View.cpp 100 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550
  1. //
  2. // Urho3D Engine
  3. // Copyright (c) 2008-2012 Lasse Öörni
  4. //
  5. // Permission is hereby granted, free of charge, to any person obtaining a copy
  6. // of this software and associated documentation files (the "Software"), to deal
  7. // in the Software without restriction, including without limitation the rights
  8. // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  9. // copies of the Software, and to permit persons to whom the Software is
  10. // furnished to do so, subject to the following conditions:
  11. //
  12. // The above copyright notice and this permission notice shall be included in
  13. // all copies or substantial portions of the Software.
  14. //
  15. // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  18. // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  20. // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  21. // THE SOFTWARE.
  22. //
  23. #include "Precompiled.h"
  24. #include "Camera.h"
  25. #include "DebugRenderer.h"
  26. #include "Geometry.h"
  27. #include "Graphics.h"
  28. #include "GraphicsImpl.h"
  29. #include "Light.h"
  30. #include "Log.h"
  31. #include "OcclusionBuffer.h"
  32. #include "Octree.h"
  33. #include "Renderer.h"
  34. #include "ResourceCache.h"
  35. #include "PostProcess.h"
  36. #include "Profiler.h"
  37. #include "Scene.h"
  38. #include "ShaderVariation.h"
  39. #include "Skybox.h"
  40. #include "Sort.h"
  41. #include "Technique.h"
  42. #include "Texture2D.h"
  43. #include "TextureCube.h"
  44. #include "VertexBuffer.h"
  45. #include "View.h"
  46. #include "WorkQueue.h"
  47. #include "Zone.h"
  48. #include "DebugNew.h"
  49. static const Vector3 directions[] =
  50. {
  51. Vector3(1.0f, 0.0f, 0.0f),
  52. Vector3(-1.0f, 0.0f, 0.0f),
  53. Vector3(0.0f, 1.0f, 0.0f),
  54. Vector3(0.0f, -1.0f, 0.0f),
  55. Vector3(0.0f, 0.0f, 1.0f),
  56. Vector3(0.0f, 0.0f, -1.0f)
  57. };
  58. static const int CHECK_DRAWABLES_PER_WORK_ITEM = 64;
  59. static const float LIGHT_INTENSITY_THRESHOLD = 0.001f;
  60. /// %Frustum octree query for shadowcasters.
  61. class ShadowCasterOctreeQuery : public OctreeQuery
  62. {
  63. public:
  64. /// Construct with frustum and query parameters.
  65. ShadowCasterOctreeQuery(PODVector<Drawable*>& result, const Frustum& frustum, unsigned char drawableFlags = DRAWABLE_ANY,
  66. unsigned viewMask = DEFAULT_VIEWMASK) :
  67. OctreeQuery(result, drawableFlags, viewMask),
  68. frustum_(frustum)
  69. {
  70. }
  71. /// Intersection test for an octant.
  72. virtual Intersection TestOctant(const BoundingBox& box, bool inside)
  73. {
  74. if (inside)
  75. return INSIDE;
  76. else
  77. return frustum_.IsInside(box);
  78. }
  79. /// Intersection test for drawables.
  80. virtual void TestDrawables(Drawable** start, Drawable** end, bool inside)
  81. {
  82. while (start != end)
  83. {
  84. Drawable* drawable = *start;
  85. if ((drawable->GetDrawableFlags() & drawableFlags_) && drawable->GetCastShadows() && drawable->IsVisible() &&
  86. (drawable->GetViewMask() & viewMask_))
  87. {
  88. if (inside || frustum_.IsInsideFast(drawable->GetWorldBoundingBox()))
  89. result_.Push(drawable);
  90. }
  91. ++start;
  92. }
  93. }
  94. /// Frustum.
  95. Frustum frustum_;
  96. };
  97. /// %Frustum octree query for zones and occluders.
  98. class ZoneOccluderOctreeQuery : public OctreeQuery
  99. {
  100. public:
  101. /// Construct with frustum and query parameters.
  102. ZoneOccluderOctreeQuery(PODVector<Drawable*>& result, const Frustum& frustum, unsigned char drawableFlags = DRAWABLE_ANY,
  103. unsigned viewMask = DEFAULT_VIEWMASK) :
  104. OctreeQuery(result, drawableFlags, viewMask),
  105. frustum_(frustum)
  106. {
  107. }
  108. /// Intersection test for an octant.
  109. virtual Intersection TestOctant(const BoundingBox& box, bool inside)
  110. {
  111. if (inside)
  112. return INSIDE;
  113. else
  114. return frustum_.IsInside(box);
  115. }
  116. /// Intersection test for drawables.
  117. virtual void TestDrawables(Drawable** start, Drawable** end, bool inside)
  118. {
  119. while (start != end)
  120. {
  121. Drawable* drawable = *start;
  122. unsigned char flags = drawable->GetDrawableFlags();
  123. if ((flags == DRAWABLE_ZONE || (flags == DRAWABLE_GEOMETRY && drawable->IsOccluder())) && drawable->IsVisible() &&
  124. (drawable->GetViewMask() & viewMask_))
  125. {
  126. if (inside || frustum_.IsInsideFast(drawable->GetWorldBoundingBox()))
  127. result_.Push(drawable);
  128. }
  129. ++start;
  130. }
  131. }
  132. /// Frustum.
  133. Frustum frustum_;
  134. };
  135. /// %Frustum octree query with occlusion.
  136. class OccludedFrustumOctreeQuery : public OctreeQuery
  137. {
  138. public:
  139. /// Construct with frustum, occlusion buffer and query parameters.
  140. OccludedFrustumOctreeQuery(PODVector<Drawable*>& result, const Frustum& frustum, OcclusionBuffer* buffer, unsigned char
  141. drawableFlags = DRAWABLE_ANY, unsigned viewMask = DEFAULT_VIEWMASK) :
  142. OctreeQuery(result, drawableFlags, viewMask),
  143. frustum_(frustum),
  144. buffer_(buffer)
  145. {
  146. }
  147. /// Intersection test for an octant.
  148. virtual Intersection TestOctant(const BoundingBox& box, bool inside)
  149. {
  150. if (inside)
  151. return buffer_->IsVisible(box) ? INSIDE : OUTSIDE;
  152. else
  153. {
  154. Intersection result = frustum_.IsInside(box);
  155. if (result != OUTSIDE && !buffer_->IsVisible(box))
  156. result = OUTSIDE;
  157. return result;
  158. }
  159. }
  160. /// Intersection test for drawables. Note: drawable occlusion is performed later in worker threads.
  161. virtual void TestDrawables(Drawable** start, Drawable** end, bool inside)
  162. {
  163. while (start != end)
  164. {
  165. Drawable* drawable = *start;
  166. if ((drawable->GetDrawableFlags() & drawableFlags_) && drawable->IsVisible() &&
  167. (drawable->GetViewMask() & viewMask_))
  168. {
  169. if (inside || frustum_.IsInsideFast(drawable->GetWorldBoundingBox()))
  170. result_.Push(drawable);
  171. }
  172. ++start;
  173. }
  174. }
  175. /// Frustum.
  176. Frustum frustum_;
  177. /// Occlusion buffer.
  178. OcclusionBuffer* buffer_;
  179. };
  180. void CheckVisibilityWork(const WorkItem* item, unsigned threadIndex)
  181. {
  182. View* view = reinterpret_cast<View*>(item->aux_);
  183. Drawable** start = reinterpret_cast<Drawable**>(item->start_);
  184. Drawable** end = reinterpret_cast<Drawable**>(item->end_);
  185. OcclusionBuffer* buffer = view->occlusionBuffer_;
  186. const Matrix3x4& viewMatrix = view->camera_->GetInverseWorldTransform();
  187. while (start != end)
  188. {
  189. Drawable* drawable = *start++;
  190. drawable->UpdateBatches(view->frame_);
  191. // If draw distance non-zero, check it
  192. float maxDistance = drawable->GetDrawDistance();
  193. if ((maxDistance <= 0.0f || drawable->GetDistance() <= maxDistance) && (!buffer || !drawable->IsOccludee() ||
  194. buffer->IsVisible(drawable->GetWorldBoundingBox())))
  195. {
  196. drawable->MarkInView(view->frame_);
  197. // For geometries, clear lights and calculate view space Z range
  198. if (drawable->GetDrawableFlags() & DRAWABLE_GEOMETRY)
  199. {
  200. const BoundingBox& geomBox = drawable->GetWorldBoundingBox();
  201. Vector3 center = geomBox.Center();
  202. float viewCenterZ = viewMatrix.m20_ * center.x_ + viewMatrix.m21_ * center.y_ + viewMatrix.m22_ * center.z_ +
  203. viewMatrix.m23_;
  204. Vector3 edge = geomBox.Size() * 0.5f;
  205. float viewEdgeZ = fabsf(viewMatrix.m20_) * edge.x_ + fabsf(viewMatrix.m21_) * edge.y_ + fabsf(viewMatrix.m22_) *
  206. edge.z_;
  207. drawable->SetMinMaxZ(viewCenterZ - viewEdgeZ, viewCenterZ + viewEdgeZ);
  208. drawable->ClearLights();
  209. }
  210. }
  211. }
  212. }
  213. void ProcessLightWork(const WorkItem* item, unsigned threadIndex)
  214. {
  215. View* view = reinterpret_cast<View*>(item->aux_);
  216. LightQueryResult* query = reinterpret_cast<LightQueryResult*>(item->start_);
  217. view->ProcessLight(*query, threadIndex);
  218. }
  219. void UpdateDrawableGeometriesWork(const WorkItem* item, unsigned threadIndex)
  220. {
  221. const FrameInfo& frame = *(reinterpret_cast<FrameInfo*>(item->aux_));
  222. Drawable** start = reinterpret_cast<Drawable**>(item->start_);
  223. Drawable** end = reinterpret_cast<Drawable**>(item->end_);
  224. while (start != end)
  225. {
  226. Drawable* drawable = *start;
  227. drawable->UpdateGeometry(frame);
  228. ++start;
  229. }
  230. }
  231. void SortBatchQueueFrontToBackWork(const WorkItem* item, unsigned threadIndex)
  232. {
  233. BatchQueue* queue = reinterpret_cast<BatchQueue*>(item->start_);
  234. queue->SortFrontToBack();
  235. }
  236. void SortBatchQueueBackToFrontWork(const WorkItem* item, unsigned threadIndex)
  237. {
  238. BatchQueue* queue = reinterpret_cast<BatchQueue*>(item->start_);
  239. queue->SortBackToFront();
  240. }
  241. void SortLightQueueWork(const WorkItem* item, unsigned threadIndex)
  242. {
  243. LightBatchQueue* start = reinterpret_cast<LightBatchQueue*>(item->start_);
  244. start->litBatches_.SortFrontToBack();
  245. }
  246. void SortShadowQueueWork(const WorkItem* item, unsigned threadIndex)
  247. {
  248. LightBatchQueue* start = reinterpret_cast<LightBatchQueue*>(item->start_);
  249. for (unsigned i = 0; i < start->shadowSplits_.Size(); ++i)
  250. start->shadowSplits_[i].shadowBatches_.SortFrontToBack();
  251. }
  252. OBJECTTYPESTATIC(View);
  253. View::View(Context* context) :
  254. Object(context),
  255. graphics_(GetSubsystem<Graphics>()),
  256. renderer_(GetSubsystem<Renderer>()),
  257. octree_(0),
  258. camera_(0),
  259. cameraZone_(0),
  260. farClipZone_(0),
  261. renderTarget_(0)
  262. {
  263. frame_.camera_ = 0;
  264. // Create octree query vector for each thread
  265. tempDrawables_.Resize(GetSubsystem<WorkQueue>()->GetNumThreads() + 1);
  266. }
  267. View::~View()
  268. {
  269. }
  270. bool View::Define(RenderSurface* renderTarget, Viewport* viewport)
  271. {
  272. Scene* scene = viewport->GetScene();
  273. Camera* camera = viewport->GetCamera();
  274. if (!scene || !camera || !camera->GetNode())
  275. return false;
  276. // If scene is loading asynchronously, it is incomplete and should not be rendered
  277. if (scene->IsAsyncLoading())
  278. return false;
  279. Octree* octree = scene->GetComponent<Octree>();
  280. if (!octree)
  281. return false;
  282. renderMode_ = renderer_->GetRenderMode();
  283. octree_ = octree;
  284. camera_ = camera;
  285. cameraNode_ = camera->GetNode();
  286. renderTarget_ = renderTarget;
  287. // Get active post-processing effects on the viewport
  288. const Vector<SharedPtr<PostProcess> >& postProcesses = viewport->GetPostProcesses();
  289. postProcesses_.Clear();
  290. for (Vector<SharedPtr<PostProcess> >::ConstIterator i = postProcesses.Begin(); i != postProcesses.End(); ++i)
  291. {
  292. PostProcess* effect = i->Get();
  293. if (effect && effect->IsActive())
  294. postProcesses_.Push(*i);
  295. }
  296. // Validate the rect and calculate size. If zero rect, use whole rendertarget size
  297. int rtWidth = renderTarget ? renderTarget->GetWidth() : graphics_->GetWidth();
  298. int rtHeight = renderTarget ? renderTarget->GetHeight() : graphics_->GetHeight();
  299. const IntRect& rect = viewport->GetRect();
  300. if (rect != IntRect::ZERO)
  301. {
  302. viewRect_.left_ = Clamp(rect.left_, 0, rtWidth - 1);
  303. viewRect_.top_ = Clamp(rect.top_, 0, rtHeight - 1);
  304. viewRect_.right_ = Clamp(rect.right_, viewRect_.left_ + 1, rtWidth);
