OcclusionBuffer.cpp 29 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857
  1. //
  2. // Urho3D Engine
  3. // Copyright (c) 2008-2011 Lasse Öörni
  4. //
  5. // Permission is hereby granted, free of charge, to any person obtaining a copy
  6. // of this software and associated documentation files (the "Software"), to deal
  7. // in the Software without restriction, including without limitation the rights
  8. // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  9. // copies of the Software, and to permit persons to whom the Software is
  10. // furnished to do so, subject to the following conditions:
  11. //
  12. // The above copyright notice and this permission notice shall be included in
  13. // all copies or substantial portions of the Software.
  14. //
  15. // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  18. // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  20. // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  21. // THE SOFTWARE.
  22. //
  23. #include "Precompiled.h"
  24. #include "Camera.h"
  25. #include "Log.h"
  26. #include "OcclusionBuffer.h"
  27. #include <cstring>
  28. #include "DebugNew.h"
  29. static const unsigned CLIPMASK_X_POS = 0x1;
  30. static const unsigned CLIPMASK_X_NEG = 0x2;
  31. static const unsigned CLIPMASK_Y_POS = 0x4;
  32. static const unsigned CLIPMASK_Y_NEG = 0x8;
  33. static const unsigned CLIPMASK_Z_POS = 0x10;
  34. static const unsigned CLIPMASK_Z_NEG = 0x20;
  35. OBJECTTYPESTATIC(OcclusionBuffer);
  36. OcclusionBuffer::OcclusionBuffer(Context* context) :
  37. Object(context),
  38. buffer_(0),
  39. width_(0),
  40. height_(0),
  41. numTriangles_(0),
  42. max_Triangles(OCCLUSION_DEFAULT_MAX_TRIANGLES),
  43. cullMode_(CULL_CCW),
  44. depthHierarchyDirty_(true),
  45. nearClip_(0.0f),
  46. farClip_(0.0f)
  47. {
  48. }
  49. OcclusionBuffer::~OcclusionBuffer()
  50. {
  51. }
  52. bool OcclusionBuffer::SetSize(int width, int height)
  53. {
  54. if (width == width_ && height == height_)
  55. return true;
  56. if (width <= 0 || height <= 0)
  57. return false;
  58. if (!IsPowerOfTwo(width))
  59. {
  60. LOGERROR("Width is not a power of two");
  61. return false;
  62. }
  63. // Force the height to an even amount of pixels for better mip generation
  64. if (height & 1)
  65. ++height;
  66. width_ = width;
  67. height_ = height;
  68. // Reserve extra memory in case 3D clipping is not exact
  69. fullBuffer_ = new int[width * (height + 2) + 2];
  70. buffer_ = fullBuffer_.Get() + width + 1;
  71. mipBuffers_.Clear();
  72. // Build buffers for mip levels
  73. for (;;)
  74. {
  75. width = (width + 1) / 2;
  76. height = (height + 1) / 2;
  77. mipBuffers_.Push(SharedArrayPtr<DepthValue>(new DepthValue[width * height]));
  78. if (width <= OCCLUSION_MIN_SIZE && height <= OCCLUSION_MIN_SIZE)
  79. break;
  80. }
  81. LOGDEBUG("Set occlusion buffer size " + String(width_) + "x" + String(height_) + " with " +
  82. String(mipBuffers_.Size()) + " mip levels");
  83. CalculateViewport();
  84. return true;
  85. }
  86. void OcclusionBuffer::SetView(Camera* camera)
  87. {
  88. if (!camera)
  89. return;
  90. view_ = camera->GetInverseWorldTransform();
  91. projection_ = camera->GetProjection();
  92. viewProj_ = projection_ * view_;
  93. nearClip_ = camera->GetNearClip();
  94. farClip_ = camera->GetFarClip();
  95. CalculateViewport();
  96. }
