PhysicsWorld.cpp 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651
  1. //
  2. // Urho3D Engine
  3. // Copyright (c) 2008-2012 Lasse Oorni
  4. //
  5. // Permission is hereby granted, free of charge, to any person obtaining a copy
  6. // of this software and associated documentation files (the "Software"), to deal
  7. // in the Software without restriction, including without limitation the rights
  8. // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  9. // copies of the Software, and to permit persons to whom the Software is
  10. // furnished to do so, subject to the following conditions:
  11. //
  12. // The above copyright notice and this permission notice shall be included in
  13. // all copies or substantial portions of the Software.
  14. //
  15. // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  18. // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  20. // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  21. // THE SOFTWARE.
  22. //
  23. #include "Precompiled.h"
  24. #include "CollisionShape.h"
  25. #include "Constraint.h"
  26. #include "Context.h"
  27. #include "DebugRenderer.h"
  28. #include "Log.h"
  29. #include "Mutex.h"
  30. #include "PhysicsEvents.h"
  31. #include "PhysicsUtils.h"
  32. #include "PhysicsWorld.h"
  33. #include "Profiler.h"
  34. #include "Ray.h"
  35. #include "RigidBody.h"
  36. #include "Scene.h"
  37. #include "SceneEvents.h"
  38. #include "Sort.h"
  39. #include <BulletCollision/BroadphaseCollision/btDbvtBroadphase.h>
  40. #include <BulletCollision/CollisionDispatch/btDefaultCollisionConfiguration.h>
  41. #include <BulletCollision/CollisionShapes/btBoxShape.h>
  42. #include <BulletCollision/CollisionShapes/btSphereShape.h>
  43. #include <BulletDynamics/ConstraintSolver/btSequentialImpulseConstraintSolver.h>
  44. #include <BulletDynamics/Dynamics/btDiscreteDynamicsWorld.h>
  45. namespace Urho3D
  46. {
  47. static const int DEFAULT_FPS = 60;
  48. static const Vector3 DEFAULT_GRAVITY = Vector3(0.0f, -9.81f, 0.0f);
  49. static bool CompareRaycastResults(const PhysicsRaycastResult& lhs, const PhysicsRaycastResult& rhs)
  50. {
  51. return lhs.distance_ < rhs.distance_;
  52. }
  53. void InternalPreTickCallback(btDynamicsWorld *world, btScalar timeStep)
  54. {
  55. static_cast<PhysicsWorld*>(world->getWorldUserInfo())->PreStep(timeStep);
  56. }
  57. void InternalTickCallback(btDynamicsWorld *world, btScalar timeStep)
  58. {
  59. static_cast<PhysicsWorld*>(world->getWorldUserInfo())->PostStep(timeStep);
  60. }
  61. /// Callback for physics world queries.
  62. struct PhysicsQueryCallback : public btCollisionWorld::ContactResultCallback
  63. {
  64. /// Construct.
  65. PhysicsQueryCallback(PODVector<RigidBody*>& result) : result_(result)
  66. {
  67. }
  68. /// Add a contact result.
  69. virtual btScalar addSingleResult(btManifoldPoint &, const btCollisionObject *colObj0, int, int, const btCollisionObject *colObj1, int, int)
  70. {
  71. RigidBody* body = reinterpret_cast<RigidBody*>(colObj0->getUserPointer());
  72. if (body && !result_.Contains(body))
  73. result_.Push(body);
  74. body = reinterpret_cast<RigidBody*>(colObj1->getUserPointer());
  75. if (body && !result_.Contains(body))
  76. result_.Push(body);
  77. return 0.0f;
  78. }
  79. /// Found rigid bodies.
