View.cpp 97 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498
  1. //
  2. // Copyright (c) 2008-2013 the Urho3D project.
  3. //
  4. // Permission is hereby granted, free of charge, to any person obtaining a copy
  5. // of this software and associated documentation files (the "Software"), to deal
  6. // in the Software without restriction, including without limitation the rights
  7. // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  8. // copies of the Software, and to permit persons to whom the Software is
  9. // furnished to do so, subject to the following conditions:
  10. //
  11. // The above copyright notice and this permission notice shall be included in
  12. // all copies or substantial portions of the Software.
  13. //
  14. // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15. // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16. // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  17. // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  18. // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  19. // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  20. // THE SOFTWARE.
  21. //
  22. #include "Precompiled.h"
  23. #include "Camera.h"
  24. #include "DebugRenderer.h"
  25. #include "Geometry.h"
  26. #include "Graphics.h"
  27. #include "GraphicsImpl.h"
  28. #include "Log.h"
  29. #include "Material.h"
  30. #include "OcclusionBuffer.h"
  31. #include "Octree.h"
  32. #include "Renderer.h"
  33. #include "RenderPath.h"
  34. #include "ResourceCache.h"
  35. #include "Profiler.h"
  36. #include "Scene.h"
  37. #include "ShaderVariation.h"
  38. #include "Skybox.h"
  39. #include "Technique.h"
  40. #include "Texture2D.h"
  41. #include "TextureCube.h"
  42. #include "VertexBuffer.h"
  43. #include "View.h"
  44. #include "WorkQueue.h"
  45. #include "Zone.h"
  46. #include "DebugNew.h"
  47. namespace Urho3D
  48. {
  49. static const Vector3 directions[] =
  50. {
  51. Vector3::RIGHT,
  52. Vector3::LEFT,
  53. Vector3::UP,
  54. Vector3::DOWN,
  55. Vector3::FORWARD,
  56. Vector3::BACK
  57. };
  58. static const int CHECK_DRAWABLES_PER_WORK_ITEM = 64;
  59. static const float LIGHT_INTENSITY_THRESHOLD = 0.001f;
  60. /// %Frustum octree query for shadowcasters.
  61. class ShadowCasterOctreeQuery : public FrustumOctreeQuery
  62. {
  63. public:
  64. /// Construct with frustum and query parameters.
  65. ShadowCasterOctreeQuery(PODVector<Drawable*>& result, const Frustum& frustum, unsigned char drawableFlags = DRAWABLE_ANY,
  66. unsigned viewMask = DEFAULT_VIEWMASK) :
  67. FrustumOctreeQuery(result, frustum, drawableFlags, viewMask)
  68. {
  69. }
  70. /// Intersection test for drawables.
  71. virtual void TestDrawables(Drawable** start, Drawable** end, bool inside)
  72. {
  73. while (start != end)
  74. {
  75. Drawable* drawable = *start++;
  76. if (drawable->GetCastShadows() && (drawable->GetDrawableFlags() & drawableFlags_) &&
  77. (drawable->GetViewMask() & viewMask_))
  78. {
  79. if (inside || frustum_.IsInsideFast(drawable->GetWorldBoundingBox()))
  80. result_.Push(drawable);
  81. }
  82. }
  83. }
  84. };
  85. /// %Frustum octree query for zones and occluders.
  86. class ZoneOccluderOctreeQuery : public FrustumOctreeQuery
  87. {
  88. public:
  89. /// Construct with frustum and query parameters.
  90. ZoneOccluderOctreeQuery(PODVector<Drawable*>& result, const Frustum& frustum, unsigned char drawableFlags = DRAWABLE_ANY,
  91. unsigned viewMask = DEFAULT_VIEWMASK) :
  92. FrustumOctreeQuery(result, frustum, drawableFlags, viewMask)
  93. {
  94. }
  95. /// Intersection test for drawables.
  96. virtual void TestDrawables(Drawable** start, Drawable** end, bool inside)
  97. {
  98. while (start != end)
  99. {
  100. Drawable* drawable = *start++;
  101. unsigned char flags = drawable->GetDrawableFlags();
  102. if ((flags == DRAWABLE_ZONE || (flags == DRAWABLE_GEOMETRY && drawable->IsOccluder())) && (drawable->GetViewMask() &
  103. viewMask_))
  104. {
  105. if (inside || frustum_.IsInsideFast(drawable->GetWorldBoundingBox()))
  106. result_.Push(drawable);
  107. }
  108. }
  109. }
  110. };
  111. /// %Frustum octree query with occlusion.
  112. class OccludedFrustumOctreeQuery : public FrustumOctreeQuery
  113. {
  114. public:
  115. /// Construct with frustum, occlusion buffer and query parameters.
  116. OccludedFrustumOctreeQuery(PODVector<Drawable*>& result, const Frustum& frustum, OcclusionBuffer* buffer, unsigned char
  117. drawableFlags = DRAWABLE_ANY, unsigned viewMask = DEFAULT_VIEWMASK) :
  118. FrustumOctreeQuery(result, frustum, drawableFlags, viewMask),
  119. buffer_(buffer)
  120. {
  121. }
  122. /// Intersection test for an octant.
  123. virtual Intersection TestOctant(const BoundingBox& box, bool inside)
  124. {
  125. if (inside)
  126. return buffer_->IsVisible(box) ? INSIDE : OUTSIDE;
  127. else
  128. {
  129. Intersection result = frustum_.IsInside(box);
  130. if (result != OUTSIDE && !buffer_->IsVisible(box))
  131. result = OUTSIDE;
  132. return result;
  133. }
  134. }
  135. /// Intersection test for drawables. Note: drawable occlusion is performed later in worker threads.
  136. virtual void TestDrawables(Drawable** start, Drawable** end, bool inside)
  137. {
  138. while (start != end)
  139. {
  140. Drawable* drawable = *start++;
  141. if ((drawable->GetDrawableFlags() & drawableFlags_) && (drawable->GetViewMask() & viewMask_))
  142. {
  143. if (inside || frustum_.IsInsideFast(drawable->GetWorldBoundingBox()))
  144. result_.Push(drawable);
  145. }
  146. }
  147. }
  148. /// Occlusion buffer.