  305. viewRect_.bottom_ = Clamp(rect.bottom_, viewRect_.top_ + 1, rtHeight);
  306. }
  307. else
  308. viewRect_ = IntRect(0, 0, rtWidth, rtHeight);
  309. viewSize_ = IntVector2(viewRect_.right_ - viewRect_.left_, viewRect_.bottom_ - viewRect_.top_);
  310. rtSize_ = IntVector2(rtWidth, rtHeight);
  311. // On OpenGL flip the viewport if rendering to a texture for consistent UV addressing with Direct3D9
  312. #ifdef USE_OPENGL
  313. if (renderTarget_)
  314. {
  315. viewRect_.bottom_ = rtSize_.y_ - viewRect_.top_;
  316. viewRect_.top_ = viewRect_.bottom_ - viewSize_.y_;
  317. }
  318. #endif
  319. drawShadows_ = renderer_->GetDrawShadows();
  320. materialQuality_ = renderer_->GetMaterialQuality();
  321. maxOccluderTriangles_ = renderer_->GetMaxOccluderTriangles();
  322. // Set possible quality overrides from the camera
  323. unsigned viewOverrideFlags = camera_->GetViewOverrideFlags();
  324. if (viewOverrideFlags & VO_LOW_MATERIAL_QUALITY)
  325. materialQuality_ = QUALITY_LOW;
  326. if (viewOverrideFlags & VO_DISABLE_SHADOWS)
  327. drawShadows_ = false;
  328. if (viewOverrideFlags & VO_DISABLE_OCCLUSION)
  329. maxOccluderTriangles_ = 0;
  330. return true;
  331. }
  332. void View::Update(const FrameInfo& frame)
  333. {
  334. if (!camera_ || !octree_)
  335. return;
  336. frame_.camera_ = camera_;
  337. frame_.timeStep_ = frame.timeStep_;
  338. frame_.frameNumber_ = frame.frameNumber_;
  339. frame_.viewSize_ = viewSize_;
  340. int maxSortedInstances = renderer_->GetMaxSortedInstances();
  341. // Clear screen buffers, geometry, light, occluder & batch lists
  342. screenBuffers_.Clear();
  343. geometries_.Clear();
  344. shadowGeometries_.Clear();
  345. lights_.Clear();
  346. zones_.Clear();
  347. occluders_.Clear();
  348. baseQueue_.Clear(maxSortedInstances);
  349. preAlphaQueue_.Clear(maxSortedInstances);
  350. gbufferQueue_.Clear(maxSortedInstances);
  351. alphaQueue_.Clear(maxSortedInstances);
  352. postAlphaQueue_.Clear(maxSortedInstances);
  353. vertexLightQueues_.Clear();
  354. // Do not update if camera projection is illegal
  355. // (there is a possibility of crash if occlusion is used and it can not clip properly)
  356. if (!camera_->IsProjectionValid())
  357. return;
  358. // Set automatic aspect ratio if required
  359. if (camera_->GetAutoAspectRatio())
  360. camera_->SetAspectRatio((float)frame_.viewSize_.x_ / (float)frame_.viewSize_.y_);
  361. GetDrawables();
  362. GetBatches();
  363. UpdateGeometries();
  364. }
  365. void View::Render()
  366. {
  367. if (!octree_ || !camera_)
  368. return;
  369. // Allocate screen buffers for post-processing and blitting as necessary
  370. AllocateScreenBuffers();
  371. // Forget parameter sources from the previous view
  372. graphics_->ClearParameterSources();
  373. // If stream offset is supported, write all instance transforms to a single large buffer
  374. // Else we must lock the instance buffer for each batch group
  375. if (renderer_->GetDynamicInstancing() && graphics_->GetStreamOffsetSupport())
  376. PrepareInstancingBuffer();
  377. // It is possible, though not recommended, that the same camera is used for multiple main views. Set automatic aspect ratio
  378. // again to ensure correct projection will be used
  379. if (camera_->GetAutoAspectRatio())
  380. camera_->SetAspectRatio((float)(viewSize_.x_) / (float)(viewSize_.y_));
  381. graphics_->SetColorWrite(true);
  382. // Bind the face selection and indirection cube maps for point light shadows
  383. if (renderer_->GetDrawShadows())
  384. {
  385. graphics_->SetTexture(TU_FACESELECT, renderer_->GetFaceSelectCubeMap());
  386. graphics_->SetTexture(TU_INDIRECTION, renderer_->GetIndirectionCubeMap());
  387. }
  388. // Set "view texture" to prevent destination texture sampling in case we do not render to the destination directly
  389. // ie. when using deferred rendering and/or doing post-processing
  390. if (renderTarget_)
  391. graphics_->SetViewTexture(renderTarget_->GetParentTexture());
  392. // On OpenGL, flip the projection if rendering to a texture so that the texture can be addressed in the same way
  393. // as a render texture produced on Direct3D9
  394. #ifdef USE_OPENGL
  395. if (renderTarget_)
  396. camera_->SetFlipVertical(true);
  397. #endif
  398. // Render
  399. if (renderMode_ == RENDER_FORWARD)
  400. RenderBatchesForward();
  401. else
  402. RenderBatchesDeferred();
  403. #ifdef USE_OPENGL
  404. camera_->SetFlipVertical(false);
  405. #endif
  406. graphics_->SetViewTexture(0);
  407. graphics_->SetScissorTest(false);
  408. graphics_->SetStencilTest(false);
  409. graphics_->ResetStreamFrequencies();
  410. // Run post-processes or framebuffer blitting now
  411. if (screenBuffers_.Size())
  412. {
  413. if (postProcesses_.Size())
  414. RunPostProcesses();
  415. else
  416. BlitFramebuffer();
  417. }
  418. // If this is a main view, draw the associated debug geometry now
  419. if (!renderTarget_)
  420. {
  421. DebugRenderer* debug = octree_->GetComponent<DebugRenderer>();
  422. if (debug)
  423. {
  424. debug->SetView(camera_);
  425. debug->Render();
  426. }
  427. }
  428. // "Forget" the camera, octree and zone after rendering
  429. camera_ = 0;
  430. octree_ = 0;
  431. cameraZone_ = 0;
  432. farClipZone_ = 0;
  433. occlusionBuffer_ = 0;
  434. frame_.camera_ = 0;
  435. }
  436. void View::GetDrawables()
  437. {
  438. PROFILE(GetDrawables);
  439. WorkQueue* queue = GetSubsystem<WorkQueue>();
  440. PODVector<Drawable*>& tempDrawables = tempDrawables_[0];
  441. // Get zones and occluders first
  442. {
  443. ZoneOccluderOctreeQuery query(tempDrawables, camera_->GetFrustum(), DRAWABLE_GEOMETRY | DRAWABLE_ZONE);
  444. octree_->GetDrawables(query);
  445. }
  446. highestZonePriority_ = M_MIN_INT;
  447. int bestPriority = M_MIN_INT;
  448. Vector3 cameraPos = cameraNode_->GetWorldPosition();
  449. // Get default zone first in case we do not have zones defined
  450. Zone* defaultZone = renderer_->GetDefaultZone();
  451. cameraZone_ = farClipZone_ = defaultZone;
  452. for (PODVector<Drawable*>::ConstIterator i = tempDrawables.Begin(); i != tempDrawables.End(); ++i)
  453. {
  454. Drawable* drawable = *i;
  455. unsigned char flags = drawable->GetDrawableFlags();
  456. if (flags & DRAWABLE_ZONE)
  457. {
  458. Zone* zone = static_cast<Zone*>(drawable);
  459. zones_.Push(zone);
  460. int priority = zone->GetPriority();
  461. if (priority > highestZonePriority_)
  462. highestZonePriority_ = priority;
  463. if (zone->IsInside(cameraPos) && priority > bestPriority)
  464. {
  465. cameraZone_ = zone;
  466. bestPriority = priority;
  467. }
  468. }
  469. else
  470. occluders_.Push(drawable);
  471. }
  472. // Determine the zone at far clip distance. If not found, or camera zone has override mode, use camera zone
  473. cameraZoneOverride_ = cameraZone_->GetOverride();
  474. if (!cameraZoneOverride_)
  475. {
  476. Vector3 farClipPos = cameraPos + cameraNode_->GetWorldDirection() * Vector3(0.0f, 0.0f, camera_->GetFarClip());
  477. bestPriority = M_MIN_INT;
  478. for (PODVector<Zone*>::Iterator i = zones_.Begin(); i != zones_.End(); ++i)
  479. {
  480. int priority = (*i)->GetPriority();
  481. if ((*i)->IsInside(farClipPos) && priority > bestPriority)
  482. {
  483. farClipZone_ = *i;
  484. bestPriority = priority;
  485. }
  486. }
  487. }
  488. if (farClipZone_ == defaultZone)
  489. farClipZone_ = cameraZone_;
  490. // If occlusion in use, get & render the occluders
  491. occlusionBuffer_ = 0;
  492. if (maxOccluderTriangles_ > 0)
  493. {
  494. UpdateOccluders(occluders_, camera_);
  495. if (occluders_.Size())
  496. {
  497. PROFILE(DrawOcclusion);
  498. occlusionBuffer_ = renderer_->GetOcclusionBuffer(camera_);
  499. DrawOccluders(occlusionBuffer_, occluders_);
  500. }
  501. }
  502. // Get lights and geometries. Coarse occlusion for octants is used at this point
  503. if (occlusionBuffer_)
  504. {
  505. OccludedFrustumOctreeQuery query(tempDrawables, camera_->GetFrustum(), occlusionBuffer_, DRAWABLE_GEOMETRY |
  506. DRAWABLE_LIGHT);
  507. octree_->GetDrawables(query);
  508. }
  509. else
  510. {
  511. FrustumOctreeQuery query(tempDrawables, camera_->GetFrustum(), DRAWABLE_GEOMETRY | DRAWABLE_LIGHT);
  512. octree_->GetDrawables(query);
  513. }
  514. // Check drawable occlusion and find zones for moved drawables in worker threads
  515. {
  516. WorkItem item;
  517. item.workFunction_ = CheckVisibilityWork;
  518. item.aux_ = this;
  519. PODVector<Drawable*>::Iterator start = tempDrawables.Begin();
  520. while (start != tempDrawables.End())
  521. {
  522. PODVector<Drawable*>::Iterator end = tempDrawables.End();
  523. if (end - start > CHECK_DRAWABLES_PER_WORK_ITEM)
  524. end = start + CHECK_DRAWABLES_PER_WORK_ITEM;
  525. item.start_ = &(*start);
  526. item.end_ = &(*end);
  527. queue->AddWorkItem(item);
  528. start = end;
  529. }
  530. queue->Complete();
  531. }
  532. // Sort into geometries & lights, and build visible scene bounding boxes in world and view space
  533. sceneBox_.min_ = sceneBox_.max_ = Vector3::ZERO;
  534. sceneBox_.defined_ = false;
  535. minZ_ = M_INFINITY;
  536. maxZ_ = 0.0f;
  537. const Matrix3x4& view = camera_->GetInverseWorldTransform();
  538. for (unsigned i = 0; i < tempDrawables.Size(); ++i)
  539. {
  540. Drawable* drawable = tempDrawables[i];
  541. if (!drawable->IsInView(frame_))
  542. continue;
  543. if (drawable->GetDrawableFlags() & DRAWABLE_GEOMETRY)
  544. {
  545. // Find zone for the drawable if necessary
  546. if (!drawable->GetZone() && !cameraZoneOverride_)
  547. FindZone(drawable);
  548. // Expand the scene bounding box and Z range (skybox not included because of infinite size) and store the drawawble
  549. if (drawable->GetType() != Skybox::GetTypeStatic())
  550. {
  551. sceneBox_.Merge(drawable->GetWorldBoundingBox());
  552. minZ_ = Min(minZ_, drawable->GetMinZ());
  553. maxZ_ = Max(maxZ_, drawable->GetMaxZ());
  554. }
  555. geometries_.Push(drawable);
  556. }
  557. else
  558. {
  559. Light* light = static_cast<Light*>(drawable);
  560. // Skip lights which are so dim that they can not contribute to a rendertarget
  561. if (light->GetColor().Intensity() > LIGHT_INTENSITY_THRESHOLD)
  562. lights_.Push(light);
  563. }
  564. }
  565. if (minZ_ == M_INFINITY)
  566. minZ_ = 0.0f;
  567. // Sort the lights to brightest/closest first
  568. for (unsigned i = 0; i < lights_.Size(); ++i)
  569. {
  570. Light* light = lights_[i];
  571. light->SetIntensitySortValue(camera_->GetDistance(light->GetNode()->GetWorldPosition()));
  572. light->SetLightQueue(0);
  573. }
  574. Sort(lights_.Begin(), lights_.End(), CompareDrawables);
  575. }
  576. void View::GetBatches()
  577. {
  578. WorkQueue* queue = GetSubsystem<WorkQueue>();
  579. PODVector<Light*> vertexLights;
  580. // Process lit geometries and shadow casters for each light
  581. {
  582. PROFILE(ProcessLights);
  583. lightQueryResults_.Resize(lights_.Size());
  584. WorkItem item;
  585. item.workFunction_ = ProcessLightWork;
  586. item.aux_ = this;
  587. for (unsigned i = 0; i < lightQueryResults_.Size(); ++i)
  588. {
  589. LightQueryResult& query = lightQueryResults_[i];
  590. query.light_ = lights_[i];
  591. item.start_ = &query;
  592. queue->AddWorkItem(item);
  593. }
  594. // Ensure all lights have been processed before proceeding
  595. queue->Complete();
  596. }
  597. // Build light queues and lit batches
  598. {
  599. PROFILE(GetLightBatches);
  600. // Preallocate light queues: per-pixel lights which have lit geometries
  601. unsigned numLightQueues = 0;
  602. unsigned usedLightQueues = 0;
