InstancedModel.cpp 38 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078
  1. //
  2. // Urho3D Engine
  3. // Copyright (c) 2008-2011 Lasse Öörni
  4. //
  5. // Permission is hereby granted, free of charge, to any person obtaining a copy
  6. // of this software and associated documentation files (the "Software"), to deal
  7. // in the Software without restriction, including without limitation the rights
  8. // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  9. // copies of the Software, and to permit persons to whom the Software is
  10. // furnished to do so, subject to the following conditions:
  11. //
  12. // The above copyright notice and this permission notice shall be included in
  13. // all copies or substantial portions of the Software.
  14. //
  15. // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  18. // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  20. // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  21. // THE SOFTWARE.
  22. //
  23. #include "Precompiled.h"
  24. #include "Camera.h"
  25. #include "Geometry.h"
  26. #include "IndexBuffer.h"
  27. #include "InstancedModel.h"
  28. #include "Log.h"
  29. #include "Material.h"
  30. #include "Model.h"
  31. #include "OcclusionBuffer.h"
  32. #include "OctreeQuery.h"
  33. #include "Profiler.h"
  34. #include "Renderer.h"
  35. #include "ReplicationUtils.h"
  36. #include "ResourceCache.h"
  37. #include "VertexBuffer.h"
  38. #include "XMLElement.h"
  39. #include <cstring>
  40. #include "DebugNew.h"
  41. InstancingMode InstancedModel::sMode = SHADER_INSTANCING;
  42. std::map<const VertexBuffer*, SharedPtr<VertexBuffer> > InstancedModel::sInstanceVertexBuffers;
  43. std::map<std::pair<const IndexBuffer*, unsigned>, SharedPtr<IndexBuffer> > InstancedModel::sInstanceIndexBuffers;
  44. InstancedModel::InstancedModel(Octant* octant, const std::string& name) :
  45. GeometryNode(NODE_INSTANCEDMODEL, octant, name),
  46. mMode(sMode),
  47. mAverageInstanceScale(1.0f),
  48. mInstancesRelative(true),
  49. mInstancesDirty(true),
  50. mInstanceTransformsDirty(true),
  51. mHWInstancingBufferDirty(true)
  52. {
  53. }
  54. InstancedModel::~InstancedModel()
  55. {
  56. mGeometries.clear();
  57. cleanupInstanceBuffers();
  58. }
  59. void InstancedModel::save(Serializer& dest)
  60. {
  61. // Write GeometryNode properties
  62. GeometryNode::save(dest);
  63. // Write InstanceModel properties
  64. dest.writeStringHash(getResourceHash(mModel));
  65. dest.writeVLE(mOriginalMaterials.size());
  66. for (unsigned i = 0; i < mOriginalMaterials.size(); ++i)
  67. dest.writeStringHash(getResourceHash(mOriginalMaterials[i]));
  68. dest.writeBool(mInstancesRelative);
  69. dest.writeVLE(mInstances.size());
  70. for (unsigned i = 0; i < mInstances.size(); ++i)
  71. {
  72. dest.writeVector3(mInstances[i].mPosition);
  73. dest.writeQuaternion(mInstances[i].mRotation);
  74. dest.writeVector3(mInstances[i].mScale);
  75. }
  76. }
  77. void InstancedModel::load(Deserializer& source, ResourceCache* cache)
  78. {
  79. // Read GeometryNode properties
  80. GeometryNode::load(source, cache);
  81. // Read InstancedModel properties
  82. setModel(cache->getResource<Model>(source.readStringHash()));
  83. unsigned numMaterials = source.readVLE();
  84. for (unsigned i = 0; i < numMaterials; ++i)
  85. setMaterial(i, cache->getResource<Material>(source.readStringHash()));
  86. mInstancesRelative = source.readBool();
  87. setNumInstances(source.readVLE());
  88. for (unsigned i = 0; i < mInstances.size(); ++i)
  89. {
  90. mInstances[i].mPosition = source.readVector3();
  91. mInstances[i].mRotation = source.readQuaternion();
  92. mInstances[i].mScale = source.readVector3();
  93. }
  94. }
  95. void InstancedModel::saveXML(XMLElement& dest)
  96. {
  97. // Write GeometryNode properties
  98. GeometryNode::saveXML(dest);
  99. // Write InstancedModel properties
  100. XMLElement modelElem = dest.createChildElement("model");
  101. modelElem.setString("name", getResourceName(mModel));
  102. for (unsigned i = 0; i < mOriginalMaterials.size(); ++i)
  103. {
  104. XMLElement materialElem = dest.createChildElement("material");
  105. materialElem.setInt("index", i);
  106. materialElem.setString("name", getResourceName(mOriginalMaterials[i]));
  107. }
  108. XMLElement instancesElem = dest.createChildElement("instances");
  109. instancesElem.setBool("relative", mInstancesRelative);
  110. instancesElem.setInt("count", mInstances.size());
  111. for (unsigned i = 0; i < mInstances.size(); ++i)