  80. PODVector<RigidBody*>& result_;
  81. };
  82. OBJECTTYPESTATIC(PhysicsWorld);
  83. PhysicsWorld::PhysicsWorld(Context* context) :
  84. Component(context),
  85. collisionConfiguration_(0),
  86. collisionDispatcher_(0),
  87. broadphase_(0),
  88. solver_(0),
  89. world_(0),
  90. fps_(DEFAULT_FPS),
  91. timeAcc_(0.0f),
  92. maxNetworkAngularVelocity_(DEFAULT_MAX_NETWORK_ANGULAR_VELOCITY),
  93. interpolation_(true),
  94. applyingTransforms_(false),
  95. debugRenderer_(0),
  96. debugMode_(btIDebugDraw::DBG_DrawWireframe | btIDebugDraw::DBG_DrawConstraints)
  97. {
  98. collisionConfiguration_ = new btDefaultCollisionConfiguration();
  99. collisionDispatcher_ = new btCollisionDispatcher(collisionConfiguration_);
  100. broadphase_ = new btDbvtBroadphase();
  101. solver_ = new btSequentialImpulseConstraintSolver();
  102. world_ = new btDiscreteDynamicsWorld(collisionDispatcher_, broadphase_, solver_, collisionConfiguration_);
  103. world_->setGravity(ToBtVector3(DEFAULT_GRAVITY));
  104. world_->getDispatchInfo().m_useContinuous = true;
  105. world_->setDebugDrawer(this);
  106. world_->setInternalTickCallback(InternalPreTickCallback, static_cast<void*>(this), true);
  107. world_->setInternalTickCallback(InternalTickCallback, static_cast<void*>(this), false);
  108. }
  109. PhysicsWorld::~PhysicsWorld()
  110. {
  111. if (scene_)
  112. {
  113. // Force all remaining constraints, rigid bodies and collision shapes to release themselves
  114. for (PODVector<Constraint*>::Iterator i = constraints_.Begin(); i != constraints_.End(); ++i)
  115. (*i)->ReleaseConstraint();
  116. for (PODVector<RigidBody*>::Iterator i = rigidBodies_.Begin(); i != rigidBodies_.End(); ++i)
  117. (*i)->ReleaseBody();
  118. for (PODVector<CollisionShape*>::Iterator i = collisionShapes_.Begin(); i != collisionShapes_.End(); ++i)
  119. (*i)->ReleaseShape();
  120. }
  121. // Remove any cached geometries that still remain
  122. geometryCache_.Clear();
  123. delete world_;
  124. world_ = 0;
  125. delete solver_;
  126. solver_ = 0;
  127. delete broadphase_;
  128. broadphase_ = 0;
  129. delete collisionDispatcher_;
  130. collisionDispatcher_ = 0;
  131. delete collisionConfiguration_;
  132. collisionConfiguration_ = 0;
  133. }
  134. void PhysicsWorld::RegisterObject(Context* context)
  135. {
  136. context->RegisterFactory<PhysicsWorld>();
  137. ACCESSOR_ATTRIBUTE(PhysicsWorld, VAR_VECTOR3, "Gravity", GetGravity, SetGravity, Vector3, DEFAULT_GRAVITY, AM_DEFAULT);
  138. ATTRIBUTE(PhysicsWorld, VAR_INT, "Physics FPS", fps_, DEFAULT_FPS, AM_DEFAULT);
  139. ATTRIBUTE(PhysicsWorld, VAR_FLOAT, "Net Max Angular Vel.", maxNetworkAngularVelocity_, DEFAULT_MAX_NETWORK_ANGULAR_VELOCITY, AM_DEFAULT);
  140. ATTRIBUTE(PhysicsWorld, VAR_BOOL, "Interpolation", interpolation_, true, AM_FILE);
  141. }
  142. bool PhysicsWorld::isVisible(const btVector3& aabbMin, const btVector3& aabbMax)
  143. {
  144. if (debugRenderer_)
  145. return debugRenderer_->IsInside(BoundingBox(ToVector3(aabbMin), ToVector3(aabbMax)));
  146. else
  147. return false;
  148. }
  149. void PhysicsWorld::drawLine(const btVector3& from, const btVector3& to, const btVector3& color)
  150. {
  151. if (debugRenderer_)
  152. debugRenderer_->AddLine(ToVector3(from), ToVector3(to), Color(color.x(), color.y(), color.z()), debugDepthTest_);