  603. for (Vector<LightQueryResult>::ConstIterator i = lightQueryResults_.Begin(); i != lightQueryResults_.End(); ++i)
  604. {
  605. if (!i->light_->GetPerVertex() && i->litGeometries_.Size())
  606. ++numLightQueues;
  607. }
  608. lightQueues_.Resize(numLightQueues);
  609. maxLightsDrawables_.Clear();
  610. unsigned maxSortedInstances = renderer_->GetMaxSortedInstances();
  611. for (Vector<LightQueryResult>::Iterator i = lightQueryResults_.Begin(); i != lightQueryResults_.End(); ++i)
  612. {
  613. LightQueryResult& query = *i;
  614. // If light has no affected geometries, no need to process further
  615. if (query.litGeometries_.Empty())
  616. continue;
  617. Light* light = query.light_;
  618. // Per-pixel light
  619. if (!light->GetPerVertex())
  620. {
  621. unsigned shadowSplits = query.numSplits_;
  622. // Initialize light queue and store it to the light so that it can be found later
  623. LightBatchQueue& lightQueue = lightQueues_[usedLightQueues++];
  624. light->SetLightQueue(&lightQueue);
  625. lightQueue.light_ = light;
  626. lightQueue.shadowMap_ = 0;
  627. lightQueue.litBatches_.Clear(maxSortedInstances);
  628. lightQueue.volumeBatches_.Clear();
  629. // Allocate shadow map now
  630. if (shadowSplits > 0)
  631. {
  632. lightQueue.shadowMap_ = renderer_->GetShadowMap(light, camera_, viewSize_.x_, viewSize_.y_);
  633. // If did not manage to get a shadow map, convert the light to unshadowed
  634. if (!lightQueue.shadowMap_)
  635. shadowSplits = 0;
  636. }
  637. // Setup shadow batch queues
  638. lightQueue.shadowSplits_.Resize(shadowSplits);
  639. for (unsigned j = 0; j < shadowSplits; ++j)
  640. {
  641. ShadowBatchQueue& shadowQueue = lightQueue.shadowSplits_[j];
  642. Camera* shadowCamera = query.shadowCameras_[j];
  643. shadowQueue.shadowCamera_ = shadowCamera;
  644. shadowQueue.nearSplit_ = query.shadowNearSplits_[j];
  645. shadowQueue.farSplit_ = query.shadowFarSplits_[j];
  646. shadowQueue.shadowBatches_.Clear(maxSortedInstances);
  647. // Setup the shadow split viewport and finalize shadow camera parameters
  648. shadowQueue.shadowViewport_ = GetShadowMapViewport(light, j, lightQueue.shadowMap_);
  649. FinalizeShadowCamera(shadowCamera, light, shadowQueue.shadowViewport_, query.shadowCasterBox_[j]);
  650. // Loop through shadow casters
  651. for (PODVector<Drawable*>::ConstIterator k = query.shadowCasters_.Begin() + query.shadowCasterBegin_[j];
  652. k < query.shadowCasters_.Begin() + query.shadowCasterEnd_[j]; ++k)
  653. {
  654. Drawable* drawable = *k;
  655. if (!drawable->IsInView(frame_, false))
  656. {
  657. drawable->MarkInView(frame_, false);
  658. shadowGeometries_.Push(drawable);
  659. }
  660. Zone* zone = GetZone(drawable);
  661. const Vector<SourceBatch>& batches = drawable->GetBatches();
  662. for (unsigned l = 0; l < batches.Size(); ++l)
  663. {
  664. const SourceBatch& srcBatch = batches[l];
  665. Technique* tech = GetTechnique(drawable, srcBatch.material_);
  666. if (!srcBatch.geometry_ || !tech)
  667. continue;
  668. Pass* pass = tech->GetPass(PASS_SHADOW);
  669. // Skip if material has no shadow pass
  670. if (!pass)
  671. continue;
  672. Batch destBatch(srcBatch);
  673. destBatch.pass_ = pass;
  674. destBatch.camera_ = shadowCamera;
  675. destBatch.zone_ = zone;
  676. destBatch.lightQueue_ = &lightQueue;
  677. AddBatchToQueue(shadowQueue.shadowBatches_, destBatch, tech);
  678. }
  679. }
  680. }
  681. // Process lit geometries
  682. for (PODVector<Drawable*>::ConstIterator j = query.litGeometries_.Begin(); j != query.litGeometries_.End(); ++j)
  683. {
  684. Drawable* drawable = *j;
  685. drawable->AddLight(light);
  686. // If drawable limits maximum lights, only record the light, and check maximum count / build batches later
  687. if (!drawable->GetMaxLights())
  688. GetLitBatches(drawable, lightQueue);
  689. else
  690. maxLightsDrawables_.Insert(drawable);
  691. }
  692. // In deferred modes, store the light volume batch now
  693. if (renderMode_ != RENDER_FORWARD)
  694. {
  695. Batch volumeBatch;
  696. volumeBatch.geometry_ = renderer_->GetLightGeometry(light);
  697. volumeBatch.worldTransform_ = &light->GetVolumeTransform(camera_);
  698. volumeBatch.overrideView_ = light->GetLightType() == LIGHT_DIRECTIONAL;
  699. volumeBatch.camera_ = camera_;
  700. volumeBatch.lightQueue_ = &lightQueue;
  701. volumeBatch.distance_ = light->GetDistance();
  702. volumeBatch.material_ = 0;
  703. volumeBatch.pass_ = 0;
  704. volumeBatch.zone_ = 0;
  705. renderer_->SetLightVolumeBatchShaders(volumeBatch);
  706. lightQueue.volumeBatches_.Push(volumeBatch);
  707. }
  708. }
  709. // Per-vertex light
  710. else
  711. {
  712. // Add the vertex light to lit drawables. It will be processed later during base pass batch generation
  713. for (PODVector<Drawable*>::ConstIterator j = query.litGeometries_.Begin(); j != query.litGeometries_.End(); ++j)
  714. {
  715. Drawable* drawable = *j;
  716. drawable->AddVertexLight(light);
  717. }
  718. }
  719. }
  720. }
  721. // Process drawables with limited per-pixel light count
  722. if (maxLightsDrawables_.Size())
  723. {
  724. PROFILE(GetMaxLightsBatches);
  725. for (HashSet<Drawable*>::Iterator i = maxLightsDrawables_.Begin(); i != maxLightsDrawables_.End(); ++i)
  726. {
  727. Drawable* drawable = *i;
  728. drawable->LimitLights();
  729. const PODVector<Light*>& lights = drawable->GetLights();
  730. for (unsigned i = 0; i < lights.Size(); ++i)
  731. {
  732. Light* light = lights[i];
  733. // Find the correct light queue again
  734. LightBatchQueue* queue = light->GetLightQueue();
  735. if (queue)
  736. GetLitBatches(drawable, *queue);
  737. }
  738. }
  739. }
  740. // Build base pass batches
  741. {
  742. PROFILE(GetBaseBatches);
  743. hasZeroLightMask_ = false;
  744. for (PODVector<Drawable*>::ConstIterator i = geometries_.Begin(); i != geometries_.End(); ++i)
  745. {
  746. Drawable* drawable = *i;
  747. Zone* zone = GetZone(drawable);
  748. const Vector<SourceBatch>& batches = drawable->GetBatches();
  749. const PODVector<Light*>& drawableVertexLights = drawable->GetVertexLights();
  750. if (!drawableVertexLights.Empty())
  751. drawable->LimitVertexLights();
  752. for (unsigned j = 0; j < batches.Size(); ++j)
  753. {
  754. const SourceBatch& srcBatch = batches[j];
  755. // Check here if the material refers to a rendertarget texture with camera(s) attached
  756. // Only check this for the main view (null rendertarget)
  757. if (srcBatch.material_ && srcBatch.material_->GetAuxViewFrameNumber() != frame_.frameNumber_ && !renderTarget_)
  758. CheckMaterialForAuxView(srcBatch.material_);
  759. // If already has a lit base pass, skip (forward rendering only)
  760. if (j < 32 && drawable->HasBasePass(j))
  761. continue;
  762. Technique* tech = GetTechnique(drawable, srcBatch.material_);
  763. if (!srcBatch.geometry_ || !tech)
  764. continue;
  765. Batch destBatch(srcBatch);
  766. destBatch.camera_ = camera_;
  767. destBatch.zone_ = zone;
  768. destBatch.isBase_ = true;
  769. destBatch.pass_ = 0;
  770. destBatch.lightMask_ = GetLightMask(drawable);
  771. // In deferred modes check for G-buffer and material passes first
  772. if (renderMode_ == RENDER_PREPASS)
  773. {
  774. destBatch.pass_ = tech->GetPass(PASS_PREPASS);
  775. if (destBatch.pass_)
  776. {
  777. // If the opaque object has a zero lightmask, have to skip light buffer optimization
  778. if (!hasZeroLightMask_ && (!(GetLightMask(drawable) & 0xff)))
  779. hasZeroLightMask_ = true;
  780. // Allow G-buffer pass instancing only if lightmask matches zone lightmask
  781. AddBatchToQueue(gbufferQueue_, destBatch, tech, destBatch.lightMask_ == (zone->GetLightMask() & 0xff));
  782. destBatch.pass_ = tech->GetPass(PASS_MATERIAL);
  783. }
  784. }
  785. if (renderMode_ == RENDER_DEFERRED)
  786. destBatch.pass_ = tech->GetPass(PASS_DEFERRED);
  787. // Next check for forward unlit base pass
  788. if (!destBatch.pass_)
  789. destBatch.pass_ = tech->GetPass(PASS_BASE);
  790. if (destBatch.pass_)
  791. {
  792. // Check for vertex lights (both forward unlit, light pre-pass material pass, and deferred G-buffer)
  793. if (!drawableVertexLights.Empty())
  794. {
  795. // For a deferred opaque batch, check if the vertex lights include converted per-pixel lights, and remove
  796. // them to prevent double-lighting
  797. if (renderMode_ != RENDER_FORWARD && destBatch.pass_->GetBlendMode() == BLEND_REPLACE)
  798. {
  799. vertexLights.Clear();
  800. for (unsigned i = 0; i < drawableVertexLights.Size(); ++i)
  801. {
  802. if (drawableVertexLights[i]->GetPerVertex())
  803. vertexLights.Push(drawableVertexLights[i]);
  804. }
  805. }
  806. else
  807. vertexLights = drawableVertexLights;
  808. if (!vertexLights.Empty())
  809. {
  810. // Find a vertex light queue. If not found, create new
  811. unsigned long long hash = GetVertexLightQueueHash(vertexLights);
  812. HashMap<unsigned long long, LightBatchQueue>::Iterator i = vertexLightQueues_.Find(hash);
  813. if (i == vertexLightQueues_.End())
  814. {
  815. i = vertexLightQueues_.Insert(MakePair(hash, LightBatchQueue()));
  816. i->second_.light_ = 0;
  817. i->second_.shadowMap_ = 0;
  818. i->second_.vertexLights_ = vertexLights;
  819. }
  820. destBatch.lightQueue_ = &(i->second_);
  821. }
  822. }
  823. // Check whether batch is opaque or transparent
  824. if (destBatch.pass_->GetBlendMode() == BLEND_REPLACE)
  825. {
  826. if (destBatch.pass_->GetType() != PASS_DEFERRED)
  827. AddBatchToQueue(baseQueue_, destBatch, tech);
  828. else
  829. {
  830. // Allow G-buffer pass instancing only if lightmask matches zone lightmask
  831. AddBatchToQueue(gbufferQueue_, destBatch, tech, destBatch.lightMask_ == (destBatch.zone_->GetLightMask() & 0xff));
  832. }
  833. }
  834. else
  835. {
  836. // Transparent batches can not be instanced
  837. AddBatchToQueue(alphaQueue_, destBatch, tech, false);
  838. }
  839. continue;
  840. }
  841. // If no pass found so far, finally check for pre-alpha / post-alpha custom passes
  842. destBatch.pass_ = tech->GetPass(PASS_PREALPHA);
  843. if (destBatch.pass_)
  844. {
  845. AddBatchToQueue(preAlphaQueue_, destBatch, tech);
  846. continue;
  847. }
  848. destBatch.pass_ = tech->GetPass(PASS_POSTALPHA);
  849. if (destBatch.pass_)
  850. {
  851. // Post-alpha pass is treated similarly as alpha, and is not instanced
  852. AddBatchToQueue(postAlphaQueue_, destBatch, tech, false);
  853. continue;
  854. }
  855. }
  856. }
  857. }
  858. }
  859. void View::UpdateGeometries()
  860. {
  861. PROFILE(SortAndUpdateGeometry);
  862. WorkQueue* queue = GetSubsystem<WorkQueue>();
  863. // Sort batches
  864. {
  865. WorkItem item;
  866. item.workFunction_ = SortBatchQueueFrontToBackWork;
  867. item.start_ = &baseQueue_;
  868. queue->AddWorkItem(item);
  869. item.start_ = &preAlphaQueue_;
  870. queue->AddWorkItem(item);
  871. if (renderMode_ != RENDER_FORWARD)
  872. {
  873. item.start_ = &gbufferQueue_;
  874. queue->AddWorkItem(item);
  875. }
  876. item.workFunction_ = SortBatchQueueBackToFrontWork;
  877. item.start_ = &alphaQueue_;
  878. queue->AddWorkItem(item);
  879. item.start_ = &postAlphaQueue_;
  880. queue->AddWorkItem(item);
  881. for (Vector<LightBatchQueue>::Iterator i = lightQueues_.Begin(); i != lightQueues_.End(); ++i)
  882. {
  883. item.workFunction_ = SortLightQueueWork;
  884. item.start_ = &(*i);
  885. queue->AddWorkItem(item);
  886. if (i->shadowSplits_.Size())
  887. {
  888. item.workFunction_ = SortShadowQueueWork;
  889. queue->AddWorkItem(item);
  890. }
  891. }
  892. }
  893. // Update geometries. Split into threaded and non-threaded updates.