  149. OcclusionBuffer* buffer_;
  150. };
  151. void CheckVisibilityWork(const WorkItem* item, unsigned threadIndex)
  152. {
  153. View* view = reinterpret_cast<View*>(item->aux_);
  154. Drawable** start = reinterpret_cast<Drawable**>(item->start_);
  155. Drawable** end = reinterpret_cast<Drawable**>(item->end_);
  156. OcclusionBuffer* buffer = view->occlusionBuffer_;
  157. const Matrix3x4& viewMatrix = view->camera_->GetInverseWorldTransform();
  158. Vector3 viewZ = Vector3(viewMatrix.m20_, viewMatrix.m21_, viewMatrix.m22_);
  159. Vector3 absViewZ = viewZ.Abs();
  160. while (start != end)
  161. {
  162. Drawable* drawable = *start++;
  163. drawable->UpdateBatches(view->frame_);
  164. // If draw distance non-zero, check it
  165. float maxDistance = drawable->GetDrawDistance();
  166. if ((maxDistance <= 0.0f || drawable->GetDistance() <= maxDistance) && (!buffer || !drawable->IsOccludee() ||
  167. buffer->IsVisible(drawable->GetWorldBoundingBox())))
  168. {
  169. drawable->MarkInView(view->frame_);
  170. // For geometries, clear lights and calculate view space Z range
  171. if (drawable->GetDrawableFlags() & DRAWABLE_GEOMETRY)
  172. {
  173. const BoundingBox& geomBox = drawable->GetWorldBoundingBox();
  174. Vector3 center = geomBox.Center();
  175. float viewCenterZ = viewZ.DotProduct(center) + viewMatrix.m23_;
  176. Vector3 edge = geomBox.Size() * 0.5f;
  177. float viewEdgeZ = absViewZ.DotProduct(edge);
  178. drawable->SetMinMaxZ(viewCenterZ - viewEdgeZ, viewCenterZ + viewEdgeZ);
  179. drawable->ClearLights();
  180. }
  181. }
  182. }
  183. }
  184. void ProcessLightWork(const WorkItem* item, unsigned threadIndex)
  185. {
  186. View* view = reinterpret_cast<View*>(item->aux_);
  187. LightQueryResult* query = reinterpret_cast<LightQueryResult*>(item->start_);
  188. view->ProcessLight(*query, threadIndex);
  189. }
  190. void UpdateDrawableGeometriesWork(const WorkItem* item, unsigned threadIndex)
  191. {
  192. const FrameInfo& frame = *(reinterpret_cast<FrameInfo*>(item->aux_));
  193. Drawable** start = reinterpret_cast<Drawable**>(item->start_);
  194. Drawable** end = reinterpret_cast<Drawable**>(item->end_);
  195. while (start != end)
  196. {
  197. Drawable* drawable = *start++;
  198. drawable->UpdateGeometry(frame);
  199. }
  200. }
  201. void SortBatchQueueFrontToBackWork(const WorkItem* item, unsigned threadIndex)
  202. {
  203. BatchQueue* queue = reinterpret_cast<BatchQueue*>(item->start_);
  204. queue->SortFrontToBack();
  205. }
  206. void SortBatchQueueBackToFrontWork(const WorkItem* item, unsigned threadIndex)
  207. {
  208. BatchQueue* queue = reinterpret_cast<BatchQueue*>(item->start_);
  209. queue->SortBackToFront();
  210. }
  211. void SortLightQueueWork(const WorkItem* item, unsigned threadIndex)
  212. {
  213. LightBatchQueue* start = reinterpret_cast<LightBatchQueue*>(item->start_);
  214. start->litBatches_.SortFrontToBack();
  215. }
  216. void SortShadowQueueWork(const WorkItem* item, unsigned threadIndex)
  217. {
  218. LightBatchQueue* start = reinterpret_cast<LightBatchQueue*>(item->start_);
  219. for (unsigned i = 0; i < start->shadowSplits_.Size(); ++i)
  220. start->shadowSplits_[i].shadowBatches_.SortFrontToBack();
  221. }
  222. OBJECTTYPESTATIC(View);
  223. View::View(Context* context) :
  224. Object(context),
  225. graphics_(GetSubsystem<Graphics>()),
  226. renderer_(GetSubsystem<Renderer>()),
  227. scene_(0),
  228. octree_(0),
  229. camera_(0),
  230. cameraZone_(0),
  231. farClipZone_(0),
  232. renderTarget_(0),
  233. tempDrawables_(GetSubsystem<WorkQueue>()->GetNumThreads() + 1) // Create octree query vector for each thread
  234. {
  235. frame_.camera_ = 0;
  236. }
  237. View::~View()
  238. {
  239. }
  240. bool View::Define(RenderSurface* renderTarget, Viewport* viewport)
  241. {
  242. Scene* scene = viewport->GetScene();
  243. Camera* camera = viewport->GetCamera();
  244. if (!scene || !camera || !camera->GetNode())
  245. return false;
  246. // If scene is loading asynchronously, it is incomplete and should not be rendered
  247. if (scene->IsAsyncLoading())
  248. return false;
  249. Octree* octree = scene->GetComponent<Octree>();
  250. if (!octree)
  251. return false;
  252. // Do not accept view if camera projection is illegal
  253. // (there is a possibility of crash if occlusion is used and it can not clip properly)
  254. if (!camera->IsProjectionValid())
  255. return false;
  256. scene_ = scene;
  257. octree_ = octree;
  258. camera_ = camera;
  259. cameraNode_ = camera->GetNode();
  260. renderTarget_ = renderTarget;
  261. renderPath_ = viewport->GetRenderPath();
  262. // Make sure that all necessary batch queues exist
  263. scenePasses_.Clear();
  264. for (unsigned i = 0; i < renderPath_->commands_.Size(); ++i)
  265. {
  266. const RenderPathCommand& command = renderPath_->commands_[i];
  267. if (!command.active_)
  268. continue;
  269. if (command.type_ == CMD_SCENEPASS)
  270. {
  271. ScenePassInfo info;
  272. info.pass_ = command.pass_;
  273. info.allowInstancing_ = command.sortMode_ != SORT_BACKTOFRONT;
  274. info.markToStencil_ = command.markToStencil_;
  275. info.useScissor_ = command.useScissor_;
  276. info.vertexLights_ = command.vertexLights_;
  277. HashMap<StringHash, BatchQueue>::Iterator j = batchQueues_.Find(command.pass_);
  278. if (j == batchQueues_.End())
  279. j = batchQueues_.Insert(Pair<StringHash, BatchQueue>(command.pass_, BatchQueue()));
  280. info.batchQueue_ = &j->second_;
  281. scenePasses_.Push(info);
  282. }
  283. }
  284. // Get light volume shaders according to the renderpath, if it needs them
  285. deferred_ = false;
  286. for (unsigned i = 0; i < renderPath_->commands_.Size(); ++i)
  287. {
  288. const RenderPathCommand& command = renderPath_->commands_[i];