  97. void OcclusionBuffer::SetMaxTriangles(unsigned triangles)
  98. {
  99. max_Triangles = triangles;
  100. }
  101. void OcclusionBuffer::SetCullMode(CullMode mode)
  102. {
  103. cullMode_ = mode;
  104. }
  105. void OcclusionBuffer::Reset()
  106. {
  107. numTriangles_ = 0;
  108. }
  109. void OcclusionBuffer::Clear()
  110. {
  111. if (!buffer_)
  112. return;
  113. Reset();
  114. int* dest = buffer_;
  115. int count = width_ * height_;
  116. while (count)
  117. {
  118. *dest++ = 0x7fffffff;
  119. --count;
  120. }
  121. depthHierarchyDirty_ = true;
  122. }
  123. bool OcclusionBuffer::Draw(const Matrix3x4& model, const void* vertexData, unsigned vertexSize, const void* indexData,
  124. unsigned indexSize, unsigned indexStart, unsigned indexCount)
  125. {
  126. const unsigned char* vertexDataChar = (const unsigned char*)vertexData;
  127. Matrix4 modelViewProj = viewProj_ * model;
  128. depthHierarchyDirty_ = true;
  129. // Theoretical max. amount of vertices if each of the 6 clipping planes doubles the triangle count
  130. Vector4 vertices[64 * 3];
  131. // 16-bit indices
  132. if (indexSize == sizeof(unsigned short))
  133. {
  134. const unsigned short* indices = ((const unsigned short*)indexData) + indexStart;
  135. const unsigned short* indicesEnd = indices + indexCount;
  136. while (indices < indicesEnd)
  137. {
  138. if (numTriangles_ >= max_Triangles)
  139. return false;
  140. const Vector3& v0 = *((const Vector3*)(&vertexDataChar[indices[0] * vertexSize]));
  141. const Vector3& v1 = *((const Vector3*)(&vertexDataChar[indices[1] * vertexSize]));
  142. const Vector3& v2 = *((const Vector3*)(&vertexDataChar[indices[2] * vertexSize]));
  143. vertices[0] = ModelTransform(modelViewProj, v0);
  144. vertices[1] = ModelTransform(modelViewProj, v1);
  145. vertices[2] = ModelTransform(modelViewProj, v2);
  146. DrawTriangle(vertices);
  147. indices += 3;
  148. }
  149. }
  150. else
  151. {
  152. const unsigned* indices = ((const unsigned*)indexData) + indexStart;
  153. const unsigned* indicesEnd = indices + indexCount;
  154. while (indices < indicesEnd)
  155. {
  156. if (numTriangles_ >= max_Triangles)
  157. return false;
  158. const Vector3& v0 = *((const Vector3*)(&vertexDataChar[indices[0] * vertexSize]));
  159. const Vector3& v1 = *((const Vector3*)(&vertexDataChar[indices[1] * vertexSize]));
  160. const Vector3& v2 = *((const Vector3*)(&vertexDataChar[indices[2] * vertexSize]));
  161. vertices[0] = ModelTransform(modelViewProj, v0);
  162. vertices[1] = ModelTransform(modelViewProj, v1);
  163. vertices[2] = ModelTransform(modelViewProj, v2);
  164. DrawTriangle(vertices);
  165. indices += 3;
  166. }
  167. }
  168. return true;
  169. }
  170. void OcclusionBuffer::BuildDepthHierarchy()
  171. {
  172. if (!buffer_)
  173. return;
  174. // Build the first mip level from the pixel-level data
  175. int width = (width_ + 1) / 2;
  176. int height = (height_ + 1) / 2;
  177. if (mipBuffers_.Size())
  178. {
  179. for (int y = 0; y < height; ++y)
  180. {
  181. int* src = buffer_ + (y * 2) * width_;
  182. DepthValue* dest = mipBuffers_[0].Get() + y * width;
  183. DepthValue* end = dest + width;
  184. if (y * 2 + 1 < height_)
  185. {
  186. int* src2 = src + width_;
  187. while (dest < end)
  188. {
  189. int minUpper = Min(src[0], src[1]);
  190. int minLower = Min(src2[0], src2[1]);