  894. {
  895. nonThreadedGeometries_.Clear();
  896. threadedGeometries_.Clear();
  897. for (PODVector<Drawable*>::Iterator i = geometries_.Begin(); i != geometries_.End(); ++i)
  898. {
  899. UpdateGeometryType type = (*i)->GetUpdateGeometryType();
  900. if (type == UPDATE_MAIN_THREAD)
  901. nonThreadedGeometries_.Push(*i);
  902. else if (type == UPDATE_WORKER_THREAD)
  903. threadedGeometries_.Push(*i);
  904. }
  905. for (PODVector<Drawable*>::Iterator i = shadowGeometries_.Begin(); i != shadowGeometries_.End(); ++i)
  906. {
  907. UpdateGeometryType type = (*i)->GetUpdateGeometryType();
  908. if (type == UPDATE_MAIN_THREAD)
  909. nonThreadedGeometries_.Push(*i);
  910. else if (type == UPDATE_WORKER_THREAD)
  911. threadedGeometries_.Push(*i);
  912. }
  913. if (threadedGeometries_.Size())
  914. {
  915. WorkItem item;
  916. item.workFunction_ = UpdateDrawableGeometriesWork;
  917. item.aux_ = const_cast<FrameInfo*>(&frame_);
  918. PODVector<Drawable*>::Iterator start = threadedGeometries_.Begin();
  919. while (start != threadedGeometries_.End())
  920. {
  921. PODVector<Drawable*>::Iterator end = threadedGeometries_.End();
  922. if (end - start > DRAWABLES_PER_WORK_ITEM)
  923. end = start + DRAWABLES_PER_WORK_ITEM;
  924. item.start_ = &(*start);
  925. item.end_ = &(*end);
  926. queue->AddWorkItem(item);
  927. start = end;
  928. }
  929. }
  930. // While the work queue is processed, update non-threaded geometries
  931. for (PODVector<Drawable*>::ConstIterator i = nonThreadedGeometries_.Begin(); i != nonThreadedGeometries_.End(); ++i)
  932. (*i)->UpdateGeometry(frame_);
  933. }
  934. // Finally ensure all threaded work has completed
  935. queue->Complete();
  936. }
  937. void View::GetLitBatches(Drawable* drawable, LightBatchQueue& lightQueue)
  938. {
  939. Light* light = lightQueue.light_;
  940. Zone* zone = GetZone(drawable);
  941. const Vector<SourceBatch>& batches = drawable->GetBatches();
  942. bool hasAmbientGradient = zone->GetAmbientGradient() && zone->GetAmbientStartColor() != zone->GetAmbientEndColor();
  943. // Shadows on transparencies can only be rendered if shadow maps are not reused
  944. bool allowTransparentShadows = !renderer_->GetReuseShadowMaps();
  945. bool allowLitBase = light == drawable->GetFirstLight() && drawable->GetVertexLights().Empty() && !hasAmbientGradient;
  946. for (unsigned i = 0; i < batches.Size(); ++i)
  947. {
  948. const SourceBatch& srcBatch = batches[i];
  949. Technique* tech = GetTechnique(drawable, srcBatch.material_);
  950. if (!srcBatch.geometry_ || !tech)
  951. continue;
  952. // Do not create pixel lit forward passes for materials that render into the G-buffer
  953. if ((renderMode_ == RENDER_PREPASS && tech->HasPass(PASS_PREPASS)) || (renderMode_ == RENDER_DEFERRED &&
  954. tech->HasPass(PASS_DEFERRED)))
  955. continue;
  956. Batch destBatch(srcBatch);
  957. // Check for lit base pass. Because it uses the replace blend mode, it must be ensured to be the first light
  958. // Also vertex lighting or ambient gradient require the non-lit base pass, so skip in those cases
  959. if (i < 32 && allowLitBase)
  960. {
  961. destBatch.pass_ = tech->GetPass(PASS_LITBASE);
  962. if (destBatch.pass_)
  963. {
  964. destBatch.isBase_ = true;
  965. drawable->SetBasePass(i);
  966. }
  967. else
  968. destBatch.pass_ = tech->GetPass(PASS_LIGHT);
  969. }
  970. else
  971. destBatch.pass_ = tech->GetPass(PASS_LIGHT);
  972. // Skip if material does not receive light at all
  973. if (!destBatch.pass_)
  974. continue;
  975. destBatch.camera_ = camera_;
  976. destBatch.lightQueue_ = &lightQueue;
  977. destBatch.zone_ = zone;
  978. // Check from the ambient pass whether the object is opaque or transparent
  979. Pass* ambientPass = tech->GetPass(PASS_BASE);
  980. if (!ambientPass || ambientPass->GetBlendMode() == BLEND_REPLACE)
  981. AddBatchToQueue(lightQueue.litBatches_, destBatch, tech);
  982. else
  983. {
  984. // Transparent batches can not be instanced
  985. AddBatchToQueue(alphaQueue_, destBatch, tech, false, allowTransparentShadows);
  986. }
  987. }
  988. }
  989. void View::RenderBatchesForward()
  990. {
  991. // If using hardware multisampling with post-processing, render to the backbuffer first and then resolve
  992. bool resolve = screenBuffers_.Size() && !renderTarget_ && graphics_->GetMultiSample() > 1;
  993. RenderSurface* renderTarget = (screenBuffers_.Size() && !resolve) ? screenBuffers_[0]->GetRenderSurface() : renderTarget_;
  994. RenderSurface* depthStencil = GetDepthStencil(renderTarget);
  995. // If not reusing shadowmaps, render all of them first
  996. if (!renderer_->GetReuseShadowMaps() && renderer_->GetDrawShadows() && !lightQueues_.Empty())
  997. {
  998. PROFILE(RenderShadowMaps);
  999. for (Vector<LightBatchQueue>::Iterator i = lightQueues_.Begin(); i != lightQueues_.End(); ++i)
  1000. {
  1001. if (i->shadowMap_)
  1002. RenderShadowMap(*i);
  1003. }
  1004. }
  1005. graphics_->SetRenderTarget(0, renderTarget);
  1006. graphics_->SetDepthStencil(depthStencil);
  1007. graphics_->SetViewport(viewRect_);
  1008. #ifndef GL_ES_VERSION_2_0
  1009. graphics_->Clear(CLEAR_DEPTH | CLEAR_STENCIL);
  1010. #else
  1011. graphics_->Clear(CLEAR_COLOR | CLEAR_DEPTH, farClipZone_->GetFogColor());
  1012. #endif
  1013. // Render opaque object unlit base pass
  1014. if (!baseQueue_.IsEmpty())
  1015. {
  1016. PROFILE(RenderBase);
  1017. baseQueue_.Draw(graphics_, renderer_);
  1018. }
  1019. // Render shadow maps + opaque objects' additive lighting
  1020. if (!lightQueues_.Empty())
  1021. {
  1022. PROFILE(RenderLights);
  1023. for (Vector<LightBatchQueue>::Iterator i = lightQueues_.Begin(); i != lightQueues_.End(); ++i)
  1024. {
  1025. // If reusing shadowmaps, render each of them before the lit batches
  1026. if (renderer_->GetReuseShadowMaps() && i->shadowMap_)
  1027. {
  1028. RenderShadowMap(*i);
  1029. graphics_->SetRenderTarget(0, renderTarget);
  1030. graphics_->SetDepthStencil(depthStencil);
  1031. graphics_->SetViewport(viewRect_);
  1032. }
  1033. i->litBatches_.Draw(i->light_, graphics_, renderer_);
  1034. }
  1035. }
  1036. graphics_->SetScissorTest(false);
  1037. graphics_->SetStencilTest(false);
  1038. #ifndef GL_ES_VERSION_2_0
  1039. // At this point clear the parts of viewport not occupied by opaque geometry with fog color.
  1040. // On OpenGL ES an ordinary color clear has been performed beforehand instead
  1041. graphics_->SetBlendMode(BLEND_REPLACE);
  1042. graphics_->SetColorWrite(true);
  1043. graphics_->SetDepthTest(CMP_LESSEQUAL);
  1044. graphics_->SetDepthWrite(false);
  1045. graphics_->SetScissorTest(false);
  1046. graphics_->SetStencilTest(false);
  1047. graphics_->SetShaders(renderer_->GetVertexShader("Basic"), renderer_->GetPixelShader("Basic"));
  1048. graphics_->SetShaderParameter(PSP_MATDIFFCOLOR, farClipZone_->GetFogColor());
  1049. graphics_->ClearParameterSource(SP_MATERIAL);
  1050. DrawFullscreenQuad(camera_, false);
  1051. #endif
  1052. // Render pre-alpha custom pass
  1053. if (!preAlphaQueue_.IsEmpty())
  1054. {
  1055. PROFILE(RenderPreAlpha);
  1056. preAlphaQueue_.Draw(graphics_, renderer_);
  1057. }
  1058. // Render transparent objects (both base passes & additive lighting)
  1059. if (!alphaQueue_.IsEmpty())
  1060. {
  1061. PROFILE(RenderAlpha);
  1062. alphaQueue_.Draw(graphics_, renderer_, true);
  1063. }
  1064. // Render post-alpha custom pass
  1065. if (!postAlphaQueue_.IsEmpty())
  1066. {
  1067. PROFILE(RenderPostAlpha);
  1068. postAlphaQueue_.Draw(graphics_, renderer_);
  1069. }
  1070. // Resolve multisampled backbuffer now if necessary
  1071. if (resolve)
  1072. graphics_->ResolveToTexture(screenBuffers_[0], viewRect_);
  1073. }
  1074. void View::RenderBatchesDeferred()
  1075. {
  1076. // If not reusing shadowmaps, render all of them first
  1077. if (!renderer_->GetReuseShadowMaps() && renderer_->GetDrawShadows() && !lightQueues_.Empty())
  1078. {
  1079. PROFILE(RenderShadowMaps);
  1080. for (Vector<LightBatchQueue>::Iterator i = lightQueues_.Begin(); i != lightQueues_.End(); ++i)
  1081. {
  1082. if (i->shadowMap_)
  1083. RenderShadowMap(*i);
  1084. }
  1085. }
  1086. bool hwDepth = graphics_->GetHardwareDepthSupport();
  1087. // In light prepass mode the albedo buffer is used for light accumulation instead
  1088. Texture2D* albedoBuffer = renderer_->GetScreenBuffer(rtSize_.x_, rtSize_.y_, Graphics::GetRGBAFormat());
  1089. Texture2D* normalBuffer = renderer_->GetScreenBuffer(rtSize_.x_, rtSize_.y_, Graphics::GetRGBAFormat());
  1090. Texture2D* depthBuffer = renderer_->GetScreenBuffer(rtSize_.x_, rtSize_.y_, hwDepth ? Graphics::GetDepthStencilFormat() :
  1091. Graphics::GetLinearDepthFormat());
  1092. RenderSurface* renderTarget = screenBuffers_.Size() ? screenBuffers_[0]->GetRenderSurface() : renderTarget_;
  1093. RenderSurface* depthStencil = hwDepth ? depthBuffer->GetRenderSurface() : renderer_->GetDepthStencil(rtSize_.x_, rtSize_.y_);
  1094. if (renderMode_ == RENDER_PREPASS)
  1095. {
  1096. graphics_->SetRenderTarget(0, normalBuffer);
  1097. if (!hwDepth)
  1098. graphics_->SetRenderTarget(1, depthBuffer);
  1099. }
  1100. else
  1101. {
  1102. graphics_->SetRenderTarget(0, renderTarget);
  1103. graphics_->SetRenderTarget(1, albedoBuffer);
  1104. graphics_->SetRenderTarget(2, normalBuffer);
  1105. if (!hwDepth)
  1106. graphics_->SetRenderTarget(3, depthBuffer);
  1107. }
  1108. graphics_->SetDepthStencil(depthStencil);
  1109. graphics_->SetViewport(viewRect_);
  1110. graphics_->Clear(CLEAR_DEPTH | CLEAR_STENCIL);
  1111. // Render G-buffer batches
  1112. if (!gbufferQueue_.IsEmpty())
  1113. {
  1114. PROFILE(RenderGBuffer);
  1115. gbufferQueue_.Draw(graphics_, renderer_, false, true);
  1116. }
  1117. // Clear the light accumulation buffer (light pre-pass only.) However, skip the clear if the first light is a directional
  1118. // light with full mask
  1119. RenderSurface* lightRenderTarget = renderMode_ == RENDER_PREPASS ? albedoBuffer->GetRenderSurface() : renderTarget;
  1120. if (renderMode_ == RENDER_PREPASS)
  1121. {
  1122. bool optimizeLightBuffer = !hasZeroLightMask_ && !lightQueues_.Empty() && lightQueues_.Front().light_->GetLightType() ==
  1123. LIGHT_DIRECTIONAL && (lightQueues_.Front().light_->GetLightMask() & 0xff) == 0xff;
  1124. graphics_->SetRenderTarget(0, lightRenderTarget);
  1125. graphics_->ResetRenderTarget(1);
  1126. graphics_->SetDepthStencil(depthStencil);
  1127. graphics_->SetViewport(viewRect_);
  1128. if (!optimizeLightBuffer)
  1129. graphics_->Clear(CLEAR_COLOR);
  1130. }
  1131. else
  1132. {
  1133. graphics_->ResetRenderTarget(1);
  1134. graphics_->ResetRenderTarget(2);
  1135. graphics_->ResetRenderTarget(3);
  1136. }
  1137. // Render shadow maps + light volumes
  1138. if (!lightQueues_.Empty())
  1139. {
  1140. PROFILE(RenderLights);
  1141. for (Vector<LightBatchQueue>::Iterator i = lightQueues_.Begin(); i != lightQueues_.End(); ++i)
  1142. {
  1143. // If reusing shadowmaps, render each of them before the lit batches
  1144. if (renderer_->GetReuseShadowMaps() && i->shadowMap_)
  1145. {
  1146. RenderShadowMap(*i);
  1147. graphics_->SetRenderTarget(0, lightRenderTarget);
  1148. graphics_->SetDepthStencil(depthStencil);
  1149. graphics_->SetViewport(viewRect_);
  1150. }
  1151. if (renderMode_ == RENDER_DEFERRED)
  1152. graphics_->SetTexture(TU_ALBEDOBUFFER, albedoBuffer);
  1153. graphics_->SetTexture(TU_NORMALBUFFER, normalBuffer);
  1154. graphics_->SetTexture(TU_DEPTHBUFFER, depthBuffer);
  1155. for (unsigned j = 0; j < i->volumeBatches_.Size(); ++j)
  1156. {
  1157. SetupLightVolumeBatch(i->volumeBatches_[j]);
  1158. i->volumeBatches_[j].Draw(graphics_, renderer_);
  1159. }
  1160. }
  1161. }
  1162. graphics_->SetTexture(TU_ALBEDOBUFFER, 0);
  1163. graphics_->SetTexture(TU_NORMALBUFFER, 0);
  1164. graphics_->SetTexture(TU_DEPTHBUFFER, 0);
  1165. if (renderMode_ == RENDER_PREPASS)
  1166. {
  1167. graphics_->SetRenderTarget(0, renderTarget);
  1168. graphics_->SetDepthStencil(depthStencil);
  1169. graphics_->SetViewport(viewRect_);
  1170. }
  1171. // At this point clear the parts of viewport not occupied by opaque geometry with fog color
  1172. graphics_->SetBlendMode(BLEND_REPLACE);
  1173. graphics_->SetColorWrite(true);
  1174. graphics_->SetDepthTest(CMP_ALWAYS);
  1175. graphics_->SetDepthWrite(false);
  1176. graphics_->SetScissorTest(false);
  1177. graphics_->SetStencilTest(true, CMP_EQUAL, OP_KEEP, OP_KEEP, OP_KEEP, 0);
  1178. graphics_->SetShaders(renderer_->GetVertexShader("Basic"), renderer_->GetPixelShader("Basic"));
  1179. graphics_->SetShaderParameter(PSP_MATDIFFCOLOR, farClipZone_->GetFogColor());
  1180. graphics_->ClearParameterSource(SP_MATERIAL);
  1181. DrawFullscreenQuad(camera_, false);
  1182. // Render opaque objects with deferred lighting result (light pre-pass only)
  1183. if (!baseQueue_.IsEmpty())
  1184. {
  1185. PROFILE(RenderBase);
  1186. graphics_->SetTexture(TU_LIGHTBUFFER, renderMode_ == RENDER_PREPASS ? albedoBuffer : 0);
  1187. baseQueue_.Draw(graphics_, renderer_);
  1188. graphics_->SetTexture(TU_LIGHTBUFFER, 0);
  1189. }
  1190. // Render pre-alpha custom pass
  1191. if (!preAlphaQueue_.IsEmpty())
  1192. {
  1193. PROFILE(RenderPreAlpha);
  1194. preAlphaQueue_.Draw(graphics_, renderer_);
  1195. }
  1196. // Render transparent objects (both base passes & additive lighting)
  1197. if (!alphaQueue_.IsEmpty())
  1198. {
  1199. PROFILE(RenderAlpha);
  1200. alphaQueue_.Draw(graphics_, renderer_, true);
  1201. }
  1202. // Render post-alpha custom pass
  1203. if (!postAlphaQueue_.IsEmpty())
  1204. {
  1205. PROFILE(RenderPostAlpha);
  1206. postAlphaQueue_.Draw(graphics_, renderer_);
  1207. }
  1208. }
  1209. void View::AllocateScreenBuffers()
  1210. {
  1211. unsigned neededBuffers = 0;
  1212. #ifdef USE_OPENGL
  1213. // Due to FBO limitations, in OpenGL deferred modes need to render to texture first and then blit to the backbuffer
  1214. // Also, if rendering to a texture with deferred rendering, it must be RGBA to comply with the rest of the buffers.