  112. {
  113. XMLElement instanceElem = dest.createChildElement("instance");
  114. const Instance& instance = mInstances[i];
  115. instanceElem.setVector3("pos", instance.mPosition);
  116. instanceElem.setQuaternion("rot", instance.mRotation);
  117. instanceElem.setVector3("scale", instance.mScale);
  118. }
  119. }
  120. void InstancedModel::loadXML(const XMLElement& source, ResourceCache* cache)
  121. {
  122. // Read GeometryNode properties
  123. GeometryNode::loadXML(source, cache);
  124. // Read InstancedModel properties
  125. XMLElement modelElem = source.getChildElement("model");
  126. setModel(cache->getResource<Model>(modelElem.getString("name")));
  127. XMLElement materialElem = source.getChildElement("material");
  128. while (materialElem)
  129. {
  130. unsigned index = materialElem.getInt("index");
  131. setMaterial(index, cache->getResource<Material>(materialElem.getString("name")));
  132. materialElem = materialElem.getNextElement("material");
  133. }
  134. XMLElement instancesElem = source.getChildElement("instances");
  135. mInstancesRelative = instancesElem.getBool("relative");
  136. setNumInstances(instancesElem.getInt("count"));
  137. XMLElement instanceElem = source.getChildElement("instance");
  138. unsigned index = 0;
  139. while ((instanceElem) && (index < mInstances.size()))
  140. {
  141. Instance& instance = mInstances[index];
  142. instance.mPosition = instanceElem.getVector3("pos");
  143. instance.mRotation = instanceElem.getQuaternion("rot");
  144. instance.mScale = instanceElem.getVector3("scale");
  145. instanceElem = instanceElem.getNextElement("instance");
  146. ++index;
  147. }
  148. }
  149. bool InstancedModel::writeNetUpdate(Serializer& dest, Serializer& destRevision, Deserializer& baseRevision, const NetUpdateInfo& info)
  150. {
  151. // Write GeometryNode properties and see if there were any changes
  152. bool prevBits = GeometryNode::writeNetUpdate(dest, destRevision, baseRevision, info);
  153. // Build bitmask of changed properties
  154. unsigned char bits = 0;
  155. // Model and materials
  156. checkStringHash(getResourceHash(mModel), baseRevision, bits, 1);
  157. unsigned numBaseMaterials = baseRevision.getSize() ? baseRevision.readVLE() : 0;
  158. if (mMaterials.size() != numBaseMaterials)
  159. bits |= 2;
  160. for (unsigned i = 0; i < numBaseMaterials; ++i)
  161. {
  162. if (i < mMaterials.size())
  163. checkStringHash(getResourceHash(mOriginalMaterials[i]), baseRevision, bits, 2);
  164. else
  165. baseRevision.readStringHash();
  166. }
  167. // Instances
  168. checkBool(mInstancesRelative, baseRevision, bits, 4);
  169. unsigned numBaseInstances = baseRevision.getSize() ? baseRevision.readVLE() : 0;
  170. if (mInstances.size() != numBaseInstances)
  171. bits |= 8;
  172. static std::vector<unsigned char> instanceBits;
  173. instanceBits.resize(mInstances.size());
  174. // Compare against the base instances first
  175. for (unsigned i = 0; i < numBaseInstances; ++i)
  176. {
  177. if (i < mInstances.size())
  178. {
  179. instanceBits[i] = 0;
  180. checkVector3(mInstances[i].mPosition, baseRevision, instanceBits[i], 1);
  181. checkQuaternion(mInstances[i].mRotation, baseRevision, instanceBits[i], 2);
  182. checkVector3(mInstances[i].mScale, baseRevision, instanceBits[i], 4);
  183. if (instanceBits[i])
  184. bits |= 8;
  185. }
  186. else
  187. {
  188. baseRevision.readVector3();
  189. baseRevision.readQuaternion();
  190. baseRevision.readVector3();
  191. }
  192. }
  193. // Then check possible new instances against defaults
  194. for (unsigned i = numBaseInstances; i < mInstances.size(); ++i)
  195. {
  196. instanceBits[i] = 0;
  197. if (mInstances[i].mPosition != Vector3::sZero)
  198. instanceBits[i] |= 1;
  199. if (mInstances[i].mRotation != Quaternion::sIdentity)
  200. instanceBits[i] |= 2;
  201. if (mInstances[i].mScale != Vector3::sUnity)
  202. instanceBits[i] |= 4;
  203. if (instanceBits[i])
  204. bits |= 8;
  205. }
  206. // Update replication state fully, and network stream by delta
  207. dest.writeUByte(bits);
  208. writeStringHashDelta(getResourceHash(mModel), dest, destRevision, bits & 1);
  209. writeVLEDelta(mMaterials.size(), dest, destRevision, bits & 2);
  210. for (unsigned i = 0; i < mMaterials.size(); ++i)
  211. writeStringHashDelta(getResourceHash(mOriginalMaterials[i]), dest, destRevision, bits & 2);
  212. writeBoolDelta(mInstancesRelative, dest, destRevision, bits & 4);
  213. // Write all instances to the base revision