  191. dest->min_ = Min(minUpper, minLower);
  192. int maxUpper = Max(src[0], src[1]);
  193. int maxLower = Max(src2[0], src2[1]);
  194. dest->max_ = Max(maxUpper, maxLower);
  195. src += 2;
  196. src2 += 2;
  197. ++dest;
  198. }
  199. }
  200. else
  201. {
  202. while (dest < end)
  203. {
  204. dest->min_ = Min(src[0], src[1]);
  205. dest->max_ = Max(src[0], src[1]);
  206. src += 2;
  207. ++dest;
  208. }
  209. }
  210. }
  211. }
  212. // Build the rest of the mip levels
  213. for (unsigned i = 1; i < mipBuffers_.Size(); ++i)
  214. {
  215. int prevWidth = width;
  216. int prevHeight = height;
  217. width = (width + 1) / 2;
  218. height = (height + 1) / 2;
  219. for (int y = 0; y < height; ++y)
  220. {
  221. DepthValue* src = mipBuffers_[i - 1].Get() + (y * 2) * prevWidth;
  222. DepthValue* dest = mipBuffers_[i].Get() + y * width;
  223. DepthValue* end = dest + width;
  224. if (y * 2 + 1 < prevHeight)
  225. {
  226. DepthValue* src2 = src + prevWidth;
  227. while (dest < end)
  228. {
  229. int minUpper = Min(src[0].min_, src[1].min_);
  230. int minLower = Min(src2[0].min_, src2[1].min_);
  231. dest->min_ = Min(minUpper, minLower);
  232. int maxUpper = Max(src[0].max_, src[1].max_);
  233. int maxLower = Max(src2[0].max_, src2[1].max_);
  234. dest->max_ = Max(maxUpper, maxLower);
  235. src += 2;
  236. src2 += 2;
  237. ++dest;
  238. }
  239. }
  240. else
  241. {
  242. while (dest < end)
  243. {
  244. dest->min_ = Min(src[0].min_, src[1].min_);
  245. dest->max_ = Max(src[0].max_, src[1].max_);
  246. src += 2;
  247. ++dest;
  248. }
  249. }
  250. }
  251. }
  252. depthHierarchyDirty_ = false;
  253. }
  254. bool OcclusionBuffer::IsVisible(const BoundingBox& worldSpaceBox) const
  255. {
  256. if (!buffer_)
  257. return true;
  258. Vector3 vertices[8];
  259. // Transform corners to view space. Note: do not directly transform the bounding box, as this would expand it unnecessarily
  260. vertices[0] = view_ * worldSpaceBox.min_;
  261. vertices[1] = view_ * Vector3(worldSpaceBox.max_.x_, worldSpaceBox.min_.y_, worldSpaceBox.min_.z_);
  262. vertices[2] = view_ * Vector3(worldSpaceBox.min_.x_, worldSpaceBox.max_.y_, worldSpaceBox.min_.z_);
  263. vertices[3] = view_ * Vector3(worldSpaceBox.max_.x_, worldSpaceBox.max_.y_, worldSpaceBox.min_.z_);
  264. vertices[4] = view_ * Vector3(worldSpaceBox.min_.x_, worldSpaceBox.min_.y_, worldSpaceBox.max_.z_);
  265. vertices[5] = view_ * Vector3(worldSpaceBox.max_.x_, worldSpaceBox.min_.y_, worldSpaceBox.max_.z_);
  266. vertices[6] = view_ * Vector3(worldSpaceBox.min_.x_, worldSpaceBox.max_.y_, worldSpaceBox.max_.z_);
  267. vertices[7] = view_ * worldSpaceBox.max_;
  268. // Project to screen. If any of the corners cross the near plane, assume visible
  269. float minX, maxX, minY, maxY, minZ;
  270. if (vertices[0].z_ <= nearClip_)
  271. return true;
  272. // Project the first corner to initialize the rectangle
  273. float invW = 1.0f / (vertices[0].z_ * projection_.m32_ + projection_.m33_);
  274. minX = maxX = invW * (projOffsetScaleX_ * vertices[0].x_) + offsetX_;
  275. minY = maxY = invW * (projOffsetScaleY_ * vertices[0].y_) + offsetY_;
  276. minZ = invW * (projection_.m22_ * vertices[0].z_ + projection_.m23_);
  277. // Project the rest
  278. for (unsigned i = 1; i < 8; ++i)
  279. {
  280. if (vertices[i].z_ <= nearClip_)
  281. return true;