  1215. if (renderMode_ != RENDER_FORWARD && (!renderTarget_ || (renderMode_ == RENDER_DEFERRED &&
  1216. renderTarget_->GetParentTexture()->GetFormat() != Graphics::GetRGBAFormat())))
  1217. neededBuffers = 1;
  1218. #endif
  1219. unsigned postProcessPasses = 0;
  1220. for (unsigned i = 0; i < postProcesses_.Size(); ++i)
  1221. postProcessPasses += postProcesses_[i]->GetNumPasses();
  1222. // If more than one post-process pass, need 2 buffers for ping-pong rendering
  1223. if (postProcessPasses)
  1224. neededBuffers = Min((int)postProcessPasses, 2);
  1225. unsigned format = Graphics::GetRGBFormat();
  1226. #ifdef USE_OPENGL
  1227. if (renderMode_ == RENDER_DEFERRED)
  1228. format = Graphics::GetRGBAFormat();
  1229. #endif
  1230. // Allocate screen buffers with filtering active in case the post-processing effects need that
  1231. for (unsigned i = 0; i < neededBuffers; ++i)
  1232. screenBuffers_.Push(renderer_->GetScreenBuffer(rtSize_.x_, rtSize_.y_, format, true));
  1233. }
  1234. void View::BlitFramebuffer()
  1235. {
  1236. // Blit the final image to destination rendertarget
  1237. /// \todo Depth is reset to far plane, so geometry drawn after the view can not be depth tested
  1238. graphics_->SetBlendMode(BLEND_REPLACE);
  1239. graphics_->SetDepthTest(CMP_ALWAYS);
  1240. graphics_->SetDepthWrite(true);
  1241. graphics_->SetScissorTest(false);
  1242. graphics_->SetStencilTest(false);
  1243. graphics_->SetRenderTarget(0, renderTarget_);
  1244. graphics_->SetDepthStencil(GetDepthStencil(renderTarget_));
  1245. graphics_->SetViewport(viewRect_);
  1246. String shaderName = "CopyFramebuffer";
  1247. graphics_->SetShaders(renderer_->GetVertexShader(shaderName), renderer_->GetPixelShader(shaderName));
  1248. float rtWidth = (float)rtSize_.x_;
  1249. float rtHeight = (float)rtSize_.y_;
  1250. float widthRange = 0.5f * viewSize_.x_ / rtWidth;
  1251. float heightRange = 0.5f * viewSize_.y_ / rtHeight;
  1252. #ifdef USE_OPENGL
  1253. Vector4 bufferUVOffset(((float)viewRect_.left_) / rtWidth + widthRange,
  1254. 1.0f - (((float)viewRect_.top_) / rtHeight + heightRange), widthRange, heightRange);
  1255. #else
  1256. Vector4 bufferUVOffset((0.5f + (float)viewRect_.left_) / rtWidth + widthRange,
  1257. (0.5f + (float)viewRect_.top_) / rtHeight + heightRange, widthRange, heightRange);
  1258. #endif
  1259. graphics_->SetShaderParameter(VSP_GBUFFEROFFSETS, bufferUVOffset);
  1260. graphics_->SetTexture(TU_DIFFUSE, screenBuffers_[0]);
  1261. DrawFullscreenQuad(camera_, false);
  1262. }
  1263. void View::RunPostProcesses()
  1264. {
  1265. ResourceCache* cache = GetSubsystem<ResourceCache>();
  1266. // Ping-pong buffer indices for read and write
  1267. unsigned readRtIndex = 0;
  1268. unsigned writeRtIndex = screenBuffers_.Size() - 1;
  1269. graphics_->SetBlendMode(BLEND_REPLACE);
  1270. graphics_->SetDepthTest(CMP_ALWAYS);
  1271. graphics_->SetScissorTest(false);
  1272. graphics_->SetStencilTest(false);
  1273. for (unsigned i = 0; i < postProcesses_.Size(); ++i)
  1274. {
  1275. PostProcess* effect = postProcesses_[i];
  1276. // For each effect, rendertargets can be re-used. Allocate them now
  1277. renderer_->SaveScreenBufferAllocations();
  1278. const HashMap<StringHash, PostProcessRenderTarget>& renderTargetInfos = effect->GetRenderTargets();
  1279. HashMap<StringHash, Texture2D*> renderTargets;
  1280. for (HashMap<StringHash, PostProcessRenderTarget>::ConstIterator j = renderTargetInfos.Begin(); j !=
  1281. renderTargetInfos.End(); ++j)
  1282. {
  1283. unsigned width = j->second_.size_.x_;
  1284. unsigned height = j->second_.size_.y_;
  1285. if (j->second_.sizeDivisor_)
  1286. {
  1287. width = viewSize_.x_ / width;
  1288. height = viewSize_.y_ / height;
  1289. }
  1290. renderTargets[j->first_] = renderer_->GetScreenBuffer(width, height, j->second_.format_, j->second_.filtered_);
  1291. }
  1292. // Run each effect pass
  1293. for (unsigned j = 0; j < effect->GetNumPasses(); ++j)
  1294. {
  1295. PostProcessPass* pass = effect->GetPass(j);
  1296. bool lastPass = (i == postProcesses_.Size() - 1) && (j == effect->GetNumPasses() - 1);
  1297. bool swapBuffers = false;
  1298. // Write depth on the last pass only
  1299. graphics_->SetDepthWrite(lastPass);
  1300. // Set output rendertarget
  1301. RenderSurface* rt = 0;
  1302. String output = pass->GetOutput().ToLower();
  1303. if (output == "viewport")
  1304. {
  1305. if (!lastPass)
  1306. {
  1307. rt = screenBuffers_[writeRtIndex]->GetRenderSurface();
  1308. swapBuffers = true;
  1309. }
  1310. else
  1311. rt = renderTarget_;
  1312. graphics_->SetRenderTarget(0, rt);
  1313. graphics_->SetDepthStencil(GetDepthStencil(rt));
  1314. graphics_->SetViewport(viewRect_);
  1315. }
  1316. else
  1317. {
  1318. HashMap<StringHash, Texture2D*>::ConstIterator k = renderTargets.Find(StringHash(output));
  1319. if (k != renderTargets.End())
  1320. rt = k->second_->GetRenderSurface();
  1321. else
  1322. continue; // Skip pass if rendertarget can not be found
  1323. graphics_->SetRenderTarget(0, rt);
  1324. graphics_->SetDepthStencil(GetDepthStencil(rt));
  1325. graphics_->SetViewport(IntRect(0, 0, rt->GetWidth(), rt->GetHeight()));
  1326. }
  1327. // Set shaders, shader parameters and textures
  1328. graphics_->SetShaders(renderer_->GetVertexShader(pass->GetVertexShader()),
  1329. renderer_->GetPixelShader(pass->GetPixelShader()));
  1330. const HashMap<StringHash, Vector4>& globalParameters = effect->GetShaderParameters();
  1331. for (HashMap<StringHash, Vector4>::ConstIterator k = globalParameters.Begin(); k != globalParameters.End(); ++k)
  1332. graphics_->SetShaderParameter(k->first_, k->second_);
  1333. const HashMap<StringHash, Vector4>& parameters = pass->GetShaderParameters();
  1334. for (HashMap<StringHash, Vector4>::ConstIterator k = parameters.Begin(); k != parameters.End(); ++k)
  1335. graphics_->SetShaderParameter(k->first_, k->second_);
  1336. float rtWidth = (float)rtSize_.x_;
  1337. float rtHeight = (float)rtSize_.y_;
  1338. float widthRange = 0.5f * viewSize_.x_ / rtWidth;
  1339. float heightRange = 0.5f * viewSize_.y_ / rtHeight;
  1340. #ifdef USE_OPENGL
  1341. Vector4 bufferUVOffset(((float)viewRect_.left_) / rtWidth + widthRange,
  1342. 1.0f - (((float)viewRect_.top_) / rtHeight + heightRange), widthRange, heightRange);
  1343. #else
  1344. Vector4 bufferUVOffset((0.5f + (float)viewRect_.left_) / rtWidth + widthRange,
  1345. (0.5f + (float)viewRect_.top_) / rtHeight + heightRange, widthRange, heightRange);
  1346. #endif
  1347. graphics_->SetShaderParameter(VSP_GBUFFEROFFSETS, bufferUVOffset);
  1348. graphics_->SetShaderParameter(PSP_GBUFFERINVSIZE, Vector4(1.0f / rtWidth, 1.0f / rtHeight, 0.0f, 0.0f));
  1349. // Set per-rendertarget inverse size / offset shader parameters as necessary
  1350. for (HashMap<StringHash, PostProcessRenderTarget>::ConstIterator k = renderTargetInfos.Begin(); k !=
  1351. renderTargetInfos.End(); ++k)
  1352. {
  1353. String invSizeName = k->second_.name_ + "InvSize";
  1354. String offsetsName = k->second_.name_ + "Offsets";
  1355. float width = (float)renderTargets[k->first_]->GetWidth();
  1356. float height = (float)renderTargets[k->first_]->GetHeight();
  1357. graphics_->SetShaderParameter(StringHash(invSizeName), Vector4(1.0f / width, 1.0f / height, 0.0f, 0.0f));
  1358. #ifdef USE_OPENGL
  1359. graphics_->SetShaderParameter(StringHash(offsetsName), Vector4::ZERO);
  1360. #else
  1361. graphics_->SetShaderParameter(StringHash(offsetsName), Vector4(0.5f / width, 0.5f / height, 0.0f, 0.0f));
  1362. #endif
  1363. }
  1364. const String* textureNames = pass->GetTextures();
  1365. for (unsigned k = 0; k < MAX_MATERIAL_TEXTURE_UNITS; ++k)
  1366. {
  1367. if (!textureNames[k].Empty())
  1368. {
  1369. // Texture may either refer to a rendertarget or to a texture resource
  1370. if (!textureNames[k].Compare("viewport", false))
  1371. graphics_->SetTexture(k, screenBuffers_[readRtIndex]);
  1372. else
  1373. {
  1374. HashMap<StringHash, Texture2D*>::ConstIterator l = renderTargets.Find(StringHash(textureNames[k]));
  1375. if (l != renderTargets.End())
  1376. graphics_->SetTexture(k, l->second_);
  1377. else
  1378. {
  1379. // If requesting a texture fails, clear the texture name to prevent redundant attempts
  1380. Texture2D* texture = cache->GetResource<Texture2D>(textureNames[k]);
  1381. if (texture)
  1382. graphics_->SetTexture(k, texture);
  1383. else
  1384. pass->SetTexture((TextureUnit)k, String());
  1385. }
  1386. }
  1387. }
  1388. }
  1389. DrawFullscreenQuad(camera_, false);
  1390. // Swap the ping-pong buffer sides now if necessary
  1391. if (swapBuffers)
  1392. Swap(readRtIndex, writeRtIndex);
  1393. }
  1394. // Forget the rendertargets allocated during this effect
  1395. renderer_->RestoreScreenBufferAllocations();
  1396. }
  1397. }
  1398. void View::UpdateOccluders(PODVector<Drawable*>& occluders, Camera* camera)
  1399. {
  1400. float occluderSizeThreshold_ = renderer_->GetOccluderSizeThreshold();
  1401. float halfViewSize = camera->GetHalfViewSize();
  1402. float invOrthoSize = 1.0f / camera->GetOrthoSize();
  1403. Vector3 cameraPos = camera->GetNode()->GetWorldPosition();
  1404. for (PODVector<Drawable*>::Iterator i = occluders.Begin(); i != occluders.End();)
  1405. {
  1406. Drawable* occluder = *i;
  1407. bool erase = false;
  1408. if (!occluder->IsInView(frame_, false))
  1409. occluder->UpdateBatches(frame_);
  1410. // Check occluder's draw distance (in main camera view)
  1411. float maxDistance = occluder->GetDrawDistance();
  1412. if (maxDistance <= 0.0f || occluder->GetDistance() <= maxDistance)
  1413. {
  1414. // Check that occluder is big enough on the screen
  1415. const BoundingBox& box = occluder->GetWorldBoundingBox();
  1416. float diagonal = box.Size().Length();
  1417. float compare;
  1418. if (!camera->IsOrthographic())
  1419. compare = diagonal * halfViewSize / occluder->GetDistance();
  1420. else
  1421. compare = diagonal * invOrthoSize;
  1422. if (compare < occluderSizeThreshold_)
  1423. erase = true;
  1424. else
  1425. {
  1426. // Store amount of triangles divided by screen size as a sorting key
  1427. // (best occluders are big and have few triangles)
  1428. occluder->SetSortValue((float)occluder->GetNumOccluderTriangles() / compare);
  1429. }
  1430. }
  1431. else
  1432. erase = true;
  1433. if (erase)
  1434. i = occluders.Erase(i);
  1435. else
  1436. ++i;
  1437. }
  1438. // Sort occluders so that if triangle budget is exceeded, best occluders have been drawn
  1439. if (occluders.Size())
  1440. Sort(occluders.Begin(), occluders.End(), CompareDrawables);
  1441. }
  1442. void View::DrawOccluders(OcclusionBuffer* buffer, const PODVector<Drawable*>& occluders)
  1443. {
  1444. buffer->SetMaxTriangles(maxOccluderTriangles_);
  1445. buffer->Clear();
  1446. for (unsigned i = 0; i < occluders.Size(); ++i)
  1447. {
  1448. Drawable* occluder = occluders[i];
  1449. if (i > 0)
  1450. {
  1451. // For subsequent occluders, do a test against the pixel-level occlusion buffer to see if rendering is necessary
  1452. if (!buffer->IsVisible(occluder->GetWorldBoundingBox()))
  1453. continue;
  1454. }
  1455. // Check for running out of triangles
  1456. if (!occluder->DrawOcclusion(buffer))
  1457. break;
  1458. }
  1459. buffer->BuildDepthHierarchy();
  1460. }
  1461. void View::ProcessLight(LightQueryResult& query, unsigned threadIndex)
  1462. {
  1463. Light* light = query.light_;
  1464. LightType type = light->GetLightType();
  1465. const Frustum& frustum = camera_->GetFrustum();
  1466. // Check if light should be shadowed
  1467. bool isShadowed = drawShadows_ && light->GetCastShadows() && !light->GetPerVertex() && light->GetShadowIntensity() < 1.0f;