  214. destRevision.writeVLE(mInstances.size());
  215. for (unsigned i = 0; i < mInstances.size(); ++i)
  216. {
  217. destRevision.writeVector3(mInstances[i].mPosition);
  218. destRevision.writeQuaternion(mInstances[i].mRotation);
  219. destRevision.writeVector3(mInstances[i].mScale);
  220. }
  221. // Then write changed properties of instances to the network stream
  222. if (bits & 8)
  223. {
  224. dest.writeVLE(mInstances.size());
  225. for (unsigned i = 0; i < mInstances.size(); ++i)
  226. {
  227. dest.writeUByte(instanceBits[i]);
  228. if (instanceBits[i] & 1)
  229. dest.writeVector3(mInstances[i].mPosition);
  230. if (instanceBits[i] & 2)
  231. dest.writePackedQuaternion(mInstances[i].mRotation);
  232. if (instanceBits[i] & 4)
  233. dest.writeVector3(mInstances[i].mScale);
  234. }
  235. }
  236. return prevBits || (bits != 0);
  237. }
  238. void InstancedModel::readNetUpdate(Deserializer& source, ResourceCache* cache, const NetUpdateInfo& info)
  239. {
  240. // Read GeometryNode properties
  241. GeometryNode::readNetUpdate(source, cache, info);
  242. unsigned char bits = source.readUByte();
  243. if (bits & 1)
  244. setModel(cache->getResource<Model>(source.readStringHash()));
  245. if (bits & 2)
  246. {
  247. unsigned numMaterials = source.readVLE();
  248. for (unsigned i = 0; i < numMaterials; ++i)
  249. setMaterial(i, cache->getResource<Material>(source.readStringHash()));
  250. }
  251. readBoolDelta(mInstancesRelative, source, bits & 4);
  252. if (bits & 8)
  253. {
  254. unsigned numInstances = source.readVLE();
  255. if (numInstances != mInstances.size())
  256. setNumInstances(numInstances);
  257. for (unsigned i = 0; i < numInstances; ++i)
  258. {
  259. unsigned char instanceBits = source.readUByte();
  260. readVector3Delta(mInstances[i].mPosition, source, instanceBits & 1);
  261. readPackedQuaternionDelta(mInstances[i].mRotation, source, instanceBits & 2);
  262. readVector3Delta(mInstances[i].mScale, source, instanceBits & 4);
  263. }
  264. }
  265. }
  266. void InstancedModel::getResourceRefs(std::vector<Resource*>& dest)
  267. {
  268. if (mModel)
  269. dest.push_back(mModel);
  270. for (unsigned i = 0; i < mOriginalMaterials.size(); ++i)
  271. {
  272. if (mOriginalMaterials[i])
  273. dest.push_back(mOriginalMaterials[i]);
  274. }
  275. }
  276. void InstancedModel::processRayQuery(RayOctreeQuery& query, float initialDistance)
  277. {
  278. PROFILE(InstancedModel_Raycast);
  279. RayQueryLevel level = query.mLevel;
  280. float nearest = M_INFINITY;
  281. unsigned nearestInstance = 0;
  282. switch (level)
  283. {
  284. case RAY_AABB_NOSUBOBJECTS:
  285. {
  286. RayQueryResult result;
  287. result.mNode = this;
  288. result.mDistance = initialDistance;
  289. query.mResult.push_back(result);
  290. return;
  291. }
  292. case RAY_AABB:
  293. for (unsigned i = 0; i < mInstances.size(); ++i)
  294. {
  295. Matrix4x3 transform(mInstances[i].mPosition, mInstances[i].mRotation, mInstances[i].mScale);
  296. if (mInstancesRelative)
  297. transform = getWorldTransform() * transform;
  298. BoundingBox instanceBox = mBoundingBox.getTransformed(transform);
  299. float distance = instanceBox.getDistance(query.mRay);
  300. if ((distance < query.mMaxDistance) && (distance < nearest))
  301. {
  302. nearest = distance;
  303. nearestInstance = i;
  304. }
  305. }
  306. break;
  307. case RAY_OBB:
  308. for (unsigned i = 0; i < mInstances.size(); ++i)
  309. {
  310. Matrix4x3 transform(mInstances[i].mPosition, mInstances[i].mRotation, mInstances[i].mScale);
  311. if (mInstancesRelative)
  312. transform = getWorldTransform() * transform;
  313. // Do an initial AABB test
  314. float distance = mBoundingBox.getTransformed(transform).getDistance(query.mRay);
  315. if ((distance < query.mMaxDistance) && (distance < nearest))
  316. {
  317. Matrix4x3 inverse = transform.getInverse();
  318. Ray localRay(inverse * query.mRay.mOrigin, inverse * Vector4(query.mRay.mDirection, 0.0f));
  319. distance = mBoundingBox.getDistance(localRay);
  320. if ((distance < query.mMaxDistance) && (distance < nearest))
  321. {
  322. nearest = distance;
  323. nearestInstance = i;
  324. }
  325. }
  326. }
  327. break;
  328. case RAY_TRIANGLE:
  329. for (unsigned i = 0; i < mInstances.size(); ++i)
  330. {
  331. Matrix4x3 transform(mInstances[i].mPosition, mInstances[i].mRotation, mInstances[i].mScale);
  332. if (mInstancesRelative)
  333. transform = getWorldTransform() * transform;
  334. // Do an initial AABB test