  282. float invW = 1.0f / (vertices[i].z_ * projection_.m32_ + projection_.m33_);
  283. float x = invW * (projOffsetScaleX_ * vertices[i].x_) + offsetX_;
  284. float y = invW * (projOffsetScaleY_ * vertices[i].y_) + offsetY_;
  285. float z = invW * (projection_.m22_ * vertices[i].z_ + projection_.m23_);
  286. if (x < minX) minX = x;
  287. if (x > maxX) maxX = x;
  288. if (y < minY) minY = y;
  289. if (y > maxY) maxY = y;
  290. if (z < minZ) minZ = z;
  291. }
  292. // Expand the bounding box 1 pixel in each direction to be conservative and correct rasterization offset
  293. IntRect rect(
  294. (int)(minX - 1.5f), (int)(minY - 1.5f),
  295. (int)(maxX + 0.5f), (int)(maxY + 0.5f)
  296. );
  297. // If the rect is outside, let frustum culling handle
  298. if (rect.right_ < 0 || rect.bottom_ < 0)
  299. return true;
  300. if (rect.left_ >= width_ || rect.top_ >= height_)
  301. return true;
  302. // Clipping of rect
  303. if (rect.left_ < 0)
  304. rect.left_ = 0;
  305. if (rect.top_ < 0)
  306. rect.top_ = 0;
  307. if (rect.right_ >= width_)
  308. rect.right_ = width_ - 1;
  309. if (rect.bottom_ >= height_)
  310. rect.bottom_ = height_ - 1;
  311. int z = (int)(minZ * OCCLUSION_Z_SCALE + 0.5f) - OCCLUSION_DEPTH_BIAS;
  312. if (!depthHierarchyDirty_)
  313. {
  314. // Start from lowest mip level and check if a conclusive result can be found
  315. for (int i = mipBuffers_.Size() - 1; i >= 0; --i)
  316. {
  317. int shift = i + 1;
  318. int width = width_ >> shift;
  319. int left = rect.left_ >> shift;
  320. int right = rect.right_ >> shift;
  321. DepthValue* buffer = mipBuffers_[i].Get();
  322. DepthValue* row = buffer + (rect.top_ >> shift) * width;
  323. DepthValue* endRow = buffer + (rect.bottom_ >> shift) * width;
  324. bool allOccluded = true;
  325. while (row <= endRow)
  326. {
  327. DepthValue* src = row + left;
  328. DepthValue* end = row + right;
  329. while (src <= end)
  330. {
  331. if (z <= src->min_)
  332. return true;
  333. if (z <= src->max_)
  334. allOccluded = false;
  335. ++src;
  336. }
  337. row += width;
  338. }
  339. if (allOccluded)
  340. return false;
  341. }
  342. }
  343. // If no conclusive result, finally check the pixel-level data
  344. int* row = buffer_ + rect.top_ * width_;
  345. int* endRow = buffer_ + rect.bottom_ * width_;
  346. while (row <= endRow)
  347. {
  348. int* src = row + rect.left_;
  349. int* end = row + rect.right_;
  350. while (src <= end)
  351. {
  352. if (z <= *src)
  353. return true;
  354. ++src;
  355. }
  356. row += width_;
  357. }
  358. return false;
  359. }
  360. inline Vector4 OcclusionBuffer::ModelTransform(const Matrix4& transform, const Vector3& vertex) const
  361. {
  362. return Vector4(
  363. transform.m00_ * vertex.x_ + transform.m01_ * vertex.y_ + transform.m02_ * vertex.z_ + transform.m03_,
  364. transform.m10_ * vertex.x_ + transform.m11_ * vertex.y_ + transform.m12_ * vertex.z_ + transform.m13_,
  365. transform.m20_ * vertex.x_ + transform.m21_ * vertex.y_ + transform.m22_ * vertex.z_ + transform.m23_,
  366. transform.m30_ * vertex.x_ + transform.m31_ * vertex.y_ + transform.m32_ * vertex.z_ + transform.m33_
  367. );
  368. }
  369. inline Vector3 OcclusionBuffer::ViewportTransform(const Vector4& vertex) const
  370. {
  371. float invW = 1.0f / vertex.w_;
  372. return Vector3(
  373. invW * vertex.x_ * scaleX_ + offsetX_,
  374. invW * vertex.y_ * scaleY_ + offsetY_,