  1468. // If shadow distance non-zero, check it
  1469. if (isShadowed && light->GetShadowDistance() > 0.0f && light->GetDistance() > light->GetShadowDistance())
  1470. isShadowed = false;
  1471. // OpenGL ES can not support point light shadows
  1472. #ifdef GL_ES_VERSION_2_0
  1473. if (isShadowed && type == LIGHT_POINT)
  1474. isShadowed = false;
  1475. #endif
  1476. // Get lit geometries. They must match the light mask and be inside the main camera frustum to be considered
  1477. PODVector<Drawable*>& tempDrawables = tempDrawables_[threadIndex];
  1478. query.litGeometries_.Clear();
  1479. switch (type)
  1480. {
  1481. case LIGHT_DIRECTIONAL:
  1482. for (unsigned i = 0; i < geometries_.Size(); ++i)
  1483. {
  1484. if (GetLightMask(geometries_[i]) & light->GetLightMask())
  1485. query.litGeometries_.Push(geometries_[i]);
  1486. }
  1487. break;
  1488. case LIGHT_SPOT:
  1489. {
  1490. FrustumOctreeQuery octreeQuery(tempDrawables, light->GetFrustum(), DRAWABLE_GEOMETRY, camera_->GetViewMask());
  1491. octree_->GetDrawables(octreeQuery);
  1492. for (unsigned i = 0; i < tempDrawables.Size(); ++i)
  1493. {
  1494. if (tempDrawables[i]->IsInView(frame_) && (GetLightMask(tempDrawables[i]) & light->GetLightMask()))
  1495. query.litGeometries_.Push(tempDrawables[i]);
  1496. }
  1497. }
  1498. break;
  1499. case LIGHT_POINT:
  1500. {
  1501. SphereOctreeQuery octreeQuery(tempDrawables, Sphere(light->GetNode()->GetWorldPosition(), light->GetRange()),
  1502. DRAWABLE_GEOMETRY, camera_->GetViewMask());
  1503. octree_->GetDrawables(octreeQuery);
  1504. for (unsigned i = 0; i < tempDrawables.Size(); ++i)
  1505. {
  1506. if (tempDrawables[i]->IsInView(frame_) && (GetLightMask(tempDrawables[i]) & light->GetLightMask()))
  1507. query.litGeometries_.Push(tempDrawables[i]);
  1508. }
  1509. }
  1510. break;
  1511. }
  1512. // If no lit geometries or not shadowed, no need to process shadow cameras
  1513. if (query.litGeometries_.Empty() || !isShadowed)
  1514. {
  1515. query.numSplits_ = 0;
  1516. return;
  1517. }
  1518. // Determine number of shadow cameras and setup their initial positions
  1519. SetupShadowCameras(query);
  1520. // Process each split for shadow casters
  1521. query.shadowCasters_.Clear();
  1522. for (unsigned i = 0; i < query.numSplits_; ++i)
  1523. {
  1524. Camera* shadowCamera = query.shadowCameras_[i];
  1525. const Frustum& shadowCameraFrustum = shadowCamera->GetFrustum();
  1526. query.shadowCasterBegin_[i] = query.shadowCasterEnd_[i] = query.shadowCasters_.Size();
  1527. // For point light check that the face is visible: if not, can skip the split
  1528. if (type == LIGHT_POINT && frustum.IsInsideFast(BoundingBox(shadowCameraFrustum)) == OUTSIDE)
  1529. continue;
  1530. // For directional light check that the split is inside the visible scene: if not, can skip the split
  1531. if (type == LIGHT_DIRECTIONAL)
  1532. {
  1533. if (minZ_ > query.shadowFarSplits_[i])
  1534. continue;
  1535. if (maxZ_ < query.shadowNearSplits_[i])
  1536. continue;
  1537. }
  1538. // Reuse lit geometry query for all except directional lights
  1539. if (type == LIGHT_DIRECTIONAL)
  1540. {
  1541. ShadowCasterOctreeQuery query(tempDrawables, shadowCameraFrustum, DRAWABLE_GEOMETRY,
  1542. camera_->GetViewMask());
  1543. octree_->GetDrawables(query);
  1544. }
  1545. // Check which shadow casters actually contribute to the shadowing
  1546. ProcessShadowCasters(query, tempDrawables, i);
  1547. }
  1548. // If no shadow casters, the light can be rendered unshadowed. At this point we have not allocated a shadow map yet, so the
  1549. // only cost has been the shadow camera setup & queries
  1550. if (query.shadowCasters_.Empty())
  1551. query.numSplits_ = 0;
  1552. }
  1553. void View::ProcessShadowCasters(LightQueryResult& query, const PODVector<Drawable*>& drawables, unsigned splitIndex)
  1554. {
  1555. Light* light = query.light_;
  1556. Camera* shadowCamera = query.shadowCameras_[splitIndex];
  1557. const Frustum& shadowCameraFrustum = shadowCamera->GetFrustum();
  1558. const Matrix3x4& lightView = shadowCamera->GetInverseWorldTransform();
  1559. const Matrix4& lightProj = shadowCamera->GetProjection();
  1560. LightType type = light->GetLightType();
  1561. query.shadowCasterBox_[splitIndex].defined_ = false;
  1562. // Transform scene frustum into shadow camera's view space for shadow caster visibility check. For point & spot lights,
  1563. // we can use the whole scene frustum. For directional lights, use the intersection of the scene frustum and the split
  1564. // frustum, so that shadow casters do not get rendered into unnecessary splits
  1565. Frustum lightViewFrustum;
  1566. if (type != LIGHT_DIRECTIONAL)
  1567. lightViewFrustum = camera_->GetSplitFrustum(minZ_, maxZ_).Transformed(lightView);
  1568. else
  1569. lightViewFrustum = camera_->GetSplitFrustum(Max(minZ_, query.shadowNearSplits_[splitIndex]),
  1570. Min(maxZ_, query.shadowFarSplits_[splitIndex])).Transformed(lightView);
  1571. BoundingBox lightViewFrustumBox(lightViewFrustum);
  1572. // Check for degenerate split frustum: in that case there is no need to get shadow casters
  1573. if (lightViewFrustum.vertices_[0] == lightViewFrustum.vertices_[4])
  1574. return;
  1575. BoundingBox lightViewBox;
  1576. BoundingBox lightProjBox;
  1577. for (PODVector<Drawable*>::ConstIterator i = drawables.Begin(); i != drawables.End(); ++i)
  1578. {
  1579. Drawable* drawable = *i;
  1580. // In case this is a point or spot light query result reused for optimization, we may have non-shadowcasters included.
  1581. // Check for that first
  1582. if (!drawable->GetCastShadows())
  1583. continue;
  1584. // For point light, check that this drawable is inside the split shadow camera frustum
  1585. if (type == LIGHT_POINT && shadowCameraFrustum.IsInsideFast(drawable->GetWorldBoundingBox()) == OUTSIDE)
  1586. continue;
  1587. // Note: as lights are processed threaded, it is possible a drawable's UpdateBatches() function is called several
  1588. // times. However, this should not cause problems as no scene modification happens at this point.
  1589. if (!drawable->IsInView(frame_, false))
  1590. drawable->UpdateBatches(frame_);
  1591. // Check shadow distance
  1592. float maxShadowDistance = drawable->GetShadowDistance();
  1593. if (maxShadowDistance > 0.0f && drawable->GetDistance() > maxShadowDistance)
  1594. continue;
  1595. // Check shadow mask
  1596. if (!(GetShadowMask(drawable) & light->GetLightMask()))
  1597. continue;
  1598. // Project shadow caster bounding box to light view space for visibility check
  1599. lightViewBox = drawable->GetWorldBoundingBox().Transformed(lightView);
  1600. if (IsShadowCasterVisible(drawable, lightViewBox, shadowCamera, lightView, lightViewFrustum, lightViewFrustumBox))
  1601. {
  1602. // Merge to shadow caster bounding box and add to the list
  1603. if (type == LIGHT_DIRECTIONAL)
  1604. query.shadowCasterBox_[splitIndex].Merge(lightViewBox);
  1605. else
  1606. {
  1607. lightProjBox = lightViewBox.Projected(lightProj);
  1608. query.shadowCasterBox_[splitIndex].Merge(lightProjBox);
  1609. }
  1610. query.shadowCasters_.Push(drawable);
  1611. }
  1612. }
  1613. query.shadowCasterEnd_[splitIndex] = query.shadowCasters_.Size();
  1614. }
  1615. bool View::IsShadowCasterVisible(Drawable* drawable, BoundingBox lightViewBox, Camera* shadowCamera, const Matrix3x4& lightView,
  1616. const Frustum& lightViewFrustum, const BoundingBox& lightViewFrustumBox)
  1617. {
  1618. if (shadowCamera->IsOrthographic())
  1619. {
  1620. // Extrude the light space bounding box up to the far edge of the frustum's light space bounding box
  1621. lightViewBox.max_.z_ = Max(lightViewBox.max_.z_,lightViewFrustumBox.max_.z_);
  1622. return lightViewFrustum.IsInsideFast(lightViewBox) != OUTSIDE;
  1623. }
  1624. else
  1625. {
  1626. // If light is not directional, can do a simple check: if object is visible, its shadow is too
  1627. if (drawable->IsInView(frame_))
  1628. return true;
  1629. // For perspective lights, extrusion direction depends on the position of the shadow caster
  1630. Vector3 center = lightViewBox.Center();
  1631. Ray extrusionRay(center, center.Normalized());
  1632. float extrusionDistance = shadowCamera->GetFarClip();
  1633. float originalDistance = Clamp(center.Length(), M_EPSILON, extrusionDistance);
  1634. // Because of the perspective, the bounding box must also grow when it is extruded to the distance
  1635. float sizeFactor = extrusionDistance / originalDistance;
  1636. // Calculate the endpoint box and merge it to the original. Because it's axis-aligned, it will be larger
  1637. // than necessary, so the test will be conservative
  1638. Vector3 newCenter = extrusionDistance * extrusionRay.direction_;
  1639. Vector3 newHalfSize = lightViewBox.Size() * sizeFactor * 0.5f;
  1640. BoundingBox extrudedBox(newCenter - newHalfSize, newCenter + newHalfSize);
  1641. lightViewBox.Merge(extrudedBox);
  1642. return lightViewFrustum.IsInsideFast(lightViewBox) != OUTSIDE;
  1643. }
  1644. }
  1645. IntRect View::GetShadowMapViewport(Light* light, unsigned splitIndex, Texture2D* shadowMap)
  1646. {
  1647. unsigned width = shadowMap->GetWidth();
  1648. unsigned height = shadowMap->GetHeight();
  1649. int maxCascades = renderer_->GetMaxShadowCascades();
  1650. // Due to instruction count limits, deferred modes in SM2.0 can only support up to 3 cascades
  1651. #ifndef USE_OPENGL
  1652. if (renderMode_ != RENDER_FORWARD && !graphics_->GetSM3Support())
  1653. maxCascades = Max(maxCascades, 3);
  1654. #endif
  1655. switch (light->GetLightType())
  1656. {
  1657. case LIGHT_DIRECTIONAL:
  1658. if (maxCascades == 1)
  1659. return IntRect(0, 0, width, height);
  1660. else if (maxCascades == 2)
  1661. return IntRect(splitIndex * width / 2, 0, (splitIndex + 1) * width / 2, height);
  1662. else
  1663. return IntRect((splitIndex & 1) * width / 2, (splitIndex / 2) * height / 2, ((splitIndex & 1) + 1) * width / 2,
  1664. (splitIndex / 2 + 1) * height / 2);
  1665. case LIGHT_SPOT:
  1666. return IntRect(0, 0, width, height);
  1667. case LIGHT_POINT:
  1668. return IntRect((splitIndex & 1) * width / 2, (splitIndex / 2) * height / 3, ((splitIndex & 1) + 1) * width / 2,
  1669. (splitIndex / 2 + 1) * height / 3);
  1670. }
  1671. return IntRect();
  1672. }
  1673. void View::SetupShadowCameras(LightQueryResult& query)
  1674. {
  1675. Light* light = query.light_;
  1676. LightType type = light->GetLightType();
  1677. int splits = 0;
  1678. if (type == LIGHT_DIRECTIONAL)
  1679. {
  1680. const CascadeParameters& cascade = light->GetShadowCascade();
  1681. float nearSplit = camera_->GetNearClip();
  1682. float farSplit;
  1683. while (splits < renderer_->GetMaxShadowCascades())
  1684. {
  1685. // If split is completely beyond camera far clip, we are done
  1686. if (nearSplit > camera_->GetFarClip())
  1687. break;
  1688. farSplit = Min(camera_->GetFarClip(), cascade.splits_[splits]);
  1689. if (farSplit <= nearSplit)
  1690. break;
  1691. // Setup the shadow camera for the split
  1692. Camera* shadowCamera = renderer_->GetShadowCamera();
  1693. query.shadowCameras_[splits] = shadowCamera;
  1694. query.shadowNearSplits_[splits] = nearSplit;
  1695. query.shadowFarSplits_[splits] = farSplit;
  1696. SetupDirLightShadowCamera(shadowCamera, light, nearSplit, farSplit);
  1697. nearSplit = farSplit;
  1698. ++splits;
  1699. }
  1700. }
  1701. if (type == LIGHT_SPOT)
  1702. {
  1703. Camera* shadowCamera = renderer_->GetShadowCamera();
  1704. query.shadowCameras_[0] = shadowCamera;
  1705. Node* cameraNode = shadowCamera->GetNode();
  1706. Node* lightNode = light->GetNode();