  289. if (!command.active_)
  290. continue;
  291. if (command.type_ == CMD_LIGHTVOLUMES)
  292. {
  293. renderer_->GetLightVolumeShaders(lightVS_, lightPS_, command.vertexShaderName_, command.pixelShaderName_);
  294. deferred_ = true;
  295. }
  296. }
  297. if (!deferred_)
  298. {
  299. lightVS_.Clear();
  300. lightPS_.Clear();
  301. }
  302. // Validate the rect and calculate size. If zero rect, use whole rendertarget size
  303. int rtWidth = renderTarget ? renderTarget->GetWidth() : graphics_->GetWidth();
  304. int rtHeight = renderTarget ? renderTarget->GetHeight() : graphics_->GetHeight();
  305. const IntRect& rect = viewport->GetRect();
  306. if (rect != IntRect::ZERO)
  307. {
  308. viewRect_.left_ = Clamp(rect.left_, 0, rtWidth - 1);
  309. viewRect_.top_ = Clamp(rect.top_, 0, rtHeight - 1);
  310. viewRect_.right_ = Clamp(rect.right_, viewRect_.left_ + 1, rtWidth);
  311. viewRect_.bottom_ = Clamp(rect.bottom_, viewRect_.top_ + 1, rtHeight);
  312. }
  313. else
  314. viewRect_ = IntRect(0, 0, rtWidth, rtHeight);
  315. viewSize_ = viewRect_.Size();
  316. rtSize_ = IntVector2(rtWidth, rtHeight);
  317. // On OpenGL flip the viewport if rendering to a texture for consistent UV addressing with Direct3D9
  318. #ifdef USE_OPENGL
  319. if (renderTarget_)
  320. {
  321. viewRect_.bottom_ = rtSize_.y_ - viewRect_.top_;
  322. viewRect_.top_ = viewRect_.bottom_ - viewSize_.y_;
  323. }
  324. #endif
  325. drawShadows_ = renderer_->GetDrawShadows();
  326. materialQuality_ = renderer_->GetMaterialQuality();
  327. maxOccluderTriangles_ = renderer_->GetMaxOccluderTriangles();
  328. // Set possible quality overrides from the camera
  329. unsigned viewOverrideFlags = camera_->GetViewOverrideFlags();
  330. if (viewOverrideFlags & VO_LOW_MATERIAL_QUALITY)
  331. materialQuality_ = QUALITY_LOW;
  332. if (viewOverrideFlags & VO_DISABLE_SHADOWS)
  333. drawShadows_ = false;
  334. if (viewOverrideFlags & VO_DISABLE_OCCLUSION)
  335. maxOccluderTriangles_ = 0;
  336. return true;
  337. }
  338. void View::Update(const FrameInfo& frame)
  339. {
  340. if (!camera_ || !octree_)
  341. return;
  342. frame_.camera_ = camera_;
  343. frame_.timeStep_ = frame.timeStep_;
  344. frame_.frameNumber_ = frame.frameNumber_;
  345. frame_.viewSize_ = viewSize_;
  346. int maxSortedInstances = renderer_->GetMaxSortedInstances();
  347. // Clear screen buffers, geometry, light, occluder & batch lists
  348. screenBuffers_.Clear();
  349. renderTargets_.Clear();
  350. geometries_.Clear();
  351. shadowGeometries_.Clear();
  352. lights_.Clear();
  353. zones_.Clear();
  354. occluders_.Clear();
  355. vertexLightQueues_.Clear();
  356. for (HashMap<StringHash, BatchQueue>::Iterator i = batchQueues_.Begin(); i != batchQueues_.End(); ++i)
  357. i->second_.Clear(maxSortedInstances);
  358. // Set automatic aspect ratio if required
  359. if (camera_->GetAutoAspectRatio())
  360. camera_->SetAspectRatio((float)frame_.viewSize_.x_ / (float)frame_.viewSize_.y_);
  361. GetDrawables();
  362. GetBatches();
  363. }
  364. void View::Render()
  365. {
  366. if (!octree_ || !camera_)
  367. return;
  368. // Actually update geometry data now
  369. UpdateGeometries();
  370. // Allocate screen buffers as necessary
  371. AllocateScreenBuffers();
  372. // Initialize screenbuffer indices to use for read and write (pingponging)
  373. writeBuffer_ = 0;
  374. readBuffer_ = 0;
  375. // Forget parameter sources from the previous view
  376. graphics_->ClearParameterSources();
  377. // If stream offset is supported, write all instance transforms to a single large buffer
  378. // Else we must lock the instance buffer for each batch group
  379. if (renderer_->GetDynamicInstancing() && graphics_->GetStreamOffsetSupport())
  380. PrepareInstancingBuffer();
  381. // It is possible, though not recommended, that the same camera is used for multiple main views. Set automatic aspect ratio
  382. // again to ensure correct projection will be used
  383. if (camera_->GetAutoAspectRatio())
  384. camera_->SetAspectRatio((float)(viewSize_.x_) / (float)(viewSize_.y_));
  385. // Bind the face selection and indirection cube maps for point light shadows
  386. if (renderer_->GetDrawShadows())
  387. {
  388. graphics_->SetTexture(TU_FACESELECT, renderer_->GetFaceSelectCubeMap());
  389. graphics_->SetTexture(TU_INDIRECTION, renderer_->GetIndirectionCubeMap());
  390. }
  391. // Set "view texture" to prevent destination texture sampling during all renderpasses
  392. if (renderTarget_)
  393. {
  394. graphics_->SetViewTexture(renderTarget_->GetParentTexture());
  395. // On OpenGL, flip the projection if rendering to a texture so that the texture can be addressed in the same way
  396. // as a render texture produced on Direct3D9
  397. #ifdef USE_OPENGL
  398. camera_->SetFlipVertical(true);
  399. #endif
  400. }
  401. // Render
  402. ExecuteRenderPathCommands();
  403. #ifdef USE_OPENGL
  404. camera_->SetFlipVertical(false);
  405. #endif
  406. graphics_->SetDepthBias(0.0f, 0.0f);
  407. graphics_->SetScissorTest(false);
  408. graphics_->SetStencilTest(false);
  409. graphics_->SetViewTexture(0);
  410. graphics_->ResetStreamFrequencies();
  411. // Run framebuffer blitting if necessary
  412. if (screenBuffers_.Size() && currentRenderTarget_ != renderTarget_)
  413. BlitFramebuffer(static_cast<Texture2D*>(currentRenderTarget_->GetParentTexture()), renderTarget_, true);
  414. // If this is a main view, draw the associated debug geometry now
  415. if (!renderTarget_)
  416. {
  417. DebugRenderer* debug = octree_->GetComponent<DebugRenderer>();
  418. if (debug)
  419. {
  420. debug->SetView(camera_);
  421. debug->Render();
  422. }
  423. }
  424. // "Forget" the scene, camera, octree and zone after rendering