  375. invW * vertex.z_ * OCCLUSION_Z_SCALE
  376. );
  377. }
  378. inline Vector4 OcclusionBuffer::ClipEdge(const Vector4& v0, const Vector4& v1, float d0, float d1) const
  379. {
  380. float t = d0 / (d0 - d1);
  381. return v0 + t * (v1 - v0);
  382. }
  383. inline bool OcclusionBuffer::CheckFacing(const Vector3& v0, const Vector3& v1, const Vector3& v2) const
  384. {
  385. if (cullMode_ == CULL_NONE)
  386. return true;
  387. float aX = v0.x_ - v1.x_;
  388. float aY = v0.y_ - v1.y_;
  389. float bX = v2.x_ - v1.x_;
  390. float bY = v2.y_ - v1.y_;
  391. float signedArea = aX * bY - aY * bX;
  392. if (cullMode_ == CULL_CCW)
  393. return signedArea < 0.0f;
  394. else
  395. return signedArea > 0.0f;
  396. }
  397. void OcclusionBuffer::CalculateViewport()
  398. {
  399. // Add half pixel offset due to 3D frustum culling
  400. scaleX_ = 0.5f * width_;
  401. scaleY_ = -0.5f * height_;
  402. offsetX_ = 0.5f * width_ + 0.5f;
  403. offsetY_ = 0.5f * height_ + 0.5f;
  404. projOffsetScaleX_ = projection_.m00_ * scaleX_;
  405. projOffsetScaleY_ = projection_.m11_ * scaleY_;
  406. }
  407. void OcclusionBuffer::DrawTriangle(Vector4* vertices)
  408. {
  409. unsigned clipMask = 0;
  410. unsigned andClipMask = 0;
  411. Vector3 projected[3];
  412. // Build the clip plane mask for the triangle
  413. for (unsigned i = 0; i < 3; ++i)
  414. {
  415. unsigned vertexClipMask = 0;
  416. if (vertices[i].x_ > vertices[i].w_)
  417. vertexClipMask |= CLIPMASK_X_POS;
  418. if (vertices[i].x_ < -vertices[i].w_)
  419. vertexClipMask |= CLIPMASK_X_NEG;
  420. if (vertices[i].y_ > vertices[i].w_)
  421. vertexClipMask |= CLIPMASK_Y_POS;
  422. if (vertices[i].y_ < -vertices[i].w_)
  423. vertexClipMask |= CLIPMASK_Y_NEG;
  424. if (vertices[i].z_ > vertices[i].w_)
  425. vertexClipMask |= CLIPMASK_Z_POS;
  426. if (vertices[i].z_ < 0.0f)
  427. vertexClipMask |= CLIPMASK_Z_NEG;
  428. clipMask |= vertexClipMask;
  429. if (!i)
  430. andClipMask = vertexClipMask;
  431. else
  432. andClipMask &= vertexClipMask;
  433. }
  434. // If triangle is fully behind any clip plane, can reject quickly
  435. if (andClipMask)
  436. return;
  437. // Check if triangle is fully inside
  438. if (!clipMask)
  439. {
  440. projected[0] = ViewportTransform(vertices[0]);
  441. projected[1] = ViewportTransform(vertices[1]);
  442. projected[2] = ViewportTransform(vertices[2]);
  443. if (CheckFacing(projected[0], projected[1], projected[2]))
  444. DrawTriangle2D(projected);
  445. }
  446. else
  447. {
  448. bool triangles[64];
  449. // Initial triangle
  450. triangles[0] = true;
  451. unsigned numTriangles = 1;
  452. if (clipMask & CLIPMASK_X_POS)
  453. ClipVertices(Vector4(-1.0f, 0.0f, 0.0f, 1.0f), vertices, triangles, numTriangles);
  454. if (clipMask & CLIPMASK_X_NEG)
  455. ClipVertices(Vector4(1.0f, 0.0f, 0.0f, 1.0f), vertices, triangles, numTriangles);
  456. if (clipMask & CLIPMASK_Y_POS)
  457. ClipVertices(Vector4(0.0f, -1.0f, 0.0f, 1.0f), vertices, triangles, numTriangles);
  458. if (clipMask & CLIPMASK_Y_NEG)
  459. ClipVertices(Vector4(0.0f, 1.0f, 0.0f, 1.0f), vertices, triangles, numTriangles);
  460. if (clipMask & CLIPMASK_Z_POS)
  461. ClipVertices(Vector4(0.0f, 0.0f, -1.0f, 1.0f), vertices, triangles, numTriangles);
  462. if (clipMask & CLIPMASK_Z_NEG)
  463. ClipVertices(Vector4(0.0f, 0.0f, 1.0f, 0.0f), vertices, triangles, numTriangles);