  153. }
  154. void PhysicsWorld::DrawDebugGeometry(DebugRenderer* debug, bool depthTest)
  155. {
  156. if (debug)
  157. {
  158. PROFILE(PhysicsDrawDebug);
  159. debugRenderer_ = debug;
  160. debugDepthTest_ = depthTest;
  161. world_->debugDrawWorld();
  162. debugRenderer_ = 0;
  163. }
  164. }
  165. void PhysicsWorld::reportErrorWarning(const char* warningString)
  166. {
  167. LOGWARNING("Physics: " + String(warningString));
  168. }
  169. void PhysicsWorld::Update(float timeStep)
  170. {
  171. PROFILE(UpdatePhysics);
  172. float internalTimeStep = 1.0f / fps_;
  173. delayedWorldTransforms_.Clear();
  174. if (interpolation_)
  175. {
  176. int maxSubSteps = (int)(timeStep * fps_) + 1;
  177. world_->stepSimulation(timeStep, maxSubSteps, internalTimeStep);
  178. }
  179. else
  180. {
  181. timeAcc_ += timeStep;
  182. while (timeAcc_ >= internalTimeStep)
  183. {
  184. world_->stepSimulation(internalTimeStep, 0, internalTimeStep);
  185. timeAcc_ -= internalTimeStep;
  186. }
  187. }
  188. // Apply delayed (parented) world transforms now
  189. while (!delayedWorldTransforms_.Empty())
  190. {
  191. for (HashMap<RigidBody*, DelayedWorldTransform>::Iterator i = delayedWorldTransforms_.Begin();
  192. i != delayedWorldTransforms_.End(); )
  193. {
  194. HashMap<RigidBody*, DelayedWorldTransform>::Iterator current = i++;
  195. const DelayedWorldTransform& transform = current->second_;
  196. // If parent's transform has already been assigned, can proceed
  197. if (!delayedWorldTransforms_.Contains(transform.parentRigidBody_))
  198. {
  199. transform.rigidBody_->ApplyWorldTransform(transform.worldPosition_, transform.worldRotation_);
  200. delayedWorldTransforms_.Erase(current);
  201. }
  202. }
  203. }
  204. }
  205. void PhysicsWorld::UpdateCollisions()
  206. {
  207. world_->performDiscreteCollisionDetection();
  208. }
  209. void PhysicsWorld::SetFps(int fps)
  210. {
  211. fps_ = Clamp(fps, 1, 1000);
  212. }
  213. void PhysicsWorld::SetGravity(Vector3 gravity)
  214. {
  215. world_->setGravity(ToBtVector3(gravity));
  216. }
  217. void PhysicsWorld::SetInterpolation(bool enable)
  218. {
  219. interpolation_ = enable;
  220. }
  221. void PhysicsWorld::SetMaxNetworkAngularVelocity(float velocity)
  222. {
  223. maxNetworkAngularVelocity_ = Clamp(velocity, 1.0f, 32767.0f);
  224. }
  225. void PhysicsWorld::Raycast(PODVector<PhysicsRaycastResult>& result, const Ray& ray, float maxDistance, unsigned collisionMask)
  226. {
  227. PROFILE(PhysicsRaycast);
  228. btCollisionWorld::AllHitsRayResultCallback rayCallback(ToBtVector3(ray.origin_), ToBtVector3(ray.origin_ +
  229. maxDistance * ray.direction_));
  230. rayCallback.m_collisionFilterGroup = (short)0xffff;
  231. rayCallback.m_collisionFilterMask = collisionMask;
  232. world_->rayTest(rayCallback.m_rayFromWorld, rayCallback.m_rayToWorld, rayCallback);
  233. for (int i = 0; i < rayCallback.m_collisionObjects.size(); ++i)
  234. {
  235. PhysicsRaycastResult newResult;
  236. newResult.body_ = static_cast<RigidBody*>(rayCallback.m_collisionObjects[i]->getUserPointer());
  237. newResult.position_ = ToVector3(rayCallback.m_hitPointWorld[i]);
  238. newResult.normal_ = ToVector3(rayCallback.m_hitNormalWorld[i]);