  1707. cameraNode->SetTransform(lightNode->GetWorldPosition(), lightNode->GetWorldRotation());
  1708. shadowCamera->SetNearClip(light->GetShadowNearFarRatio() * light->GetRange());
  1709. shadowCamera->SetFarClip(light->GetRange());
  1710. shadowCamera->SetFov(light->GetFov());
  1711. shadowCamera->SetAspectRatio(light->GetAspectRatio());
  1712. splits = 1;
  1713. }
  1714. if (type == LIGHT_POINT)
  1715. {
  1716. for (unsigned i = 0; i < MAX_CUBEMAP_FACES; ++i)
  1717. {
  1718. Camera* shadowCamera = renderer_->GetShadowCamera();
  1719. query.shadowCameras_[i] = shadowCamera;
  1720. Node* cameraNode = shadowCamera->GetNode();
  1721. // When making a shadowed point light, align the splits along X, Y and Z axes regardless of light rotation
  1722. cameraNode->SetPosition(light->GetNode()->GetWorldPosition());
  1723. cameraNode->SetDirection(directions[i]);
  1724. shadowCamera->SetNearClip(light->GetShadowNearFarRatio() * light->GetRange());
  1725. shadowCamera->SetFarClip(light->GetRange());
  1726. shadowCamera->SetFov(90.0f);
  1727. shadowCamera->SetAspectRatio(1.0f);
  1728. }
  1729. splits = MAX_CUBEMAP_FACES;
  1730. }
  1731. query.numSplits_ = splits;
  1732. }
  1733. void View::SetupDirLightShadowCamera(Camera* shadowCamera, Light* light, float nearSplit, float farSplit)
  1734. {
  1735. Node* shadowCameraNode = shadowCamera->GetNode();
  1736. Node* lightNode = light->GetNode();
  1737. float extrusionDistance = camera_->GetFarClip();
  1738. const FocusParameters& parameters = light->GetShadowFocus();
  1739. // Calculate initial position & rotation
  1740. Vector3 lightWorldDirection = lightNode->GetWorldRotation() * Vector3::FORWARD;
  1741. Vector3 pos = cameraNode_->GetWorldPosition() - extrusionDistance * lightWorldDirection;
  1742. shadowCameraNode->SetTransform(pos, lightNode->GetWorldRotation());
  1743. // Calculate main camera shadowed frustum in light's view space
  1744. farSplit = Min(farSplit, camera_->GetFarClip());
  1745. // Use the scene Z bounds to limit frustum size if applicable
  1746. if (parameters.focus_)
  1747. {
  1748. nearSplit = Max(minZ_, nearSplit);
  1749. farSplit = Min(maxZ_, farSplit);
  1750. }
  1751. Frustum splitFrustum = camera_->GetSplitFrustum(nearSplit, farSplit);
  1752. Polyhedron frustumVolume;
  1753. frustumVolume.Define(splitFrustum);
  1754. // If focusing enabled, clip the frustum volume by the combined bounding box of the lit geometries within the frustum
  1755. if (parameters.focus_)
  1756. {
  1757. BoundingBox litGeometriesBox;
  1758. for (unsigned i = 0; i < geometries_.Size(); ++i)
  1759. {
  1760. Drawable* drawable = geometries_[i];
  1761. // Skip skyboxes as they have undefinedly large bounding box size
  1762. if (drawable->GetType() == Skybox::GetTypeStatic())
  1763. continue;
  1764. if (drawable->GetMinZ() <= farSplit && drawable->GetMaxZ() >= nearSplit &&
  1765. (GetLightMask(drawable) & light->GetLightMask()))
  1766. litGeometriesBox.Merge(drawable->GetWorldBoundingBox());
  1767. }
  1768. if (litGeometriesBox.defined_)
  1769. {
  1770. frustumVolume.Clip(litGeometriesBox);
  1771. // If volume became empty, restore it to avoid zero size
  1772. if (frustumVolume.Empty())
  1773. frustumVolume.Define(splitFrustum);
  1774. }
  1775. }
  1776. // Transform frustum volume to light space
  1777. const Matrix3x4& lightView = shadowCamera->GetInverseWorldTransform();
  1778. frustumVolume.Transform(lightView);
  1779. // Fit the frustum volume inside a bounding box. If uniform size, use a sphere instead
  1780. BoundingBox shadowBox;
  1781. if (!parameters.nonUniform_)
  1782. shadowBox.Define(Sphere(frustumVolume));
  1783. else
  1784. shadowBox.Define(frustumVolume);
  1785. shadowCamera->SetOrthographic(true);
  1786. shadowCamera->SetAspectRatio(1.0f);
  1787. shadowCamera->SetNearClip(0.0f);
  1788. shadowCamera->SetFarClip(shadowBox.max_.z_);
  1789. // Center shadow camera on the bounding box. Can not snap to texels yet as the shadow map viewport is unknown
  1790. QuantizeDirLightShadowCamera(shadowCamera, light, IntRect(0, 0, 0, 0), shadowBox);
  1791. }
  1792. void View::FinalizeShadowCamera(Camera* shadowCamera, Light* light, const IntRect& shadowViewport,
  1793. const BoundingBox& shadowCasterBox)
  1794. {
  1795. const FocusParameters& parameters = light->GetShadowFocus();
  1796. float shadowMapWidth = (float)(shadowViewport.right_ - shadowViewport.left_);
  1797. LightType type = light->GetLightType();
  1798. if (type == LIGHT_DIRECTIONAL)
  1799. {
  1800. BoundingBox shadowBox;
  1801. shadowBox.max_.y_ = shadowCamera->GetOrthoSize() * 0.5f;
  1802. shadowBox.max_.x_ = shadowCamera->GetAspectRatio() * shadowBox.max_.y_;
  1803. shadowBox.min_.y_ = -shadowBox.max_.y_;
  1804. shadowBox.min_.x_ = -shadowBox.max_.x_;
  1805. // Requantize and snap to shadow map texels
  1806. QuantizeDirLightShadowCamera(shadowCamera, light, shadowViewport, shadowBox);
  1807. }
  1808. if (type == LIGHT_SPOT)
  1809. {
  1810. if (parameters.focus_)
  1811. {
  1812. float viewSizeX = Max(fabsf(shadowCasterBox.min_.x_), fabsf(shadowCasterBox.max_.x_));
  1813. float viewSizeY = Max(fabsf(shadowCasterBox.min_.y_), fabsf(shadowCasterBox.max_.y_));
  1814. float viewSize = Max(viewSizeX, viewSizeY);
  1815. // Scale the quantization parameters, because view size is in projection space (-1.0 - 1.0)
  1816. float invOrthoSize = 1.0f / shadowCamera->GetOrthoSize();
  1817. float quantize = parameters.quantize_ * invOrthoSize;
  1818. float minView = parameters.minView_ * invOrthoSize;
  1819. viewSize = Max(ceilf(viewSize / quantize) * quantize, minView);
  1820. if (viewSize < 1.0f)
  1821. shadowCamera->SetZoom(1.0f / viewSize);
  1822. }
  1823. }
  1824. // Perform a finalization step for all lights: ensure zoom out of 2 pixels to eliminate border filtering issues
  1825. // For point lights use 4 pixels, as they must not cross sides of the virtual cube map (maximum 3x3 PCF)
  1826. if (shadowCamera->GetZoom() >= 1.0f)
  1827. {
  1828. if (light->GetLightType() != LIGHT_POINT)
  1829. shadowCamera->SetZoom(shadowCamera->GetZoom() * ((shadowMapWidth - 2.0f) / shadowMapWidth));
  1830. else
  1831. {
  1832. #ifdef USE_OPENGL
  1833. shadowCamera->SetZoom(shadowCamera->GetZoom() * ((shadowMapWidth - 3.0f) / shadowMapWidth));
  1834. #else
  1835. shadowCamera->SetZoom(shadowCamera->GetZoom() * ((shadowMapWidth - 4.0f) / shadowMapWidth));
  1836. #endif
  1837. }
  1838. }
  1839. }
  1840. void View::QuantizeDirLightShadowCamera(Camera* shadowCamera, Light* light, const IntRect& shadowViewport,
  1841. const BoundingBox& viewBox)
  1842. {
  1843. Node* shadowCameraNode = shadowCamera->GetNode();
  1844. const FocusParameters& parameters = light->GetShadowFocus();
  1845. float shadowMapWidth = (float)(shadowViewport.right_ - shadowViewport.left_);
  1846. float minX = viewBox.min_.x_;
  1847. float minY = viewBox.min_.y_;
  1848. float maxX = viewBox.max_.x_;
  1849. float maxY = viewBox.max_.y_;
  1850. Vector2 center((minX + maxX) * 0.5f, (minY + maxY) * 0.5f);
  1851. Vector2 viewSize(maxX - minX, maxY - minY);
  1852. // Quantize size to reduce swimming
  1853. // Note: if size is uniform and there is no focusing, quantization is unnecessary
  1854. if (parameters.nonUniform_)
  1855. {
  1856. viewSize.x_ = ceilf(sqrtf(viewSize.x_ / parameters.quantize_));
  1857. viewSize.y_ = ceilf(sqrtf(viewSize.y_ / parameters.quantize_));
  1858. viewSize.x_ = Max(viewSize.x_ * viewSize.x_ * parameters.quantize_, parameters.minView_);
  1859. viewSize.y_ = Max(viewSize.y_ * viewSize.y_ * parameters.quantize_, parameters.minView_);
  1860. }
  1861. else if (parameters.focus_)
  1862. {
  1863. viewSize.x_ = Max(viewSize.x_, viewSize.y_);
  1864. viewSize.x_ = ceilf(sqrtf(viewSize.x_ / parameters.quantize_));
  1865. viewSize.x_ = Max(viewSize.x_ * viewSize.x_ * parameters.quantize_, parameters.minView_);
  1866. viewSize.y_ = viewSize.x_;
  1867. }
  1868. shadowCamera->SetOrthoSize(viewSize);
  1869. // Center shadow camera to the view space bounding box
  1870. Vector3 pos(shadowCameraNode->GetWorldPosition());
  1871. Quaternion rot(shadowCameraNode->GetWorldRotation());
  1872. Vector3 adjust(center.x_, center.y_, 0.0f);
  1873. shadowCameraNode->Translate(rot * adjust);
  1874. // If the shadow map viewport is known, snap to whole texels
  1875. if (shadowMapWidth > 0.0f)
  1876. {
  1877. Vector3 viewPos(rot.Inverse() * shadowCameraNode->GetWorldPosition());
  1878. // Take into account that shadow map border will not be used
  1879. float invActualSize = 1.0f / (shadowMapWidth - 2.0f);
  1880. Vector2 texelSize(viewSize.x_ * invActualSize, viewSize.y_ * invActualSize);
  1881. Vector3 snap(-fmodf(viewPos.x_, texelSize.x_), -fmodf(viewPos.y_, texelSize.y_), 0.0f);
  1882. shadowCameraNode->Translate(rot * snap);
  1883. }
  1884. }
  1885. void View::FindZone(Drawable* drawable)
  1886. {
  1887. Vector3 center = drawable->GetWorldBoundingBox().Center();
  1888. int bestPriority = M_MIN_INT;
  1889. Zone* newZone = 0;
  1890. // If bounding box center is in view, the zone assignment is conclusive also for next frames. Otherwise it is temporary
  1891. // (possibly incorrect) and must be re-evaluated on the next frame
  1892. bool temporary = !camera_->GetFrustum().IsInside(center);
  1893. // First check if the last zone remains a conclusive result
  1894. Zone* lastZone = drawable->GetLastZone();
  1895. if (lastZone && lastZone->IsInside(center) && (drawable->GetZoneMask() & lastZone->GetZoneMask()) &&
  1896. lastZone->GetPriority() >= highestZonePriority_)
  1897. newZone = lastZone;
  1898. else
  1899. {
  1900. for (PODVector<Zone*>::Iterator i = zones_.Begin(); i != zones_.End(); ++i)
  1901. {
  1902. Zone* zone = *i;
  1903. int priority = zone->GetPriority();
  1904. if (zone->IsInside(center) && (drawable->GetZoneMask() & zone->GetZoneMask()) && priority > bestPriority)
  1905. {
  1906. newZone = zone;
  1907. bestPriority = priority;
  1908. }
  1909. }
  1910. }
  1911. drawable->SetZone(newZone, temporary);
  1912. }
  1913. Zone* View::GetZone(Drawable* drawable)
  1914. {
  1915. if (cameraZoneOverride_)
  1916. return cameraZone_;
  1917. Zone* drawableZone = drawable->GetZone();
  1918. return drawableZone ? drawableZone : cameraZone_;
  1919. }
  1920. unsigned View::GetLightMask(Drawable* drawable)
  1921. {
  1922. return drawable->GetLightMask() & GetZone(drawable)->GetLightMask();
  1923. }
  1924. unsigned View::GetShadowMask(Drawable* drawable)
  1925. {
  1926. return drawable->GetShadowMask() & GetZone(drawable)->GetShadowMask();
  1927. }
  1928. unsigned long long View::GetVertexLightQueueHash(const PODVector<Light*>& vertexLights)
  1929. {
  1930. unsigned long long hash = 0;
  1931. for (PODVector<Light*>::ConstIterator i = vertexLights.Begin(); i != vertexLights.End(); ++i)
  1932. hash += (unsigned long long)(*i);
  1933. return hash;
  1934. }
  1935. Technique* View::GetTechnique(Drawable* drawable, Material* material)
  1936. {
  1937. if (!material)
  1938. {
  1939. const Vector<TechniqueEntry>& techniques = renderer_->GetDefaultMaterial()->GetTechniques();
  1940. return techniques.Size() ? techniques[0].technique_ : (Technique*)0;
  1941. }
  1942. const Vector<TechniqueEntry>& techniques = material->GetTechniques();
  1943. // If only one technique, no choice
  1944. if (techniques.Size() == 1)
  1945. return techniques[0].technique_;
  1946. else
  1947. {
  1948. float lodDistance = drawable->GetLodDistance();
  1949. // Check for suitable technique. Techniques should be ordered like this:
  1950. // Most distant & highest quality
  1951. // Most distant & lowest quality
  1952. // Second most distant & highest quality
  1953. // ...