  464. // Draw each accepted triangle
  465. for (unsigned i = 0; i < numTriangles; ++i)
  466. {
  467. if (triangles[i])
  468. {
  469. unsigned index = i * 3;
  470. projected[0] = ViewportTransform(vertices[index]);
  471. projected[1] = ViewportTransform(vertices[index + 1]);
  472. projected[2] = ViewportTransform(vertices[index + 2]);
  473. if (CheckFacing(projected[0], projected[1], projected[2]))
  474. DrawTriangle2D(projected);
  475. }
  476. }
  477. }
  478. }
  479. void OcclusionBuffer::ClipVertices(const Vector4& plane, Vector4* vertices, bool* triangles, unsigned& numTriangles)
  480. {
  481. unsigned num = numTriangles;
  482. for (unsigned i = 0; i < num; ++i)
  483. {
  484. if (triangles[i])
  485. {
  486. unsigned index = i * 3;
  487. float d0 = plane.DotProduct(vertices[index]);
  488. float d1 = plane.DotProduct(vertices[index + 1]);
  489. float d2 = plane.DotProduct(vertices[index + 2]);
  490. // If all vertices behind the plane, reject triangle
  491. if (d0 < 0.0f && d1 < 0.0f && d2 < 0.0f)
  492. {
  493. triangles[i] = false;
  494. continue;
  495. }
  496. // If 2 vertices behind the plane, create a new triangle in-place
  497. else if (d0 < 0.0f && d1 < 0.0f)
  498. {
  499. vertices[index] = ClipEdge(vertices[index], vertices[index + 2], d0, d2);
  500. vertices[index + 1] = ClipEdge(vertices[index + 1], vertices[index + 2], d1, d2);
  501. }
  502. else if (d0 < 0.0f && d2 < 0.0f)
  503. {
  504. vertices[index] = ClipEdge(vertices[index], vertices[index + 1], d0, d1);
  505. vertices[index + 2] = ClipEdge(vertices[index + 2], vertices[index + 1], d2, d1);
  506. }
  507. else if (d1 < 0.0f && d2 < 0.0f)
  508. {
  509. vertices[index + 1] = ClipEdge(vertices[index + 1], vertices[index], d1, d0);
  510. vertices[index + 2] = ClipEdge(vertices[index + 2], vertices[index], d2, d0);
  511. }
  512. // 1 vertex behind the plane: create one new triangle, and modify one in-place
  513. else if (d0 < 0.0f)
  514. {
  515. unsigned newIdx = numTriangles * 3;
  516. triangles[numTriangles] = true;
  517. ++numTriangles;
  518. vertices[newIdx] = ClipEdge(vertices[index], vertices[index + 1], d0, d1);
  519. vertices[newIdx + 1] = vertices[index + 1];
  520. vertices[newIdx + 2] = vertices[index] = ClipEdge(vertices[index], vertices[index + 2], d0, d2);
  521. }
  522. else if (d1 < 0.0f)
  523. {
  524. unsigned newIdx = numTriangles * 3;
  525. triangles[numTriangles] = true;
  526. ++numTriangles;
  527. vertices[newIdx + 1] = ClipEdge(vertices[index + 1], vertices[index + 2], d1, d2);
  528. vertices[newIdx + 2] = vertices[index + 2];
  529. vertices[newIdx] = vertices[index + 1] = ClipEdge(vertices[index + 1], vertices[index], d1, d0);
  530. }
  531. else if (d2 < 0.0f)
  532. {
  533. unsigned newIdx = numTriangles * 3;
  534. triangles[numTriangles] = true;
  535. ++numTriangles;
  536. vertices[newIdx + 2] = ClipEdge(vertices[index + 2], vertices[index], d2, d0);
  537. vertices[newIdx] = vertices[index];
  538. vertices[newIdx + 1] = vertices[index + 2] = ClipEdge(vertices[index + 2], vertices[index + 1], d2, d1);
  539. }
  540. }
  541. }
  542. }
  543. // Code based on Chris Hecker's Perspective Texture Mapping series in the Game Developer magazine
  544. // Also available online at http://chrishecker.com/Miscellaneous_Technical_Articles
  545. /// %Gradients of a software rasterized triangle.