  239. newResult.distance_ = (newResult.position_ - ray.origin_).Length();
  240. result.Push(newResult);
  241. }
  242. Sort(result.Begin(), result.End(), CompareRaycastResults);
  243. }
  244. void PhysicsWorld::RaycastSingle(PhysicsRaycastResult& result, const Ray& ray, float maxDistance, unsigned collisionMask)
  245. {
  246. PROFILE(PhysicsRaycastSingle);
  247. btCollisionWorld::ClosestRayResultCallback rayCallback(ToBtVector3(ray.origin_), ToBtVector3(ray.origin_ +
  248. maxDistance * ray.direction_));
  249. rayCallback.m_collisionFilterGroup = (short)0xffff;
  250. rayCallback.m_collisionFilterMask = collisionMask;
  251. world_->rayTest(rayCallback.m_rayFromWorld, rayCallback.m_rayToWorld, rayCallback);
  252. if (rayCallback.hasHit())
  253. {
  254. result.body_ = static_cast<RigidBody*>(rayCallback.m_collisionObject->getUserPointer());
  255. result.position_ = ToVector3(rayCallback.m_hitPointWorld);
  256. result.normal_ = ToVector3(rayCallback.m_hitNormalWorld);
  257. result.distance_ = (result.position_ - ray.origin_).Length();
  258. }
  259. else
  260. {
  261. result.body_ = 0;
  262. result.position_ = Vector3::ZERO;
  263. result.normal_ = Vector3::ZERO;
  264. result.distance_ = M_INFINITY;
  265. }
  266. }
  267. void PhysicsWorld::SphereCast(PhysicsRaycastResult& result, const Ray& ray, float radius, float maxDistance, unsigned collisionMask)
  268. {
  269. PROFILE(PhysicsSphereCast);
  270. btSphereShape shape(radius);
  271. btCollisionWorld::ClosestConvexResultCallback convexCallback(ToBtVector3(ray.origin_), ToBtVector3(ray.origin_ +
  272. maxDistance * ray.direction_));
  273. convexCallback.m_collisionFilterGroup = (short)0xffff;
  274. convexCallback.m_collisionFilterMask = collisionMask;
  275. world_->convexSweepTest(&shape, btTransform(btQuaternion::getIdentity(), convexCallback.m_convexFromWorld),
  276. btTransform(btQuaternion::getIdentity(), convexCallback.m_convexToWorld), convexCallback);
  277. if (convexCallback.hasHit())
  278. {
  279. result.body_ = static_cast<RigidBody*>(convexCallback.m_hitCollisionObject->getUserPointer());
  280. result.position_ = ToVector3(convexCallback.m_hitPointWorld);
  281. result.normal_ = ToVector3(convexCallback.m_hitNormalWorld);
  282. result.distance_ = (result.position_ - ray.origin_).Length();
  283. }
  284. else
  285. {
  286. result.body_ = 0;
  287. result.position_ = Vector3::ZERO;
  288. result.normal_ = Vector3::ZERO;
  289. result.distance_ = M_INFINITY;
  290. }
  291. }
  292. void PhysicsWorld::GetRigidBodies(PODVector<RigidBody*>& result, const Sphere& sphere, unsigned collisionMask)
  293. {
  294. PROFILE(PhysicsWorld_GetRigidBodies);
  295. result.Clear();
  296. btSphereShape sphereShape(sphere.radius_);
  297. btRigidBody* tempRigidBody = new btRigidBody(1.0f, 0, &sphereShape);
  298. tempRigidBody->setWorldTransform(btTransform(btQuaternion::getIdentity(), ToBtVector3(sphere.center_)));
  299. // Need to activate the temporary rigid body to get reliable results from static, sleeping objects
  300. tempRigidBody->activate();
  301. world_->addRigidBody(tempRigidBody, (short)0xffff, (short)collisionMask);
  302. PhysicsQueryCallback callback(result);
  303. world_->contactTest(tempRigidBody, callback);
  304. world_->removeRigidBody(tempRigidBody);