  425. scene_ = 0;
  426. camera_ = 0;
  427. octree_ = 0;
  428. cameraZone_ = 0;
  429. farClipZone_ = 0;
  430. occlusionBuffer_ = 0;
  431. frame_.camera_ = 0;
  432. }
  433. Graphics* View::GetGraphics() const
  434. {
  435. return graphics_;
  436. }
  437. Renderer* View::GetRenderer() const
  438. {
  439. return renderer_;
  440. }
  441. void View::GetDrawables()
  442. {
  443. PROFILE(GetDrawables);
  444. WorkQueue* queue = GetSubsystem<WorkQueue>();
  445. PODVector<Drawable*>& tempDrawables = tempDrawables_[0];
  446. // Get zones and occluders first. Note: camera viewmask is intentionally disregarded here, to prevent the zone membership
  447. // or occlusion depending from the used camera
  448. {
  449. ZoneOccluderOctreeQuery query(tempDrawables, camera_->GetFrustum(), DRAWABLE_GEOMETRY | DRAWABLE_ZONE);
  450. octree_->GetDrawables(query);
  451. }
  452. highestZonePriority_ = M_MIN_INT;
  453. int bestPriority = M_MIN_INT;
  454. Vector3 cameraPos = cameraNode_->GetWorldPosition();
  455. // Get default zone first in case we do not have zones defined
  456. Zone* defaultZone = renderer_->GetDefaultZone();
  457. cameraZone_ = farClipZone_ = defaultZone;
  458. for (PODVector<Drawable*>::ConstIterator i = tempDrawables.Begin(); i != tempDrawables.End(); ++i)
  459. {
  460. Drawable* drawable = *i;
  461. unsigned char flags = drawable->GetDrawableFlags();
  462. if (flags & DRAWABLE_ZONE)
  463. {
  464. Zone* zone = static_cast<Zone*>(drawable);
  465. zones_.Push(zone);
  466. int priority = zone->GetPriority();
  467. if (priority > highestZonePriority_)
  468. highestZonePriority_ = priority;
  469. if (priority > bestPriority && zone->IsInside(cameraPos))
  470. {
  471. cameraZone_ = zone;
  472. bestPriority = priority;
  473. }
  474. }
  475. else
  476. occluders_.Push(drawable);
  477. }
  478. // Determine the zone at far clip distance. If not found, or camera zone has override mode, use camera zone
  479. cameraZoneOverride_ = cameraZone_->GetOverride();
  480. if (!cameraZoneOverride_)
  481. {
  482. Vector3 farClipPos = cameraPos + cameraNode_->GetWorldDirection() * Vector3(0.0f, 0.0f, camera_->GetFarClip());
  483. bestPriority = M_MIN_INT;
  484. for (PODVector<Zone*>::Iterator i = zones_.Begin(); i != zones_.End(); ++i)
  485. {
  486. int priority = (*i)->GetPriority();
  487. if (priority > bestPriority && (*i)->IsInside(farClipPos))
  488. {
  489. farClipZone_ = *i;
  490. bestPriority = priority;
  491. }
  492. }
  493. }
  494. if (farClipZone_ == defaultZone)
  495. farClipZone_ = cameraZone_;
  496. // If occlusion in use, get & render the occluders
  497. occlusionBuffer_ = 0;
  498. if (maxOccluderTriangles_ > 0)
  499. {
  500. UpdateOccluders(occluders_, camera_);
  501. if (occluders_.Size())
  502. {
  503. PROFILE(DrawOcclusion);
  504. occlusionBuffer_ = renderer_->GetOcclusionBuffer(camera_);
  505. DrawOccluders(occlusionBuffer_, occluders_);
  506. }
  507. }
  508. // Get lights and geometries. Coarse occlusion for octants is used at this point
  509. if (occlusionBuffer_)
  510. {
  511. OccludedFrustumOctreeQuery query(tempDrawables, camera_->GetFrustum(), occlusionBuffer_, DRAWABLE_GEOMETRY |
  512. DRAWABLE_LIGHT, camera_->GetViewMask());
  513. octree_->GetDrawables(query);
  514. }
  515. else
  516. {
  517. FrustumOctreeQuery query(tempDrawables, camera_->GetFrustum(), DRAWABLE_GEOMETRY | DRAWABLE_LIGHT,
  518. camera_->GetViewMask());
  519. octree_->GetDrawables(query);
  520. }
  521. // Check drawable occlusion and find zones for moved drawables in worker threads
  522. {
  523. WorkItem item;
  524. item.workFunction_ = CheckVisibilityWork;
  525. item.aux_ = this;
  526. PODVector<Drawable*>::Iterator start = tempDrawables.Begin();
  527. while (start != tempDrawables.End())
  528. {
  529. PODVector<Drawable*>::Iterator end = tempDrawables.End();
  530. if (end - start > CHECK_DRAWABLES_PER_WORK_ITEM)
  531. end = start + CHECK_DRAWABLES_PER_WORK_ITEM;
  532. item.start_ = &(*start);
  533. item.end_ = &(*end);
  534. queue->AddWorkItem(item);
  535. start = end;
  536. }
  537. queue->Complete(M_MAX_UNSIGNED);
  538. }
  539. // Sort into geometries & lights, and build visible scene bounding boxes in world and view space
  540. sceneBox_.min_ = sceneBox_.max_ = Vector3::ZERO;
  541. sceneBox_.defined_ = false;
  542. minZ_ = M_INFINITY;
  543. maxZ_ = 0.0f;
  544. for (unsigned i = 0; i < tempDrawables.Size(); ++i)
  545. {
  546. Drawable* drawable = tempDrawables[i];
  547. if (!drawable->IsInView(frame_))
  548. continue;
  549. if (drawable->GetDrawableFlags() & DRAWABLE_GEOMETRY)
  550. {
  551. // Find zone for the drawable if necessary
  552. if ((drawable->IsZoneDirty() || !drawable->GetZone()) && !cameraZoneOverride_)
  553. FindZone(drawable);
  554. // Expand the scene bounding box and Z range (skybox not included because of infinite size) and store the drawawble
  555. if (drawable->GetType() != Skybox::GetTypeStatic())
  556. {
  557. sceneBox_.Merge(drawable->GetWorldBoundingBox());
  558. minZ_ = Min(minZ_, drawable->GetMinZ());
  559. maxZ_ = Max(maxZ_, drawable->GetMaxZ());
  560. }
  561. geometries_.Push(drawable);
  562. }
  563. else
  564. {
  565. Light* light = static_cast<Light*>(drawable);
  566. // Skip lights which are so dim that they can not contribute to a rendertarget
  567. if (light->GetColor().Intensity() > LIGHT_INTENSITY_THRESHOLD)
  568. lights_.Push(light);
  569. }
  570. }
  571. if (minZ_ == M_INFINITY)
  572. minZ_ = 0.0f;
  573. // Sort the lights to brightest/closest first
  574. for (unsigned i = 0; i < lights_.Size(); ++i)
  575. {
  576. Light* light = lights_[i];
  577. light->SetIntensitySortValue(camera_->GetDistance(light->GetNode()->GetWorldPosition()));
  578. light->SetLightQueue(0);