  546. struct Gradients
  547. {
  548. /// Construct from vertices.
  549. Gradients(const Vector3* vertices)
  550. {
  551. float invdX = 1.0f / (((vertices[1].x_ - vertices[2].x_) *
  552. (vertices[0].y_ - vertices[2].y_)) -
  553. ((vertices[0].x_ - vertices[2].x_) *
  554. (vertices[1].y_ - vertices[2].y_)));
  555. float invdY = -invdX;
  556. dInvZdX_ = invdX * (((vertices[1].z_ - vertices[2].z_) * (vertices[0].y_ - vertices[2].y_)) -
  557. ((vertices[0].z_ - vertices[2].z_) * (vertices[1].y_ - vertices[2].y_)));
  558. dInvZdY_ = invdY * (((vertices[1].z_ - vertices[2].z_) * (vertices[0].x_ - vertices[2].x_)) -
  559. ((vertices[0].z_ - vertices[2].z_) * (vertices[1].x_ - vertices[2].x_)));
  560. dInvZdXInt_ = (int)dInvZdX_;
  561. }
  562. /// Integer horizontal gradient.
  563. int dInvZdXInt_;
  564. /// Horizontal gradient.
  565. float dInvZdX_;
  566. /// Vertical gradient.
  567. float dInvZdY_;
  568. };
  569. /// %Edge of a software rasterized triangle.
  570. struct Edge
  571. {
  572. /// Construct from gradients and top & bottom vertices.
  573. Edge(const Gradients& gradients, const Vector3& top, const Vector3& bottom, int topY)
  574. {
  575. float slope = (bottom.x_ - top.x_) / (bottom.y_ - top.y_);
  576. float yPreStep = (float)(topY + 1) - top.y_;
  577. float xPreStep = slope * yPreStep;
  578. x_ = (int)((xPreStep + top.x_) * OCCLUSION_X_SCALE + 0.5f);
  579. xStep_ = (int)(slope * OCCLUSION_X_SCALE + 0.5f);
  580. invZ_ = (int)(top.z_ + xPreStep * gradients.dInvZdX_ + yPreStep * gradients.dInvZdY_ + 0.5f);
  581. invZStep_ = (int)(slope * gradients.dInvZdX_ + gradients.dInvZdY_ + 0.5f);
  582. }
  583. /// X coordinate.
  584. int x_;
  585. /// X coordinate step.
  586. int xStep_;
  587. /// Inverse Z.
  588. int invZ_;
  589. /// Inverse Z step.