  305. delete tempRigidBody;
  306. }
  307. void PhysicsWorld::GetRigidBodies(PODVector<RigidBody*>& result, const BoundingBox& box, unsigned collisionMask)
  308. {
  309. PROFILE(PhysicsWorld_GetRigidBodies);
  310. result.Clear();
  311. btBoxShape boxShape(ToBtVector3(box.HalfSize()));
  312. btRigidBody* tempRigidBody = new btRigidBody(1.0f, 0, &boxShape);
  313. tempRigidBody->setWorldTransform(btTransform(btQuaternion::getIdentity(), ToBtVector3(box.Center())));
  314. tempRigidBody->activate();
  315. world_->addRigidBody(tempRigidBody, (short)0xffff, (short)collisionMask);
  316. PhysicsQueryCallback callback(result);
  317. world_->contactTest(tempRigidBody, callback);
  318. world_->removeRigidBody(tempRigidBody);
  319. delete tempRigidBody;
  320. }
  321. void PhysicsWorld::GetRigidBodies(PODVector<RigidBody*>& result, const RigidBody* body)
  322. {
  323. PROFILE(PhysicsWorld_GetRigidBodies);
  324. result.Clear();
  325. for (HashSet<Pair<RigidBody*, RigidBody*> >::Iterator i = currentCollisions_.Begin(); i != currentCollisions_.End(); ++i)
  326. {
  327. if (i->first_ == body)
  328. result.Push(i->second_);
  329. else if (i->second_ == body)
  330. result.Push(i->first_);
  331. }
  332. }
  333. Vector3 PhysicsWorld::GetGravity() const
  334. {
  335. return ToVector3(world_->getGravity());
  336. }
  337. void PhysicsWorld::AddRigidBody(RigidBody* body)
  338. {
  339. rigidBodies_.Push(body);
  340. }
  341. void PhysicsWorld::RemoveRigidBody(RigidBody* body)
  342. {
  343. rigidBodies_.Erase(rigidBodies_.Find(body));
  344. // Erase from collision pairs so that they can be used to safely find overlapping bodies
  345. for (HashSet<Pair<RigidBody*, RigidBody*> >::Iterator i = currentCollisions_.Begin(); i != currentCollisions_.End();)
  346. {
  347. if (i->first_ == body || i->second_ == body)
  348. i = currentCollisions_.Erase(i);
  349. else
  350. ++i;
  351. }
  352. }
  353. void PhysicsWorld::AddCollisionShape(CollisionShape* shape)
  354. {
  355. collisionShapes_.Push(shape);
  356. }
  357. void PhysicsWorld::RemoveCollisionShape(CollisionShape* shape)
  358. {
  359. collisionShapes_.Erase(collisionShapes_.Find(shape));
  360. }
  361. void PhysicsWorld::AddConstraint(Constraint* constraint)
  362. {
  363. constraints_.Push(constraint);
  364. }
  365. void PhysicsWorld::RemoveConstraint(Constraint* constraint)
  366. {
  367. constraints_.Erase(constraints_.Find(constraint));
  368. }
  369. void PhysicsWorld::AddDelayedWorldTransform(const DelayedWorldTransform& transform)
  370. {
  371. delayedWorldTransforms_[transform.rigidBody_] = transform;
  372. }
  373. void PhysicsWorld::DrawDebugGeometry(bool depthTest)
  374. {
  375. DebugRenderer* debug = GetComponent<DebugRenderer>();
  376. DrawDebugGeometry(debug, depthTest);
  377. }
  378. void PhysicsWorld::SetDebugRenderer(DebugRenderer* debug)
  379. {
  380. debugRenderer_ = debug;
  381. }
  382. void PhysicsWorld::SetDebugDepthTest(bool enable)
  383. {
  384. debugDepthTest_ = enable;
  385. }
  386. void PhysicsWorld::CleanupGeometryCache()
  387. {
  388. // Remove cached shapes whose only reference is the cache itself
  389. for (HashMap<String, SharedPtr<CollisionGeometryData> >::Iterator i = geometryCache_.Begin();
  390. i != geometryCache_.End();)