  579. }
  580. Sort(lights_.Begin(), lights_.End(), CompareDrawables);
  581. }
  582. void View::GetBatches()
  583. {
  584. WorkQueue* queue = GetSubsystem<WorkQueue>();
  585. PODVector<Light*> vertexLights;
  586. BatchQueue* alphaQueue = batchQueues_.Contains(PASS_ALPHA) ? &batchQueues_[PASS_ALPHA] : (BatchQueue*)0;
  587. // Check whether to use the lit base pass optimization
  588. bool useLitBase = true;
  589. for (unsigned i = 0; i < renderPath_->commands_.Size(); ++i)
  590. {
  591. const RenderPathCommand& command = renderPath_->commands_[i];
  592. if (command.type_ == CMD_FORWARDLIGHTS)
  593. useLitBase = command.useLitBase_;
  594. }
  595. // Process lit geometries and shadow casters for each light
  596. {
  597. PROFILE(ProcessLights);
  598. lightQueryResults_.Resize(lights_.Size());
  599. WorkItem item;
  600. item.workFunction_ = ProcessLightWork;
  601. item.aux_ = this;
  602. for (unsigned i = 0; i < lightQueryResults_.Size(); ++i)
  603. {
  604. LightQueryResult& query = lightQueryResults_[i];
  605. query.light_ = lights_[i];
  606. item.start_ = &query;
  607. queue->AddWorkItem(item);
  608. }
  609. // Ensure all lights have been processed before proceeding
  610. queue->Complete(M_MAX_UNSIGNED);
  611. }
  612. // Build light queues and lit batches
  613. {
  614. PROFILE(GetLightBatches);
  615. // Preallocate light queues: per-pixel lights which have lit geometries
  616. unsigned numLightQueues = 0;
  617. unsigned usedLightQueues = 0;
  618. for (Vector<LightQueryResult>::ConstIterator i = lightQueryResults_.Begin(); i != lightQueryResults_.End(); ++i)
  619. {
  620. if (!i->light_->GetPerVertex() && i->litGeometries_.Size())
  621. ++numLightQueues;
  622. }
  623. lightQueues_.Resize(numLightQueues);
  624. maxLightsDrawables_.Clear();
  625. unsigned maxSortedInstances = renderer_->GetMaxSortedInstances();
  626. for (Vector<LightQueryResult>::Iterator i = lightQueryResults_.Begin(); i != lightQueryResults_.End(); ++i)
  627. {
  628. LightQueryResult& query = *i;
  629. // If light has no affected geometries, no need to process further
  630. if (query.litGeometries_.Empty())
  631. continue;
  632. Light* light = query.light_;
  633. // Per-pixel light
  634. if (!light->GetPerVertex())
  635. {
  636. unsigned shadowSplits = query.numSplits_;
  637. // Initialize light queue and store it to the light so that it can be found later
  638. LightBatchQueue& lightQueue = lightQueues_[usedLightQueues++];
  639. light->SetLightQueue(&lightQueue);
  640. lightQueue.light_ = light;
  641. lightQueue.shadowMap_ = 0;
  642. lightQueue.litBatches_.Clear(maxSortedInstances);
  643. lightQueue.volumeBatches_.Clear();
  644. // Allocate shadow map now
  645. if (shadowSplits > 0)
  646. {
  647. lightQueue.shadowMap_ = renderer_->GetShadowMap(light, camera_, viewSize_.x_, viewSize_.y_);
  648. // If did not manage to get a shadow map, convert the light to unshadowed
  649. if (!lightQueue.shadowMap_)
  650. shadowSplits = 0;
  651. }
  652. // Setup shadow batch queues
  653. lightQueue.shadowSplits_.Resize(shadowSplits);
  654. for (unsigned j = 0; j < shadowSplits; ++j)
  655. {
  656. ShadowBatchQueue& shadowQueue = lightQueue.shadowSplits_[j];
  657. Camera* shadowCamera = query.shadowCameras_[j];
  658. shadowQueue.shadowCamera_ = shadowCamera;
  659. shadowQueue.nearSplit_ = query.shadowNearSplits_[j];
  660. shadowQueue.farSplit_ = query.shadowFarSplits_[j];
  661. shadowQueue.shadowBatches_.Clear(maxSortedInstances);
  662. // Setup the shadow split viewport and finalize shadow camera parameters
  663. shadowQueue.shadowViewport_ = GetShadowMapViewport(light, j, lightQueue.shadowMap_);
  664. FinalizeShadowCamera(shadowCamera, light, shadowQueue.shadowViewport_, query.shadowCasterBox_[j]);
  665. // Loop through shadow casters
  666. for (PODVector<Drawable*>::ConstIterator k = query.shadowCasters_.Begin() + query.shadowCasterBegin_[j];
  667. k < query.shadowCasters_.Begin() + query.shadowCasterEnd_[j]; ++k)
  668. {
  669. Drawable* drawable = *k;
  670. if (!drawable->IsInView(frame_, false))
  671. {
  672. drawable->MarkInView(frame_, false);
  673. shadowGeometries_.Push(drawable);
  674. }
  675. Zone* zone = GetZone(drawable);
  676. const Vector<SourceBatch>& batches = drawable->GetBatches();
  677. for (unsigned l = 0; l < batches.Size(); ++l)
  678. {
  679. const SourceBatch& srcBatch = batches[l];
  680. Technique* tech = GetTechnique(drawable, srcBatch.material_);
  681. if (!srcBatch.geometry_ || !tech)
  682. continue;
  683. Pass* pass = tech->GetPass(PASS_SHADOW);
  684. // Skip if material has no shadow pass
  685. if (!pass)
  686. continue;
  687. Batch destBatch(srcBatch);
  688. destBatch.pass_ = pass;
  689. destBatch.camera_ = shadowCamera;
  690. destBatch.zone_ = zone;
  691. destBatch.lightQueue_ = &lightQueue;
  692. AddBatchToQueue(shadowQueue.shadowBatches_, destBatch, tech);
  693. }
  694. }
  695. }
  696. // Process lit geometries
  697. for (PODVector<Drawable*>::ConstIterator j = query.litGeometries_.Begin(); j != query.litGeometries_.End(); ++j)
  698. {
  699. Drawable* drawable = *j;
  700. drawable->AddLight(light);
  701. // If drawable limits maximum lights, only record the light, and check maximum count / build batches later
  702. if (!drawable->GetMaxLights())
  703. GetLitBatches(drawable, lightQueue, alphaQueue, useLitBase);
  704. else
  705. maxLightsDrawables_.Insert(drawable);
  706. }
  707. // In deferred modes, store the light volume batch now
  708. if (deferred_)
  709. {
  710. Batch volumeBatch;
  711. volumeBatch.geometry_ = renderer_->GetLightGeometry(light);
  712. volumeBatch.worldTransform_ = &light->GetVolumeTransform(camera_);
  713. volumeBatch.overrideView_ = light->GetLightType() == LIGHT_DIRECTIONAL;
