManifold->getNumContacts(); ++j)
  655. {
  656. btManifoldPoint& point = contactManifold->getContactPoint(j);
  657. contacts_.WriteVector3(ToVector3(point.m_positionWorldOnB));
  658. contacts_.WriteVector3(ToVector3(point.m_normalWorldOnB));
  659. contacts_.WriteFloat(point.m_distance1);
  660. contacts_.WriteFloat(point.m_appliedImpulse);
  661. }
  662. physicsCollisionData_[PhysicsCollision::P_CONTACTS] = contacts_.GetBuffer();
  663. // Send separate collision start event if collision is new
  664. if (newCollision)
  665. {
  666. SendEvent(E_PHYSICSCOLLISIONSTART, physicsCollisionData_);
  667. // Skip rest of processing if either of the nodes or bodies is removed as a response to the event
  668. if (!nodeWeakA || !nodeWeakB || !i->first_.first_ || !i->first_.second_)
  669. continue;
  670. }
  671. // Then send the ongoing collision event
  672. SendEvent(E_PHYSICSCOLLISION, physicsCollisionData_);
  673. if (!nodeWeakA || !nodeWeakB || !i->first_.first_ || !i->first_.second_)
  674. continue;
  675. nodeCollisionData_[NodeCollision::P_BODY] = bodyA;
  676. nodeCollisionData_[NodeCollision::P_OTHERNODE] = nodeB;
  677. nodeCollisionData_[NodeCollision::P_OTHERBODY] = bodyB;
  678. nodeCollisionData_[NodeCollision::P_TRIGGER] = trigger;
  679. nodeCollisionData_[NodeCollision::P_CONTACTS] = contacts_.GetBuffer();
  680. if (newCollision)
  681. {
  682. nodeA->SendEvent(E_NODECOLLISIONSTART, nodeCollisionData_);
  683. if (!nodeWeakA || !nodeWeakB || !i->first_.first_ || !i->first_.second_)
  684. continue;
  685. }
  686. nodeA->SendEvent(E_NODECOLLISION, nodeCollisionData_);
  687. if (!nodeWeakA || !nodeWeakB || !i->first_.first_ || !i->first_.second_)
  688. continue;
  689. contacts_.Clear();
  690. for (int j = 0; j < contactManifold->getNumContacts(); ++j)
  691. {
  692. btManifoldPoint& point = contactManifold->getContactPoint(j);
  693. contacts_.WriteVector3(ToVector3(point.m_positionWorldOnB));
  694. contacts_.WriteVector3(-ToVector3(point.m_normalWorldOnB));
  695. contacts_.WriteFloat(point.m_distance1);
  696. contacts_.WriteFloat(point.m_appliedImpulse);
  697. }
  698. nodeCollisionData_[NodeCollision::P_BODY] = bodyB;
  699. nodeCollisionData_[NodeCollision::P_OTHERNODE] = nodeA;
  700. nodeCollisionData_[NodeCollision::P_OTHERBODY] = bodyA;
  701. nodeCollisionData_[NodeCollision::P_CONTACTS] = contacts_.GetBuffer();
  702. if (newCollision)
  703. {
  704. nodeB->SendEvent(E_NODECOLLISIONSTART, nodeCollisionData_);
  705. if (!nodeWeakA || !nodeWeakB || !i->first_.first_ || !i->first_.second_)
  706. continue;
  707. }
  708. nodeB->SendEvent(E_NODECOLLISION, nodeCollisionData_);
  709. }
  710. }
  711. // Send collision end events as applicable
  712. {
  713. physicsCollisionData_[PhysicsCollisionEnd::P_WORLD] = this;
  714. for (HashMap<Pair<WeakPtr<RigidBody>, WeakPtr<RigidBody> >, btPersistentManifold*>::Iterator i = previousCollisions_.Begin(); i != previousCollisions_.End(); ++i)
  715. {
  716. if (!currentCollisions_.Contains(i->first_))
  717. {
  718. RigidBody* bodyA = i->first_.first_;
  719. RigidBody* bodyB = i->first_.second_;
  720. if (!bodyA || !bodyB)
  721. continue;
  722. bool trigger = bodyA->IsTrigger() || bodyB->IsTrigger();
  723. // Skip collision event signaling if both objects are static, or if collision event mode does not match
  724. if (bodyA->GetMass() == 0.0f && bodyB->GetMass() == 0.0f)
  725. continue;
  726. if (bodyA->GetCollisionEventMode() == COLLISION_NEVER || bodyB->GetCollisionEventMode() == COLLISION_NEVER)
  727. continue;
  728. if (bodyA->GetCollisionEventMode() == COLLISION_ACTIVE && bodyB->GetCollisionEventMode() == COLLISION_ACTIVE &&
  729. !bodyA->IsActive() && !bodyB->IsActive())
  730. continue;
  731. Node* nodeA = bodyA->GetNode();
  732. Node* nodeB = bodyB->GetNode();
  733. WeakPtr<Node> nodeWeakA(nodeA);
  734. WeakPtr<Node> nodeWeakB(nodeB);
  735. physicsCollisionData_[PhysicsCollisionEnd::P_BODYA] = bodyA;
  736. physicsCollisionData_[PhysicsCollisionEnd::P_BODYB] = bodyB;
  737. physicsCollisionData_[PhysicsCollisionEnd::P_NODEA] = nodeA;
  738. physicsCollisionData_[PhysicsCollisionEnd::P_NODEB] = nodeB;
  739. physicsCollisionData_[PhysicsCollisionEnd::P_TRIGGER] = trigger;
  740. SendEvent(E_PHYSICSCOLLISIONEND, physicsCollisionData_);
  741. // Skip rest of processing if either of the nodes or bodies is removed as a response to the event
  742. if (!nodeWeakA || !nodeWeakB || !i->first_.first_ || !i->first_.second_)
  743. continue;
  744. nodeCollisionData_[NodeCollisionEnd::P_BODY] = bodyA;
  745. nodeCollisionData_[NodeCollisionEnd::P_OTHERNODE] = nodeB;
  746. nodeCollisionData_[NodeCollisionEnd::P_OTHERBODY] = bodyB;
  747. nodeCollisionData_[NodeCollisionEnd::P_TRIGGER] = trigger;
  748. nodeA->SendEvent(E_NODECOLLISIONEND, nodeCollisionData_);
  749. if (!nodeWeakA || !nodeWeakB || !i->first_.first_ || !i->first_.second_)
  750. continue;
  751. nodeCollisionData_[NodeCollisionEnd::P_BODY] = bodyB;
  752. nodeCollisionData_[NodeCollisionEnd::P_OTHERNODE] = nodeA;
  753. nodeCollisionData_[NodeCollisionEnd::P_OTHERBODY] = bodyA;
  754. nodeB->SendEvent(E_NODECOLLISIONEND, nodeCollisionData_);
  755. }
  756. }
  757. }
  758. previousCollisions_ = currentCollisions_;
  759. }
  760. void RegisterPhysicsLibrary(Context* context)
  761. {
  762. CollisionShape::RegisterObject(context);
  763. RigidBody::RegisterObject(context);
  764. Constraint::RegisterObject(context);
  765. PhysicsWorld::RegisterObject(context);
  766. }
  767. }