  391. {
  392. HashMap<String, SharedPtr<CollisionGeometryData> >::Iterator current = i++;
  393. if (current->second_.Refs() == 1)
  394. geometryCache_.Erase(current);
  395. }
  396. }
  397. void PhysicsWorld::OnNodeSet(Node* node)
  398. {
  399. // Subscribe to the scene subsystem update, which will trigger the physics simulation step
  400. if (node)
  401. {
  402. scene_ = GetScene();
  403. SubscribeToEvent(node, E_SCENESUBSYSTEMUPDATE, HANDLER(PhysicsWorld, HandleSceneSubsystemUpdate));
  404. }
  405. }
  406. void PhysicsWorld::HandleSceneSubsystemUpdate(StringHash eventType, VariantMap& eventData)
  407. {
  408. using namespace SceneSubsystemUpdate;
  409. Update(eventData[P_TIMESTEP].GetFloat());
  410. }
  411. void PhysicsWorld::PreStep(float timeStep)
  412. {
  413. // Send pre-step event
  414. using namespace PhysicsPreStep;
  415. VariantMap eventData;
  416. eventData[P_WORLD] = (void*)this;
  417. eventData[P_TIMESTEP] = timeStep;
  418. SendEvent(E_PHYSICSPRESTEP, eventData);
  419. // Start profiling block for the actual simulation step
  420. #ifdef ENABLE_PROFILING
  421. Profiler* profiler = GetSubsystem<Profiler>();
  422. if (profiler)
  423. profiler->BeginBlock("StepSimulation");
  424. #endif
  425. }
  426. void PhysicsWorld::PostStep(float timeStep)
  427. {
  428. #ifdef ENABLE_PROFILING
  429. Profiler* profiler = GetSubsystem<Profiler>();
  430. if (profiler)
  431. profiler->EndBlock();
  432. #endif
  433. SendCollisionEvents();
  434. // Send post-step event
  435. using namespace PhysicsPreStep;
  436. VariantMap eventData;
  437. eventData[P_WORLD] = (void*)this;
  438. eventData[P_TIMESTEP] = timeStep;
  439. SendEvent(E_PHYSICSPOSTSTEP, eventData);
  440. }
  441. void PhysicsWorld::SendCollisionEvents()
  442. {
  443. PROFILE(SendCollisionEvents);
  444. currentCollisions_.Clear();
  445. int numManifolds = collisionDispatcher_->getNumManifolds();
  446. if (numManifolds)
  447. {
  448. VariantMap physicsCollisionData;
  449. VariantMap nodeCollisionData;
  450. VectorBuffer contacts;
  451. physicsCollisionData[PhysicsCollision::P_WORLD] = (void*)this;
  452. for (int i = 0; i < numManifolds; ++i)
  453. {
  454. btPersistentManifold* contactManifold = collisionDispatcher_->getManifoldByIndexInternal(i);
  455. int numContacts = contactManifold->getNumContacts();
  456. // First check that there are actual contacts, as the manifold exists also when objects are close but not touching
  457. if (!numContacts)
  458. continue;
  459. btCollisionObject* objectA = static_cast<btCollisionObject*>(contactManifold->getBody0());
  460. btCollisionObject* objectB = static_cast<btCollisionObject*>(contactManifold->getBody1());
  461. RigidBody* bodyA = static_cast<RigidBody*>(objectA->getUserPointer());
  462. RigidBody* bodyB = static_cast<RigidBody*>(objectB->getUserPointer());
  463. WeakPtr<RigidBody> bodyWeakA(bodyA);
  464. WeakPtr<RigidBody> bodyWeakB(bodyB);
  465. // Skip collision event signaling if both objects are static, or if collision event mode does not match
  466. if (bodyA->GetMass() == 0.0f && bodyB->GetMass() == 0.0f)
  467. continue;
  468. if (bodyA->GetCollisionEventMode() == COLLISION_NEVER || bodyB->GetCollisionEventMode() == COLLISION_NEVER)
  469. continue;