  714. volumeBatch.camera_ = camera_;
  715. volumeBatch.lightQueue_ = &lightQueue;
  716. volumeBatch.distance_ = light->GetDistance();
  717. volumeBatch.material_ = 0;
  718. volumeBatch.pass_ = 0;
  719. volumeBatch.zone_ = 0;
  720. renderer_->SetLightVolumeBatchShaders(volumeBatch, lightVS_, lightPS_);
  721. lightQueue.volumeBatches_.Push(volumeBatch);
  722. }
  723. }
  724. // Per-vertex light
  725. else
  726. {
  727. // Add the vertex light to lit drawables. It will be processed later during base pass batch generation
  728. for (PODVector<Drawable*>::ConstIterator j = query.litGeometries_.Begin(); j != query.litGeometries_.End(); ++j)
  729. {
  730. Drawable* drawable = *j;
  731. drawable->AddVertexLight(light);
  732. }
  733. }
  734. }
  735. }
  736. // Process drawables with limited per-pixel light count
  737. if (maxLightsDrawables_.Size())
  738. {
  739. PROFILE(GetMaxLightsBatches);
  740. for (HashSet<Drawable*>::Iterator i = maxLightsDrawables_.Begin(); i != maxLightsDrawables_.End(); ++i)
  741. {
  742. Drawable* drawable = *i;
  743. drawable->LimitLights();
  744. const PODVector<Light*>& lights = drawable->GetLights();
  745. for (unsigned i = 0; i < lights.Size(); ++i)
  746. {
  747. Light* light = lights[i];
  748. // Find the correct light queue again
  749. LightBatchQueue* queue = light->GetLightQueue();
  750. if (queue)
  751. GetLitBatches(drawable, *queue, alphaQueue, useLitBase);
  752. }
  753. }
  754. }
  755. // Build base pass batches
  756. {
  757. PROFILE(GetBaseBatches);
  758. for (PODVector<Drawable*>::ConstIterator i = geometries_.Begin(); i != geometries_.End(); ++i)
  759. {
  760. Drawable* drawable = *i;
  761. Zone* zone = GetZone(drawable);
  762. const Vector<SourceBatch>& batches = drawable->GetBatches();
  763. const PODVector<Light*>& drawableVertexLights = drawable->GetVertexLights();
  764. if (!drawableVertexLights.Empty())
  765. drawable->LimitVertexLights();
  766. for (unsigned j = 0; j < batches.Size(); ++j)
  767. {
  768. const SourceBatch& srcBatch = batches[j];
  769. // Check here if the material refers to a rendertarget texture with camera(s) attached
  770. // Only check this for backbuffer views (null rendertarget)
  771. if (srcBatch.material_ && srcBatch.material_->GetAuxViewFrameNumber() != frame_.frameNumber_ && !renderTarget_)
  772. CheckMaterialForAuxView(srcBatch.material_);
  773. Technique* tech = GetTechnique(drawable, srcBatch.material_);
  774. if (!srcBatch.geometry_ || !tech)
  775. continue;
  776. Batch destBatch(srcBatch);
  777. destBatch.camera_ = camera_;
  778. destBatch.zone_ = zone;
  779. destBatch.isBase_ = true;
  780. destBatch.pass_ = 0;
  781. destBatch.lightMask_ = GetLightMask(drawable);
  782. // Check each of the scene passes
  783. for (unsigned k = 0; k < scenePasses_.Size(); ++k)
  784. {
  785. ScenePassInfo& info = scenePasses_[k];
  786. destBatch.pass_ = tech->GetPass(info.pass_);
  787. if (!destBatch.pass_)
  788. continue;
  789. // Skip forward base pass if the corresponding litbase pass already exists
  790. if (info.pass_ == PASS_BASE && j < 32 && drawable->HasBasePass(j))
  791. continue;
  792. if (info.vertexLights_ && !drawableVertexLights.Empty())
  793. {
  794. // For a deferred opaque batch, check if the vertex lights include converted per-pixel lights, and remove
  795. // them to prevent double-lighting
  796. if (deferred_ && destBatch.pass_->GetBlendMode() == BLEND_REPLACE)
  797. {
  798. vertexLights.Clear();
  799. for (unsigned i = 0; i < drawableVertexLights.Size(); ++i)
  800. {
  801. if (drawableVertexLights[i]->GetPerVertex())
  802. vertexLights.Push(drawableVertexLights[i]);
  803. }
  804. }
  805. else
  806. vertexLights = drawableVertexLights;
  807. if (!vertexLights.Empty())
  808. {
  809. // Find a vertex light queue. If not found, create new
  810. unsigned long long hash = GetVertexLightQueueHash(vertexLights);
  811. HashMap<unsigned long long, LightBatchQueue>::Iterator i = vertexLightQueues_.Find(hash);
  812. if (i == vertexLightQueues_.End())
  813. {
  814. i = vertexLightQueues_.Insert(MakePair(hash, LightBatchQueue()));
  815. i->second_.light_ = 0;
  816. i->second_.shadowMap_ = 0;
  817. i->second_.vertexLights_ = vertexLights;
  818. }
  819. destBatch.lightQueue_ = &(i->second_);
  820. }
  821. }
  822. else
  823. destBatch.lightQueue_ = 0;
  824. bool allowInstancing = info.allowInstancing_;
  825. if (allowInstancing && info.markToStencil_ && destBatch.lightMask_ != (zone->GetLightMask() & 0xff))
  826. allowInstancing = false;
  827. AddBatchToQueue(*info.batchQueue_, destBatch, tech, allowInstancing);
  828. }
  829. }
  830. }
  831. }
  832. }
  833. void View::UpdateGeometries()
  834. {
  835. PROFILE(SortAndUpdateGeometry);
  836. WorkQueue* queue = GetSubsystem<WorkQueue>();
  837. // Sort batches
  838. {
  839. WorkItem item;
  840. for (unsigned i = 0; i < renderPath_->commands_.Size(); ++i)
  841. {
  842. const RenderPathCommand& command = renderPath_->commands_[i];
  843. if (!command.active_)
  844. continue;
  845. if (command.type_ == CMD_SCENEPASS)
  846. {
  847. item.workFunction_ = command.sortMode_ == SORT_FRONTTOBACK ? SortBatchQueueFrontToBackWork :
  848. SortBatchQueueBackToFrontWork;
  849. item.start_ = &batchQueues_[command.pass_];
  850. queue->AddWorkItem(item);
  851. }
  852. }
  853. for (Vector<LightBatchQueue>::Iterator i = lightQueues_.Begin(); i != lightQueues_.End(); ++i)
  854. {
  855. item.workFunction_ = SortLightQueueWork;
  856. item.start_ = &(*i);
  857. queue->AddWorkItem(item);
  858. if (i->shadowSplits_.Size())
  859. {
  860. item.workFunction_ = SortShadowQueueWork;
  861. queue->AddWorkItem(item);
  862. }
  863. }
  864. }
  865. // Update geometries. Split into threaded and non-threaded updates.