  1954. for (unsigned i = 0; i < techniques.Size(); ++i)
  1955. {
  1956. const TechniqueEntry& entry = techniques[i];
  1957. Technique* tech = entry.technique_;
  1958. if (!tech || (tech->IsSM3() && !graphics_->GetSM3Support()) || materialQuality_ < entry.qualityLevel_)
  1959. continue;
  1960. if (lodDistance >= entry.lodDistance_)
  1961. return tech;
  1962. }
  1963. // If no suitable technique found, fallback to the last
  1964. return techniques.Size() ? techniques.Back().technique_ : (Technique*)0;
  1965. }
  1966. }
  1967. void View::CheckMaterialForAuxView(Material* material)
  1968. {
  1969. const SharedPtr<Texture>* textures = material->GetTextures();
  1970. for (unsigned i = 0; i < MAX_MATERIAL_TEXTURE_UNITS; ++i)
  1971. {
  1972. // Have to check cube & 2D textures separately
  1973. Texture* texture = textures[i];
  1974. if (texture)
  1975. {
  1976. if (texture->GetType() == Texture2D::GetTypeStatic())
  1977. {
  1978. Texture2D* tex2D = static_cast<Texture2D*>(texture);
  1979. RenderSurface* target = tex2D->GetRenderSurface();
  1980. if (target)
  1981. {
  1982. Viewport* viewport = target->GetViewport();
  1983. if (viewport->GetScene() && viewport->GetCamera())
  1984. renderer_->AddView(target, viewport);
  1985. }
  1986. }
  1987. else if (texture->GetType() == TextureCube::GetTypeStatic())
  1988. {
  1989. TextureCube* texCube = static_cast<TextureCube*>(texture);
  1990. for (unsigned j = 0; j < MAX_CUBEMAP_FACES; ++j)
  1991. {
  1992. RenderSurface* target = texCube->GetRenderSurface((CubeMapFace)j);
  1993. if (target)
  1994. {
  1995. Viewport* viewport = target->GetViewport();
  1996. if (viewport->GetScene() && viewport->GetCamera())
  1997. renderer_->AddView(target, viewport);
  1998. }
  1999. }
  2000. }
  2001. }
  2002. }
  2003. // Set frame number so that we can early-out next time we come across this material on the same frame
  2004. material->MarkForAuxView(frame_.frameNumber_);
  2005. }
  2006. void View::AddBatchToQueue(BatchQueue& batchQueue, Batch& batch, Technique* tech, bool allowInstancing, bool allowShadows)
  2007. {
  2008. if (!batch.material_)
  2009. batch.material_ = renderer_->GetDefaultMaterial();
  2010. // Convert to instanced if possible
  2011. if (allowInstancing && batch.geometryType_ == GEOM_STATIC && !batch.shaderData_ && !batch.overrideView_)
  2012. batch.geometryType_ = GEOM_INSTANCED;
  2013. if (batch.geometryType_ == GEOM_INSTANCED)
  2014. {
  2015. HashMap<BatchGroupKey, BatchGroup>* groups = batch.isBase_ ? &batchQueue.baseBatchGroups_ : &batchQueue.batchGroups_;
  2016. BatchGroupKey key(batch);
  2017. HashMap<BatchGroupKey, BatchGroup>::Iterator i = groups->Find(key);
  2018. if (i == groups->End())
  2019. {
  2020. // Create a new group based on the batch
  2021. renderer_->SetBatchShaders(batch, tech, allowShadows);
  2022. BatchGroup newGroup(batch);
  2023. newGroup.CalculateSortKey();
  2024. newGroup.instances_.Push(InstanceData(batch.worldTransform_, batch.distance_));
  2025. groups->Insert(MakePair(key, newGroup));
  2026. }
  2027. else
  2028. i->second_.instances_.Push(InstanceData(batch.worldTransform_, batch.distance_));
  2029. }
  2030. else
  2031. {
  2032. renderer_->SetBatchShaders(batch, tech, allowShadows);
  2033. batch.CalculateSortKey();
  2034. batchQueue.batches_.Push(batch);
  2035. }
  2036. }
  2037. void View::PrepareInstancingBuffer()
  2038. {
  2039. PROFILE(PrepareInstancingBuffer);
  2040. unsigned totalInstances = 0;
  2041. totalInstances += baseQueue_.GetNumInstances(renderer_);
  2042. totalInstances += preAlphaQueue_.GetNumInstances(renderer_);
  2043. if (renderMode_ != RENDER_FORWARD)
  2044. totalInstances += gbufferQueue_.GetNumInstances(renderer_);
  2045. for (Vector<LightBatchQueue>::Iterator i = lightQueues_.Begin(); i != lightQueues_.End(); ++i)
  2046. {
  2047. for (unsigned j = 0; j < i->shadowSplits_.Size(); ++j)
  2048. totalInstances += i->shadowSplits_[j].shadowBatches_.GetNumInstances(renderer_);
  2049. totalInstances += i->litBatches_.GetNumInstances(renderer_);
  2050. }
  2051. // If fail to set buffer size, fall back to per-group locking
  2052. if (totalInstances && renderer_->ResizeInstancingBuffer(totalInstances))
  2053. {
  2054. VertexBuffer* instancingBuffer = renderer_->GetInstancingBuffer();
  2055. unsigned freeIndex = 0;
  2056. void* dest = instancingBuffer->Lock(0, totalInstances, true);
  2057. if (!dest)
  2058. return;
  2059. baseQueue_.SetTransforms(renderer_, dest, freeIndex);
  2060. preAlphaQueue_.SetTransforms(renderer_, dest, freeIndex);
  2061. if (renderMode_ != RENDER_FORWARD)
  2062. gbufferQueue_.SetTransforms(renderer_, dest, freeIndex);
  2063. for (Vector<LightBatchQueue>::Iterator i = lightQueues_.Begin(); i != lightQueues_.End(); ++i)
  2064. {
  2065. for (unsigned j = 0; j < i->shadowSplits_.Size(); ++j)
  2066. i->shadowSplits_[j].shadowBatches_.SetTransforms(renderer_, dest, freeIndex);
  2067. i->litBatches_.SetTransforms(renderer_, dest, freeIndex);
  2068. }
  2069. instancingBuffer->Unlock();
  2070. }
  2071. }
  2072. void View::SetupLightVolumeBatch(Batch& batch)
  2073. {
  2074. Light* light = batch.lightQueue_->light_;
  2075. LightType type = light->GetLightType();
  2076. Vector3 cameraPos = cameraNode_->GetWorldPosition();
  2077. float lightDist;
  2078. // Use replace blend mode for the first pre-pass light volume, and additive for the rest
  2079. graphics_->SetBlendMode(renderMode_ == RENDER_PREPASS && light == lightQueues_.Front().light_ ? BLEND_REPLACE : BLEND_ADD);
  2080. graphics_->SetDepthWrite(false);
  2081. if (type != LIGHT_DIRECTIONAL)
  2082. {
  2083. if (type == LIGHT_POINT)
  2084. lightDist = Sphere(light->GetNode()->GetWorldPosition(), light->GetRange() * 1.25f).Distance(cameraPos);
  2085. else
  2086. lightDist = light->GetFrustum().Distance(cameraPos);
  2087. // Draw front faces if not inside light volume
  2088. if (lightDist < camera_->GetNearClip() * 2.0f)
  2089. {
  2090. renderer_->SetCullMode(CULL_CW, camera_);
  2091. graphics_->SetDepthTest(CMP_GREATER);
  2092. }
  2093. else
  2094. {
  2095. renderer_->SetCullMode(CULL_CCW, camera_);
  2096. graphics_->SetDepthTest(CMP_LESSEQUAL);
  2097. }
  2098. }
  2099. else
  2100. {
  2101. // In case the same camera is used for multiple views with differing aspect ratios (not recommended)
  2102. // refresh the directional light's model transform before rendering
  2103. light->GetVolumeTransform(camera_);
  2104. graphics_->SetCullMode(CULL_NONE);
  2105. graphics_->SetDepthTest(CMP_ALWAYS);
  2106. }
  2107. graphics_->SetScissorTest(false);
  2108. graphics_->SetStencilTest(true, CMP_NOTEQUAL, OP_KEEP, OP_KEEP, OP_KEEP, 0, light->GetLightMask());
  2109. }
  2110. void View::DrawFullscreenQuad(Camera* camera, bool nearQuad)
  2111. {
  2112. Light* quadDirLight = renderer_->GetQuadDirLight();
  2113. Matrix3x4 model(quadDirLight->GetDirLightTransform(camera, nearQuad));
  2114. graphics_->SetCullMode(CULL_NONE);
  2115. graphics_->SetShaderParameter(VSP_MODEL, model);
  2116. graphics_->SetShaderParameter(VSP_VIEWPROJ, camera->GetProjection());
  2117. graphics_->ClearTransformSources();
  2118. renderer_->GetLightGeometry(quadDirLight)->Draw(graphics_);
  2119. }
  2120. void View::RenderShadowMap(const LightBatchQueue& queue)
  2121. {
  2122. PROFILE(RenderShadowMap);
  2123. Texture2D* shadowMap = queue.shadowMap_;
  2124. graphics_->SetTexture(TU_SHADOWMAP, 0);
  2125. graphics_->SetColorWrite(false);
  2126. graphics_->SetStencilTest(false);
  2127. graphics_->SetRenderTarget(0, shadowMap->GetRenderSurface()->GetLinkedRenderTarget());
  2128. graphics_->SetDepthStencil(shadowMap);
  2129. graphics_->SetViewport(IntRect(0, 0, shadowMap->GetWidth(), shadowMap->GetHeight()));
  2130. graphics_->Clear(CLEAR_DEPTH);
  2131. // Set shadow depth bias
  2132. BiasParameters parameters = queue.light_->GetShadowBias();
  2133. // Adjust the light's constant depth bias according to global shadow map resolution
  2134. /// \todo Should remove this adjustment and find a more flexible solution
  2135. unsigned shadowMapSize = renderer_->GetShadowMapSize();
  2136. if (shadowMapSize <= 512)
  2137. parameters.constantBias_ *= 2.0f;
  2138. else if (shadowMapSize >= 2048)
  2139. parameters.constantBias_ *= 0.5f;
  2140. graphics_->SetDepthBias(parameters.constantBias_, parameters.slopeScaledBias_);
  2141. // Render each of the splits
  2142. for (unsigned i = 0; i < queue.shadowSplits_.Size(); ++i)
  2143. {
  2144. const ShadowBatchQueue& shadowQueue = queue.shadowSplits_[i];
  2145. if (!shadowQueue.shadowBatches_.IsEmpty())
  2146. {
  2147. graphics_->SetViewport(shadowQueue.shadowViewport_);
  2148. // Set a scissor rectangle to match possible shadow map size reduction by out-zooming
  2149. // However, do not do this for point lights, which need to render continuously across cube faces
  2150. float width = (float)(shadowQueue.shadowViewport_.right_ - shadowQueue.shadowViewport_.left_);
  2151. if (queue.light_->GetLightType() != LIGHT_POINT)
  2152. {
  2153. float zoom = Min(shadowQueue.shadowCamera_->GetZoom(), width - 2.0f / width);
  2154. Rect zoomRect(Vector2(-1.0f, -1.0f) * zoom, Vector2(1.0f, 1.0f) * zoom);
  2155. graphics_->SetScissorTest(true, zoomRect, false);
  2156. }
  2157. else
  2158. graphics_->SetScissorTest(false);
  2159. // Draw instanced and non-instanced shadow casters
  2160. shadowQueue.shadowBatches_.Draw(graphics_, renderer_);
  2161. }
  2162. }
  2163. graphics_->SetColorWrite(true);
  2164. graphics_->SetDepthBias(0.0f, 0.0f);
  2165. }
  2166. RenderSurface* View::GetDepthStencil(RenderSurface* renderTarget)
  2167. {
  2168. // If using the backbuffer, return the backbuffer depth-stencil
  2169. if (!renderTarget)
  2170. return 0;
  2171. // Then check for linked depth-stencil
  2172. RenderSurface* depthStencil = renderTarget->GetLinkedDepthStencil();
  2173. // Finally get one from Renderer
  2174. if (!depthStencil)
  2175. depthStencil = renderer_->GetDepthStencil(renderTarget->GetWidth(), renderTarget->GetHeight());
  2176. return depthStencil;
  2177. }