  335. float distance = mBoundingBox.getTransformed(transform).getDistance(query.mRay);
  336. if ((distance < query.mMaxDistance) && (distance < nearest))
  337. {
  338. // Then an OBB test
  339. Matrix4x3 inverse = transform.getInverse();
  340. Ray localRay(inverse * query.mRay.mOrigin, inverse * Vector4(query.mRay.mDirection, 0.0f));
  341. distance = mBoundingBox.getDistance(localRay);
  342. if ((distance < query.mMaxDistance) && (distance < nearest))
  343. {
  344. // And finally the triangle-level test
  345. for (unsigned j = 0; j < mOriginalGeometries.size(); ++j)
  346. {
  347. unsigned lodLevel = mModel->getRaycastLodLevel();
  348. if (lodLevel >= mOriginalGeometries[j].size())
  349. lodLevel = mOriginalLodLevels[j];
  350. Geometry* geom = mOriginalGeometries[j][lodLevel];
  351. if (geom)
  352. {
  353. distance = geom->getDistance(localRay);
  354. if ((distance < query.mMaxDistance) && (distance < nearest))
  355. {
  356. nearest = distance;
  357. nearestInstance = i;
  358. break;
  359. }
  360. }
  361. }
  362. }
  363. }
  364. }
  365. break;
  366. }
  367. // Return the nearest hit against an instance
  368. if (nearest < M_INFINITY)
  369. {
  370. RayQueryResult result;
  371. result.mNode = this;
  372. result.mDistance = nearest;
  373. result.mSubObject = nearestInstance;
  374. query.mResult.push_back(result);
  375. }
  376. }
  377. void InstancedModel::updateDistance(const FrameInfo& frame)
  378. {
  379. mDistance = frame.mCamera->getDistance(getWorldPosition());
  380. static const Vector3 dotScale(1 / 3.0f, 1 / 3.0f, 1 / 3.0f);
  381. float scale = mAverageInstanceScale;
  382. if (mInstancesRelative)
  383. scale *= getWorldScale().dotProduct(dotScale);
  384. float newLodDistance = frame.mCamera->getLodDistance(mDistance, scale, mLodBias);
  385. if (newLodDistance != mLodDistance)
  386. {
  387. mLodDistance = newLodDistance;
  388. mLodLevelsDirty = true;
  389. }
  390. }
  391. void InstancedModel::updateGeometry(const FrameInfo& frame, Renderer* renderer)
  392. {
  393. if (sMode != mMode)
  394. {
  395. mMode = sMode;
  396. mInstancesDirty = true;
  397. }
  398. if (mInstancesDirty)
  399. buildInstances(renderer);
  400. if (mInstanceTransformsDirty)
  401. updateInstanceTransforms();
  402. if ((mMode == HARDWARE_INSTANCING) && (mHWInstancingBufferDirty))
  403. updateHWInstancingBuffer();
  404. if (mLodLevelsDirty)
  405. calculateLodLevels();
  406. }
  407. unsigned InstancedModel::getNumBatches()
  408. {
  409. return mGeometries.size();
  410. }
  411. Geometry* InstancedModel::getBatchGeometry(unsigned batchIndex)
  412. {
  413. return mGeometries[batchIndex][mLodLevels[batchIndex]];
  414. }
  415. Material* InstancedModel::getBatchMaterial(unsigned batchIndex)
  416. {
  417. return mMaterials[batchIndex];
  418. }
  419. bool InstancedModel::getVertexShaderParameter(unsigned batchIndex, VSParameter parameter, const float** data,
  420. unsigned* count)
  421. {
  422. if ((parameter == VSP_MODELINSTANCES) && (mMode == SHADER_INSTANCING) && (mOriginalGeometries.size()))
  423. {
  424. unsigned batchNumber = batchIndex / mOriginalGeometries.size();
  425. *data = mInstanceTransforms[mBatchStarts[batchNumber]].getData();
  426. *count = mBatchCounts[batchNumber] * 12;
  427. return true;
  428. }
  429. return false;
  430. }
  431. bool InstancedModel::drawOcclusion(OcclusionBuffer* buffer)
  432. {
  433. bool success = true;
  434. for (unsigned i = 0; i < mOriginalGeometries.size(); ++i)
  435. {
  436. // Use designated LOD level for occlusion, or if out of range, same as visible
  437. unsigned lodLevel = mModel->getOcclusionLodLevel();
  438. if (lodLevel >= mGeometries[i].size())
  439. lodLevel = mOriginalLodLevels[i];
  440. Geometry* geom = mOriginalGeometries[i][lodLevel];
  441. if (!geom)
  442. continue;
  443. // Check that the material is suitable for occlusion (default material always is)
  444. // and set culling mode
  445. Material* mat = mOriginalMaterials[i];
  446. if (mat)
  447. {
  448. if (!mat->getOcclusion())
  449. continue;
  450. buffer->setCullMode(mat->getOcclusionCullMode());
  451. }
  452. else
  453. buffer->setCullMode(CULL_CCW);
  454. const unsigned char* vertexData;
  455. unsigned vertexSize;
  456. const unsigned char* indexData;
  457. unsigned indexSize;
  458. geom->lockRawData(vertexData, vertexSize, indexData, indexSize);
  459. // Check for valid geometry data
  460. if ((!vertexData) || (!indexData))
  461. continue;