  866. {
  867. nonThreadedGeometries_.Clear();
  868. threadedGeometries_.Clear();
  869. for (PODVector<Drawable*>::Iterator i = geometries_.Begin(); i != geometries_.End(); ++i)
  870. {
  871. UpdateGeometryType type = (*i)->GetUpdateGeometryType();
  872. if (type == UPDATE_MAIN_THREAD)
  873. nonThreadedGeometries_.Push(*i);
  874. else if (type == UPDATE_WORKER_THREAD)
  875. threadedGeometries_.Push(*i);
  876. }
  877. for (PODVector<Drawable*>::Iterator i = shadowGeometries_.Begin(); i != shadowGeometries_.End(); ++i)
  878. {
  879. UpdateGeometryType type = (*i)->GetUpdateGeometryType();
  880. if (type == UPDATE_MAIN_THREAD)
  881. nonThreadedGeometries_.Push(*i);
  882. else if (type == UPDATE_WORKER_THREAD)
  883. threadedGeometries_.Push(*i);
  884. }
  885. if (threadedGeometries_.Size())
  886. {
  887. WorkItem item;
  888. item.workFunction_ = UpdateDrawableGeometriesWork;
  889. item.aux_ = const_cast<FrameInfo*>(&frame_);
  890. PODVector<Drawable*>::Iterator start = threadedGeometries_.Begin();
  891. while (start != threadedGeometries_.End())
  892. {
  893. PODVector<Drawable*>::Iterator end = threadedGeometries_.End();
  894. if (end - start > DRAWABLES_PER_WORK_ITEM)
  895. end = start + DRAWABLES_PER_WORK_ITEM;
  896. item.start_ = &(*start);
  897. item.end_ = &(*end);
  898. queue->AddWorkItem(item);
  899. start = end;
  900. }
  901. }
  902. // While the work queue is processed, update non-threaded geometries
  903. for (PODVector<Drawable*>::ConstIterator i = nonThreadedGeometries_.Begin(); i != nonThreadedGeometries_.End(); ++i)
  904. (*i)->UpdateGeometry(frame_);
  905. }
  906. // Finally ensure all threaded work has completed
  907. queue->Complete(M_MAX_UNSIGNED);
  908. }
  909. void View::GetLitBatches(Drawable* drawable, LightBatchQueue& lightQueue, BatchQueue* alphaQueue, bool useLitBase)
  910. {
  911. Light* light = lightQueue.light_;
  912. Zone* zone = GetZone(drawable);
  913. const Vector<SourceBatch>& batches = drawable->GetBatches();
  914. bool hasAmbientGradient = zone->GetAmbientGradient() && zone->GetAmbientStartColor() != zone->GetAmbientEndColor();
  915. // Shadows on transparencies can only be rendered if shadow maps are not reused
  916. bool allowTransparentShadows = !renderer_->GetReuseShadowMaps();
  917. bool allowLitBase = useLitBase && light == drawable->GetFirstLight() && drawable->GetVertexLights().Empty() && !hasAmbientGradient;
  918. for (unsigned i = 0; i < batches.Size(); ++i)
  919. {
  920. const SourceBatch& srcBatch = batches[i];
  921. Technique* tech = GetTechnique(drawable, srcBatch.material_);
  922. if (!srcBatch.geometry_ || !tech)
  923. continue;
  924. // Do not create pixel lit forward passes for materials that render into the G-buffer
  925. if (deferred_ && (tech->HasPass(PASS_PREPASS) || tech->HasPass(PASS_DEFERRED)))
  926. continue;
  927. Batch destBatch(srcBatch);
  928. bool isLitAlpha = false;
  929. // Check for lit base pass. Because it uses the replace blend mode, it must be ensured to be the first light
  930. // Also vertex lighting or ambient gradient require the non-lit base pass, so skip in those cases
  931. if (i < 32 && allowLitBase)
  932. {
  933. destBatch.pass_ = tech->GetPass(PASS_LITBASE);
  934. if (destBatch.pass_)
  935. {
  936. destBatch.isBase_ = true;
  937. drawable->SetBasePass(i);
  938. }
  939. else
  940. destBatch.pass_ = tech->GetPass(PASS_LIGHT);
  941. }
  942. else
  943. destBatch.pass_ = tech->GetPass(PASS_LIGHT);
  944. // If no lit pass, check for lit alpha
  945. if (!destBatch.pass_)
  946. {
  947. destBatch.pass_ = tech->GetPass(PASS_LITALPHA);
  948. isLitAlpha = true;
  949. }
  950. // Skip if material does not receive light at all
  951. if (!destBatch.pass_)
  952. continue;
  953. destBatch.camera_ = camera_;
  954. destBatch.lightQueue_ = &lightQueue;
  955. destBatch.zone_ = zone;
  956. if (!isLitAlpha)
  957. AddBatchToQueue(lightQueue.litBatches_, destBatch, tech);
  958. else if (alphaQueue)
  959. {
  960. // Transparent batches can not be instanced
  961. AddBatchToQueue(*alphaQueue, destBatch, tech, false, allowTransparentShadows);
  962. }
  963. }
  964. }
  965. void View::ExecuteRenderPathCommands()
  966. {
  967. // If not reusing shadowmaps, render all of them first
  968. if (!renderer_->GetReuseShadowMaps() && renderer_->GetDrawShadows() && !lightQueues_.Empty())
  969. {
  970. PROFILE(RenderShadowMaps);
  971. for (Vector<LightBatchQueue>::Iterator i = lightQueues_.Begin(); i != lightQueues_.End(); ++i)
  972. {
  973. if (i->shadowMap_)
  974. RenderShadowMap(*i);
  975. }
  976. }
  977. // Check if forward rendering needs to resolve the multisampled backbuffer to a texture
  978. bool needResolve = !deferred_ && !renderTarget_ && graphics_->GetMultiSample() > 1 && screenBuffers_.Size();
  979. {
  980. PROFILE(RenderCommands);
  981. unsigned lastCommandIndex = 0;
  982. for (unsigned i = 0; i < renderPath_->commands_.Size(); ++i)
  983. {
  984. const RenderPathCommand& command = renderPath_->commands_[i];
  985. if (!command.active_)
  986. continue;
  987. lastCommandIndex = i;
  988. }
  989. for (unsigned i = 0; i < renderPath_->commands_.Size(); ++i)
  990. {
  991. const RenderPathCommand& command = renderPath_->commands_[i];
  992. if (!command.active_)
  993. continue;
  994. // If command writes and reads the target at same time, pingpong automatically
  995. if (CheckViewportRead(command))
  996. {
  997. readBuffer_ = writeBuffer_;
  998. if (!command.outputNames_[0].Compare("viewport", false))
  999. {
  1000. ++writeBuffer_;
  1001. if (writeBuffer_ >= screenBuffers_.Size())
  1002. writeBuffer_ = 0;