  590. int invZStep_;
  591. };
  592. void OcclusionBuffer::DrawTriangle2D(const Vector3* vertices)
  593. {
  594. int top, middle, bottom;
  595. bool middleIsRight;
  596. numTriangles_++;
  597. // Sort vertices in Y-direction
  598. if (vertices[0].y_ < vertices[1].y_)
  599. {
  600. if (vertices[2].y_ < vertices[0].y_)
  601. {
  602. top = 2; middle = 0; bottom = 1;
  603. middleIsRight = true;
  604. }
  605. else
  606. {
  607. top = 0;
  608. if (vertices[1].y_ < vertices[2].y_)
  609. {
  610. middle = 1; bottom = 2;
  611. middleIsRight = true;
  612. }
  613. else
  614. {
  615. middle = 2; bottom = 1;
  616. middleIsRight = false;
  617. }
  618. }
  619. }
  620. else
  621. {
  622. if (vertices[2].y_ < vertices[1].y_)
  623. {
  624. top = 2; middle = 1; bottom = 0;
  625. middleIsRight = false;
  626. }
  627. else
  628. {
  629. top = 1;
  630. if (vertices[0].y_ < vertices[2].y_)
  631. {
  632. middle = 0; bottom = 2;
  633. middleIsRight = false;
  634. }
  635. else
  636. {
  637. middle = 2; bottom = 0;
  638. middleIsRight = true;
  639. }
  640. }
  641. }
  642. int topY = (int)vertices[top].y_;
  643. int middleY = (int)vertices[middle].y_;
  644. int bottoy_ = (int)vertices[bottom].y_;
  645. // Check for degenerate triangle
  646. if (topY == bottoy_)
  647. return;
  648. Gradients gradients(vertices);
  649. Edge topToMiddle(gradients, vertices[top], vertices[middle], topY);
  650. Edge topToBottom(gradients, vertices[top], vertices[bottom], topY);
  651. Edge middleToBottom(gradients, vertices[middle], vertices[bottom], middleY);
  652. // The triangle is clockwise, so if bottom > middle then middle is right
  653. if (middleIsRight)
  654. {
  655. // Top half
  656. int* row = buffer_ + topY * width_;
  657. int* endRow = buffer_ + middleY * width_;
  658. while (row < endRow)
  659. {
  660. int invZ = topToBottom.invZ_;
  661. int* dest = row + (topToBottom.x_ >> 16);
  662. int* end = row + (topToMiddle.x_ >> 16);
  663. while (dest < end)
  664. {
  665. if (invZ < *dest)
  666. *dest = invZ;
  667. invZ += gradients.dInvZdXInt_;
  668. ++dest;
  669. }
  670. topToBottom.x_ += topToBottom.xStep_;
  671. topToBottom.invZ_ += topToBottom.invZStep_;
  672. topToMiddle.x_ += topToMiddle.xStep_;
  673. row += width_;
  674. }
  675. // Bottom half
  676. row = buffer_ + middleY * width_;
  677. endRow = buffer_ + bottoy_ * width_;
  678. while (row < endRow)
  679. {
  680. int invZ = topToBottom.invZ_;
  681. int* dest = row + (topToBottom.x_ >> 16);
  682. int* end = row + (middleToBottom.x_ >> 16);
  683. while (dest < end)
  684. {
  685. if (invZ < *dest)
  686. *dest = invZ;
  687. invZ += gradients.dInvZdXInt_;
  688. ++dest;
  689. }
  690. topToBottom.x_ += topToBottom.xStep_;
  691. topToBottom.invZ_ += topToBottom.invZStep_;
  692. middleToBottom.x_ += middleToBottom.xStep_;
  693. row += width_;
  694. }
  695. }
  696. else
  697. {
  698. // Top half
  699. int* row = buffer_ + topY * width_;
  700. int* endRow = buffer_ + middleY * width_;
  701. while (row < endRow)
  702. {
  703. int invZ = topToMiddle.invZ_;
  704. int* dest = row + (topToMiddle.x_ >> 16);
  705. int* end = row + (topToBottom.x_ >> 16);
  706. while (dest < end)
  707. {
  708. if (invZ < *dest)
  709. *dest = invZ;
  710. invZ += gradients.dInvZdXInt_;
  711. ++dest;
  712. }
  713. topToMiddle.x_ += topToMiddle.xStep_;
  714. topToMiddle.invZ_ += topToMiddle.invZStep_;
  715. topToBottom.x_ += topToBottom.xStep_;
  716. row += width_;
  717. }
  718. // Bottom half
  719. row = buffer_ + middleY * width_;
  720. endRow = buffer_ + bottoy_ * width_;
  721. while (row < endRow)
  722. {
  723. int invZ = middleToBottom.invZ_;
  724. int* dest = row + (middleToBottom.x_ >> 16);
  725. int* end = row + (topToBottom.x_ >> 16);
  726. while (dest < end)
  727. {
  728. if (invZ < *dest)
  729. *dest = invZ;
  730. invZ += gradients.dInvZdXInt_;
  731. ++dest;
  732. }
  733. middleToBottom.x_ += middleToBottom.xStep_;
  734. middleToBottom.invZ_ += middleToBottom.invZStep_;
  735. topToBottom.x_ += topToBottom.xStep_;
  736. row += width_;
  737. }
  738. }
  739. }