  462. unsigned indexStart = geom->getIndexStart();
  463. unsigned indexCount = geom->getIndexCount();
  464. for (unsigned j = 0; j < mInstances.size(); ++j)
  465. {
  466. // Draw and check for running out of triangles
  467. if (!buffer->draw(mInstanceTransforms[j], vertexData, vertexSize, indexData, indexSize, indexStart, indexCount))
  468. {
  469. success = false;
  470. break;
  471. }
  472. }
  473. geom->unlockRawData();
  474. if (!success)
  475. break;
  476. }
  477. return success;
  478. }
  479. void InstancedModel::setModel(Model* model)
  480. {
  481. if (model == mModel)
  482. return;
  483. PROFILE(InstancedModel_SetModel);
  484. if (!model)
  485. return;
  486. mModel = model;
  487. mOriginalGeometries.clear();
  488. mOriginalMaterials.clear();
  489. // Copy the subgeometry & LOD level structure
  490. const std::vector<std::vector<SharedPtr<Geometry> > >& geometries = model->getGeometries();
  491. for (unsigned i = 0; i < geometries.size(); ++i)
  492. {
  493. mOriginalGeometries.push_back(geometries[i]);
  494. mOriginalMaterials.push_back(SharedPtr<Material>());
  495. }
  496. // Set the bounding box
  497. setBoundingBox(model->getBoundingBox());
  498. markInstancesDirty();
  499. resetLodLevels();
  500. }
  501. void InstancedModel::setMaterial(Material* material)
  502. {
  503. for (unsigned i = 0; i < mOriginalMaterials.size(); ++i)
  504. mOriginalMaterials[i] = material;
  505. markInstancesDirty();
  506. }
  507. bool InstancedModel::setMaterial(unsigned index, Material* material)
  508. {
  509. if (index >= mMaterials.size())
  510. {
  511. LOGERROR("Illegal material index");
  512. return false;
  513. }
  514. mMaterials[index] = material;
  515. markInstancesDirty();
  516. return true;
  517. }
  518. void InstancedModel::setNumInstances(unsigned num)
  519. {
  520. unsigned oldNum = mInstances.size();
  521. mInstances.resize(num);
  522. mInstanceTransforms.resize(num);
  523. // Set default values for new instances
  524. for (unsigned i = oldNum; i < num; ++i)
  525. {
  526. mInstances[i].mPosition = Vector3::sZero;
  527. mInstances[i].mRotation = Quaternion::sIdentity;
  528. mInstances[i].mScale = Vector3::sUnity;
  529. }
  530. markInstancesDirty();
  531. }
  532. void InstancedModel::setInstancesRelative(bool enable)
  533. {
  534. mInstancesRelative = enable;
  535. markInstanceTransformsDirty();
  536. }
  537. void InstancedModel::updated()
  538. {
  539. markInstanceTransformsDirty();
  540. }
  541. Material* InstancedModel::getMaterial(unsigned index) const
  542. {
  543. if (index >= mOriginalMaterials.size())
  544. return 0;
  545. return mOriginalMaterials[index];
  546. }
  547. Instance* InstancedModel::getInstance(unsigned index)
  548. {
  549. if (index >= mInstances.size())
  550. return 0;
  551. return &mInstances[index];
  552. }
  553. void InstancedModel::onMarkedDirty()
  554. {
  555. VolumeNode::onMarkedDirty();
  556. if (mInstancesRelative)
  557. mInstanceTransformsDirty = true;
  558. }
  559. void InstancedModel::onWorldBoundingBoxUpdate(BoundingBox& worldBoundingBox)
  560. {
  561. if (mInstanceTransformsDirty)
  562. updateInstanceTransforms();
  563. worldBoundingBox.mDefined = false;
  564. for (unsigned i = 0; i < mInstanceTransforms.size(); ++i)
  565. worldBoundingBox.merge(mBoundingBox.getTransformed(mInstanceTransforms[i]));
  566. if (!mInstances.size())
  567. worldBoundingBox.merge(getWorldPosition());
  568. }
  569. void InstancedModel::buildInstances(Renderer* renderer)
  570. {
  571. PROFILE(InstancedModel_Build);
  572. mInstancesDirty = false;
  573. mGeometries.clear();
  574. mMaterials.clear();
  575. mBatchStarts.clear();
  576. mBatchCounts.clear();
  577. if ((!mOriginalGeometries.size()) || (!mOriginalGeometries[0].size()))
  578. return;
  579. unsigned numInstances = mInstances.size();
  580. mInstanceTransformsDirty = true;
  581. if (mMode == SHADER_INSTANCING)
  582. {
  583. mHWInstancingBuffer.reset();
  584. unsigned instanceIndex = 0;
  585. while (numInstances)
  586. {
  587. // Check how many vertices in the original geometry. Avoid having to convert to 32bit indices
  588. unsigned maxVertices = 0;
  589. for (unsigned i = 0; i < mOriginalGeometries.size(); ++i)
  590. {
  591. if (!mOriginalGeometries[i][0])
  592. continue;
  593. unsigned vertices = mOriginalGeometries[i][0]->getVertexBuffer(0)->getVertexCount();
  594. if (vertices > maxVertices)
  595. maxVertices = vertices;
  596. }
  597. maxVertices = max(maxVertices, 1);
  598. unsigned instanceCount = 65536 / maxVertices;