  470. if (bodyA->GetCollisionEventMode() == COLLISION_ACTIVE && bodyB->GetCollisionEventMode() == COLLISION_ACTIVE &&
  471. !bodyA->IsActive() && !bodyB->IsActive())
  472. continue;
  473. Node* nodeA = bodyA->GetNode();
  474. Node* nodeB = bodyB->GetNode();
  475. WeakPtr<Node> nodeWeakA(nodeA);
  476. WeakPtr<Node> nodeWeakB(nodeB);
  477. Pair<RigidBody*, RigidBody*> bodyPair;
  478. if (bodyA < bodyB)
  479. bodyPair = MakePair(bodyA, bodyB);
  480. else
  481. bodyPair = MakePair(bodyB, bodyA);
  482. currentCollisions_.Insert(bodyPair);
  483. bool newCollision = !previousCollisions_.Contains(bodyPair);
  484. physicsCollisionData[PhysicsCollision::P_NODEA] = (void*)nodeA;
  485. physicsCollisionData[PhysicsCollision::P_NODEB] = (void*)nodeB;
  486. physicsCollisionData[PhysicsCollision::P_BODYA] = (void*)bodyA;
  487. physicsCollisionData[PhysicsCollision::P_BODYB] = (void*)bodyB;
  488. physicsCollisionData[PhysicsCollision::P_NEWCOLLISION] = !previousCollisions_.Contains(bodyPair);
  489. contacts.Clear();
  490. for (int j = 0; j < numContacts; ++j)
  491. {
  492. btManifoldPoint& point = contactManifold->getContactPoint(j);
  493. contacts.WriteVector3(ToVector3(point.m_positionWorldOnB));
  494. contacts.WriteVector3(ToVector3(point.m_normalWorldOnB));
  495. contacts.WriteFloat(point.m_distance1);
  496. contacts.WriteFloat(point.m_appliedImpulse);
  497. }
  498. physicsCollisionData[PhysicsCollision::P_CONTACTS] = contacts.GetBuffer();
  499. SendEvent(E_PHYSICSCOLLISION, physicsCollisionData);
  500. // Skip if either of the nodes or bodies has been removed as a response to the event
  501. if (!nodeWeakA || !nodeWeakB || !bodyWeakA || !bodyWeakB)
  502. continue;
  503. nodeCollisionData[NodeCollision::P_BODY] = (void*)bodyA;
  504. nodeCollisionData[NodeCollision::P_OTHERNODE] = (void*)nodeB;
  505. nodeCollisionData[NodeCollision::P_OTHERBODY] = (void*)bodyB;
  506. nodeCollisionData[NodeCollision::P_NEWCOLLISION] = newCollision;
  507. nodeCollisionData[NodeCollision::P_CONTACTS] = contacts.GetBuffer();
  508. nodeA->SendEvent(E_NODECOLLISION, nodeCollisionData);
  509. // Skip if either of the nodes has been removed as a response to the event
  510. if (!nodeWeakA || !nodeWeakB)
  511. continue;
  512. contacts.Clear();
  513. for (int j = 0; j < numContacts; ++j)
  514. {
  515. btManifoldPoint& point = contactManifold->getContactPoint(j);
  516. contacts.WriteVector3(ToVector3(point.m_positionWorldOnB));
  517. contacts.WriteVector3(-ToVector3(point.m_normalWorldOnB));
  518. contacts.WriteFloat(point.m_distance1);
  519. contacts.WriteFloat(point.m_appliedImpulse);
  520. }
  521. nodeCollisionData[NodeCollision::P_BODY] = (void*)bodyB;
  522. nodeCollisionData[NodeCollision::P_OTHERNODE] = (void*)nodeA;
  523. nodeCollisionData[NodeCollision::P_OTHERBODY] = (void*)bodyA;
  524. nodeCollisionData[NodeCollision::P_CONTACTS] = contacts.GetBuffer();
  525. nodeB->SendEvent(E_NODECOLLISION, nodeCollisionData);
  526. }
  527. }
  528. previousCollisions_ = currentCollisions_;
  529. }
  530. void RegisterPhysicsLibrary(Context* context)
  531. {
  532. CollisionShape::RegisterObject(context);
  533. RigidBody::RegisterObject(context);
  534. Constraint::RegisterObject(context);
  535. PhysicsWorld::RegisterObject(context);
  536. }
  537. }