  599. if (instanceCount < 2)
  600. {
  601. LOGERROR("Too many vertices in original geometry for instancing");
  602. mInstances.clear();
  603. return;
  604. }
  605. if (instanceCount > MAX_INSTANCES_PER_BATCH)
  606. instanceCount = MAX_INSTANCES_PER_BATCH;
  607. if (instanceCount > numInstances)
  608. instanceCount = numInstances;
  609. mBatchStarts.push_back(instanceIndex);
  610. mBatchCounts.push_back(instanceCount);
  611. for (unsigned i = 0; i < mOriginalGeometries.size(); ++i)
  612. {
  613. std::vector<SharedPtr<Geometry> > lodLevels;
  614. lodLevels.resize(mOriginalGeometries[i].size());
  615. for (unsigned j = 0; j < mOriginalGeometries[i].size(); ++j)
  616. {
  617. Geometry* original = mOriginalGeometries[i][j];
  618. if (!original)
  619. continue;
  620. SharedPtr<Geometry> clone(new Geometry());
  621. clone->setNumVertexBuffers(original->getNumVertexBuffers());
  622. for (unsigned k = 0; k < original->getNumVertexBuffers(); ++k)
  623. clone->setVertexBuffer(k, createInstanceVertexBuffer(original->getVertexBuffer(k), instanceCount),
  624. original->getVertexElementMask(k) | MASK_INSTANCENUMBER);
  625. unsigned indexStart;
  626. clone->setIndexBuffer(createInstanceIndexBuffer(mOriginalGeometries, i, j, instanceCount, indexStart));
  627. clone->setDrawRange(original->getPrimitiveType(), indexStart, instanceCount * original->getIndexCount());
  628. clone->setLodDistance(original->getLodDistance());
  629. lodLevels[j] = clone;
  630. }
  631. mGeometries.push_back(lodLevels);
  632. mMaterials.push_back(mOriginalMaterials[i]);
  633. }
  634. instanceIndex += instanceCount;
  635. numInstances -= instanceCount;
  636. }
  637. }
  638. else
  639. {
  640. cleanupInstanceBuffers();
  641. if (!mHWInstancingBuffer)
  642. mHWInstancingBuffer = new VertexBuffer(renderer);
  643. mHWInstancingBuffer->setSize(numInstances, MASK_INSTANCEMATRIX1 | MASK_INSTANCEMATRIX2 | MASK_INSTANCEMATRIX3);
  644. mHWInstancingBufferDirty = true;
  645. for (unsigned i = 0; i < mOriginalGeometries.size(); ++i)
  646. {
  647. std::vector<SharedPtr<Geometry> > lodLevels;
  648. for (unsigned j = 0; j < mOriginalGeometries[i].size(); ++j)
  649. {
  650. SharedPtr<Geometry> clone(new Geometry());
  651. Geometry* original = mOriginalGeometries[i][j];
  652. unsigned numVBs = original->getNumVertexBuffers();
  653. if (numVBs >= MAX_VERTEX_STREAMS)
  654. {
  655. LOGERROR("No room for instance vertex stream");
  656. mInstances.clear();
  657. return;
  658. }
  659. clone->setNumVertexBuffers(numVBs + 1);
  660. for (unsigned k = 0; k < numVBs; ++k)
  661. clone->setVertexBuffer(k, original->getVertexBuffer(k), original->getVertexElementMask(k));
  662. clone->setVertexBuffer(numVBs, mHWInstancingBuffer);
  663. clone->setIndexBuffer(original->getIndexBuffer());
  664. clone->setDrawRange(original->getPrimitiveType(), original->getIndexStart(), original->getIndexCount());
  665. clone->setInstanceCount(numInstances);
  666. clone->setLodDistance(original->getLodDistance());
  667. lodLevels.push_back(clone);
  668. }
  669. mGeometries.push_back(lodLevels);
  670. mMaterials.push_back(mOriginalMaterials[i]);
  671. }
  672. }
  673. resetLodLevels();
  674. }
  675. void InstancedModel::updateInstanceTransforms()
  676. {
  677. PROFILE(InstancedModel_UpdateTransforms);
  678. if (!mInstanceTransforms.size())
  679. return;
  680. Matrix4x3 transform;
  681. const Matrix4x3& worldTransform = getWorldTransform();
  682. static const Vector3 dotScale(1 / 3.0f, 1 / 3.0f, 1 / 3.0f);
  683. float scaleAcc = 0.0f;
  684. for (unsigned i = 0; i < mInstanceTransforms.size(); ++i)
  685. {
  686. transform.define(mInstances[i].mPosition, mInstances[i].mRotation, mInstances[i].mScale);
  687. scaleAcc += mInstances[i].mScale.dotProduct(dotScale);
  688. if (!mInstancesRelative)
  689. mInstanceTransforms[i] = transform;
  690. else
  691. mInstanceTransforms[i] = worldTransform * transform;
  692. }
  693. mAverageInstanceScale = scaleAcc / mInstanceTransforms.size();
  694. mInstanceTransformsDirty = false;
  695. if (mMode == HARDWARE_INSTANCING)
  696. mHWInstancingBufferDirty = true;
  697. }
  698. void InstancedModel::updateHWInstancingBuffer()
  699. {
  700. if ((mHWInstancingBuffer) && (mHWInstancingBuffer->getVertexCount() == mInstanceTransforms.size()))
  701. {
  702. PROFILE(InstancedModel_UpdateVertexBuffer);
  703. mHWInstancingBuffer->setData(mInstanceTransforms[0].getData());
  704. mHWInstancingBufferDirty = false;
  705. }
  706. }
  707. const SharedPtr<VertexBuffer>& InstancedModel::createInstanceVertexBuffer(VertexBuffer* original, unsigned instanceCount)
  708. {
  709. std::map<const VertexBuffer*, SharedPtr<VertexBuffer> >::iterator i = sInstanceVertexBuffers.find(original);
  710. // If there already exists a buffer with enough copies of the original, return it
  711. if ((i != sInstanceVertexBuffers.end()) && (i->second->getVertexCount() >= original->getVertexCount() * instanceCount))
  712. return i->second;
  713. // Otherwise have to (re)create the buffer
  714. if (i == sInstanceVertexBuffers.end())
  715. {
  716. sInstanceVertexBuffers[original] = new VertexBuffer(original->getRenderer());
  717. i = sInstanceVertexBuffers.find(original);
  718. }
  719. // Copy the vertices as many times as necessary and add the instance number data
  720. i->second->setSize(original->getVertexCount() * instanceCount, original->getElementMask() | MASK_INSTANCENUMBER);
  721. unsigned char* srcData = (unsigned char*)original->lock(0, original->getVertexCount(), LOCK_READONLY);
  722. unsigned char* destData = (unsigned char*)i->second->lock(0, i->second->getVertexCount(), LOCK_DISCARD);
  723. unsigned srcVertexSize = original->getVertexSize();
  724. float instanceIndex = 0.0f;
  725. for (unsigned j = 0; j < instanceCount; ++j)
  726. {
  727. for (unsigned k = 0; k < original->getVertexCount(); ++k)
  728. {
  729. memcpy(destData, &srcData[k * srcVertexSize], srcVertexSize);
  730. destData += srcVertexSize;
  731. *((float*)destData) = instanceIndex;
  732. destData += sizeof(float);
  733. }
  734. instanceIndex += 1.0f;
  735. }
  736. i->second->unlock();
  737. original->unlock();
  738. return i->second;
  739. }
  740. const SharedPtr<IndexBuffer>& InstancedModel::createInstanceIndexBuffer(
  741. const std::vector<std::vector<SharedPtr<Geometry> > >& geometries, unsigned subGeometry, unsigned lodLevel,
  742. unsigned instanceCount, unsigned& indexStart)
  743. {
  744. IndexBuffer* original = geometries[subGeometry][lodLevel]->getIndexBuffer();
  745. // Build the geometry part of search key by adding the total amount of used indices. Not foolproof,
  746. // but should suffice in cases where an indexbuffer is generally not shared between different models
  747. unsigned totalIndices = 0;
  748. for (unsigned i = 0; i < geometries.size(); ++i)
  749. {
  750. for (unsigned j = 0; j < geometries[i].size(); ++j)
  751. {
  752. if (geometries[i][j]->getIndexBuffer() == original)
  753. totalIndices += geometries[i][j]->getIndexCount();
  754. }
  755. }
  756. std::pair<const IndexBuffer*, unsigned> searchKey = std::make_pair(original, totalIndices);
  757. std::map<std::pair<const IndexBuffer*, unsigned>, SharedPtr<IndexBuffer> >::iterator i =
  758. sInstanceIndexBuffers.find(searchKey);
  759. // If there already exists a buffer with enough copies of the original, return it
  760. if ((i != sInstanceIndexBuffers.end()) && (i->second->getIndexCount() >= totalIndices * instanceCount))
  761. {
  762. unsigned currentInstanceCount = i->second->getIndexCount() / totalIndices;
  763. unsigned destIndex = 0;
  764. for (unsigned j = 0; j < geometries.size(); ++j)
  765. {
  766. for (unsigned k = 0; k < geometries[j].size(); ++k)
  767. {
  768. if ((j == subGeometry) && (k == lodLevel))
  769. indexStart = destIndex;
  770. if (geometries[j][k]->getIndexBuffer() == original)
  771. destIndex += currentInstanceCount * geometries[j][k]->getIndexCount();
  772. }
  773. }
  774. return i->second;
  775. }
  776. // Otherwise have to (re)create the buffer
  777. if (i == sInstanceIndexBuffers.end())
  778. {
  779. sInstanceIndexBuffers[searchKey] = new IndexBuffer(original->getRenderer());
  780. i = sInstanceIndexBuffers.find(searchKey);
  781. }
  782. i->second->setSize(totalIndices * instanceCount, original->getIndexSize() == sizeof(unsigned));
  783. // 16-bit indices
  784. if (original->getIndexSize() == sizeof(unsigned short))
  785. {
  786. unsigned short* srcData = (unsigned short*)original->lock(0, original->getIndexCount(), LOCK_READONLY);
  787. unsigned short* destData = (unsigned short*)i->second->lock(0, i->second->getIndexCount(), LOCK_DISCARD);
  788. unsigned destIndex = 0;
  789. for (unsigned j = 0; j < geometries.size(); ++j)
  790. {
  791. for (unsigned k = 0; k < geometries[j].size(); ++k)
  792. {
  793. unsigned vertexCount = geometries[j][k]->getVertexBuffer(0)->getVertexCount();
  794. if (geometries[j][k]->getIndexBuffer() == original)
  795. {
  796. if ((j == subGeometry) && (k == lodLevel))
  797. indexStart = destIndex;
  798. unsigned indexStart = geometries[j][k]->getIndexStart();
  799. unsigned indexEnd = indexStart + geometries[j][k]->getIndexCount();
  800. for (unsigned l = 0; l < instanceCount; ++l)
  801. {
  802. for (unsigned m = indexStart; m < indexEnd; ++m)
  803. {
  804. *destData = srcData[m] + l * vertexCount;
  805. ++destData;
  806. }
  807. }
  808. destIndex += instanceCount * (indexEnd - indexStart);
  809. }
  810. }
  811. }
  812. i->second->unlock();
  813. original->unlock();
  814. }
  815. // 32-bit indices
  816. else
  817. {
  818. unsigned* srcData = (unsigned*)original->lock(0, original->getIndexCount(), LOCK_READONLY);
  819. unsigned* destData = (unsigned*)i->second->lock(0, i->second->getIndexCount(), LOCK_DISCARD);
  820. unsigned destIndex = 0;
  821. for (unsigned j = 0; j < geometries.size(); ++j)
  822. {
  823. for (unsigned k = 0; k < geometries[j].size(); ++k)
  824. {
  825. unsigned vertexCount = geometries[j][k]->getVertexBuffer(0)->getVertexCount();
  826. if (geometries[j][k]->getIndexBuffer() == original)
  827. {
  828. if ((j == subGeometry) && (k == lodLevel))
  829. indexStart = destIndex;
  830. unsigned indexStart = geometries[j][k]->getIndexStart();
  831. unsigned indexEnd = indexStart + geometries[j][k]->getIndexCount();
  832. for (unsigned l = 0; l < instanceCount; ++l)
  833. {
  834. for (unsigned m = indexStart; m < indexEnd; ++m)
  835. {
  836. *destData = srcData[m] + l * vertexCount;
  837. ++destData;
  838. }
  839. }
  840. destIndex += instanceCount * (indexEnd - indexStart);
  841. }
  842. }
  843. }
  844. i->second->unlock();
  845. original->unlock();
  846. }
  847. return i->second;
  848. }
  849. void InstancedModel::cleanupInstanceBuffers()
  850. {
  851. // Remove buffers that are only referenced in the static maps, and no longer used by any InstancedModels
  852. for (std::map<const VertexBuffer*, SharedPtr<VertexBuffer> >::iterator i = sInstanceVertexBuffers.begin();
  853. i != sInstanceVertexBuffers.end();)
  854. {
  855. std::map<const VertexBuffer*, SharedPtr<VertexBuffer> >::iterator current = i++;
  856. if (current->second.getRefCount() == 1)
  857. sInstanceVertexBuffers.erase(current);
  858. }
  859. for (std::map<std::pair<const IndexBuffer*, unsigned>, SharedPtr<IndexBuffer> >::iterator i = sInstanceIndexBuffers.begin();
  860. i != sInstanceIndexBuffers.end();)
  861. {
  862. std::map<std::pair<const IndexBuffer*, unsigned>, SharedPtr<IndexBuffer> >::iterator current = i++;
  863. if (current->second.getRefCount() == 1)
  864. sInstanceIndexBuffers.erase(current);
  865. }
  866. }
  867. void InstancedModel::markInstancesDirty()
  868. {
  869. mInstancesDirty = true;
  870. markInstanceTransformsDirty();
  871. }
  872. void InstancedModel::markInstanceTransformsDirty()
  873. {
  874. VolumeNode::onMarkedDirty();
  875. mInstanceTransformsDirty = true;
  876. }
  877. void InstancedModel::setBoundingBox(const BoundingBox& box)
  878. {
  879. mBoundingBox = box;
  880. VolumeNode::onMarkedDirty();
  881. }
  882. void InstancedModel::resetLodLevels()
  883. {
  884. // Ensure that each subgeometry has at least one LOD level, and reset the current LOD level
  885. mOriginalLodLevels.resize(mOriginalGeometries.size());
  886. mLodLevels.resize(mGeometries.size());
  887. for (unsigned i = 0; i < mOriginalGeometries.size(); ++i)
  888. {
  889. if (!mOriginalGeometries[i].size())
  890. mOriginalGeometries[i].resize(1);
  891. mOriginalLodLevels[i] = 0;
  892. }
  893. for (unsigned i = 0; i < mGeometries.size(); ++i)
  894. {
  895. if (!mGeometries[i].size())
  896. mGeometries[i].resize(1);
  897. mLodLevels[i] = 0;
  898. }
  899. // Find out the real LOD levels on next geometry update
  900. mLodLevelsDirty = true;
  901. }
  902. void InstancedModel::calculateLodLevels()
  903. {
  904. for (unsigned i = 0; i < mOriginalGeometries.size(); ++i)
  905. {
  906. unsigned j;
  907. for (j = 1; j < mOriginalGeometries[i].size(); ++j)
  908. {
  909. if ((mOriginalGeometries[i][j]) && (mLodDistance <= mOriginalGeometries[i][j]->getLodDistance()))
  910. break;
  911. }
  912. mOriginalLodLevels[i] = j - 1;
  913. }
  914. for (unsigned i = 0; i < mGeometries.size(); ++i)
  915. {
  916. unsigned j;
  917. for (j = 1; j < mGeometries[i].size(); ++j)
  918. {
  919. if ((mGeometries[i][j]) && (mLodDistance <= mGeometries[i][j]->getLodDistance()))
  920. break;
  921. }
  922. mLodLevels[i] = j - 1;
  923. }
  924. mLodLevelsDirty = false;
  925. }