  1003. // If this is a scene render pass, must copy the previous viewport contents now
  1004. if (command.type_ == CMD_SCENEPASS && !needResolve)
  1005. {
  1006. BlitFramebuffer(screenBuffers_[readBuffer_], screenBuffers_[writeBuffer_]->GetRenderSurface(), false);
  1007. }
  1008. }
  1009. // Resolve multisampled framebuffer now if necessary
  1010. /// \todo Does not copy the depth buffer
  1011. if (needResolve)
  1012. {
  1013. graphics_->ResolveToTexture(screenBuffers_[readBuffer_], viewRect_);
  1014. needResolve = false;
  1015. }
  1016. }
  1017. // Check which rendertarget will be used on this pass
  1018. if (screenBuffers_.Size() && !needResolve)
  1019. currentRenderTarget_ = screenBuffers_[writeBuffer_]->GetRenderSurface();
  1020. else
  1021. currentRenderTarget_ = renderTarget_;
  1022. // Optimization: if the last command is a quad with output to the viewport, do not use the screenbuffers,
  1023. // but the viewport directly. This saves the extra copy
  1024. if (screenBuffers_.Size() && i == lastCommandIndex && command.type_ == CMD_QUAD && command.outputNames_.Size() == 1 &&
  1025. !command.outputNames_[0].Compare("viewport", false))
  1026. currentRenderTarget_ = renderTarget_;
  1027. switch (command.type_)
  1028. {
  1029. case CMD_CLEAR:
  1030. {
  1031. PROFILE(ClearRenderTarget);
  1032. Color clearColor = command.clearColor_;
  1033. if (command.useFogColor_)
  1034. clearColor = farClipZone_->GetFogColor();
  1035. SetRenderTargets(command);
  1036. graphics_->Clear(command.clearFlags_, clearColor, command.clearDepth_, command.clearStencil_);
  1037. }
  1038. break;
  1039. case CMD_SCENEPASS:
  1040. if (!batchQueues_[command.pass_].IsEmpty())
  1041. {
  1042. PROFILE(RenderScenePass);
  1043. SetRenderTargets(command);
  1044. SetTextures(command);
  1045. graphics_->SetFillMode(camera_->GetFillMode());
  1046. batchQueues_[command.pass_].Draw(this, command.useScissor_, command.markToStencil_);
  1047. }
  1048. break;
  1049. case CMD_QUAD:
  1050. {
  1051. PROFILE(RenderQuad);
  1052. SetRenderTargets(command);
  1053. SetTextures(command);
  1054. RenderQuad(command);
  1055. }
  1056. break;
  1057. case CMD_FORWARDLIGHTS:
  1058. // Render shadow maps + opaque objects' additive lighting
  1059. if (!lightQueues_.Empty())
  1060. {
  1061. PROFILE(RenderLights);
  1062. SetRenderTargets(command);
  1063. for (Vector<LightBatchQueue>::Iterator i = lightQueues_.Begin(); i != lightQueues_.End(); ++i)
  1064. {
  1065. // If reusing shadowmaps, render each of them before the lit batches
  1066. if (renderer_->GetReuseShadowMaps() && i->shadowMap_)
  1067. {
  1068. RenderShadowMap(*i);
  1069. SetRenderTargets(command);
  1070. }
  1071. SetTextures(command);
  1072. graphics_->SetFillMode(camera_->GetFillMode());
  1073. i->litBatches_.Draw(i->light_, this);
  1074. }
  1075. graphics_->SetScissorTest(false);
  1076. graphics_->SetStencilTest(false);
  1077. }
  1078. break;
  1079. case CMD_LIGHTVOLUMES:
  1080. // Render shadow maps + light volumes
  1081. if (!lightQueues_.Empty())
  1082. {
  1083. PROFILE(RenderLightVolumes);
  1084. SetRenderTargets(command);
  1085. for (Vector<LightBatchQueue>::Iterator i = lightQueues_.Begin(); i != lightQueues_.End(); ++i)
  1086. {
  1087. // If reusing shadowmaps, render each of them before the lit batches
  1088. if (renderer_->GetReuseShadowMaps() && i->shadowMap_)
  1089. {
  1090. RenderShadowMap(*i);
  1091. SetRenderTargets(command);
  1092. }
  1093. SetTextures(command);
  1094. for (unsigned j = 0; j < i->volumeBatches_.Size(); ++j)
  1095. {
  1096. SetupLightVolumeBatch(i->volumeBatches_[j]);
  1097. i->volumeBatches_[j].Draw(this);
  1098. }
  1099. }
  1100. graphics_->SetScissorTest(false);
  1101. graphics_->SetStencilTest(false);
  1102. }
  1103. break;
  1104. default:
  1105. break;
  1106. }
  1107. }
  1108. }
  1109. // After executing all commands, reset rendertarget for debug geometry rendering
  1110. graphics_->SetRenderTarget(0, renderTarget_);
  1111. for (unsigned i = 1; i < MAX_RENDERTARGETS; ++i)
  1112. graphics_->SetRenderTarget(i, (RenderSurface*)0);
  1113. graphics_->SetDepthStencil(GetDepthStencil(renderTarget_));
  1114. graphics_->SetViewport(viewRect_);
  1115. graphics_->SetFillMode(FILL_SOLID);
  1116. }
  1117. void View::SetRenderTargets(const RenderPathCommand& command)
  1118. {
  1119. unsigned index = 0;
  1120. IntRect viewPort = viewRect_;
  1121. while (index < command.outputNames_.Size())
  1122. {
  1123. if (!command.outputNames_[index].Compare("viewport", false))
  1124. graphics_->SetRenderTarget(index, currentRenderTarget_);
  1125. else
  1126. {
  1127. StringHash nameHash(command.outputNames_[index]);
  1128. if (renderTargets_.Contains(nameHash))
  1129. {
  1130. Texture2D* texture = renderTargets_[nameHash];
  1131. graphics_->SetRenderTarget(index, texture);
  1132. if (!index)
  1133. {
  1134. // Determine viewport size from rendertarget info
  1135. for (unsigned i = 0; i < renderPath_->renderTargets_.Size(); ++i)
  1136. {
  1137. const RenderTargetInfo& info = renderPath_->renderTargets_[i];
  1138. if (!info.name_.Compare(command.outputNames_[index], false))
  1139. {
  1140. switch (info.sizeMode_)
  1141. {
  1142. // If absolute or a divided viewport size, use the full texture
  1143. case SIZE_ABSOLUTE:
  1144. case SIZE_VIEWPORTDIVISOR:
  1145. viewPort = IntRect(0, 0, texture->GetWidth(), texture->GetHeight());
  1146. break;
  1147. // If a divided rendertarget size, retain the same viewport, but scaled
  1148. case SIZE_RENDERTARGETDIVISOR:
  1149. if (info.size_.x_ && info.size_.y_)
  1150. {
  1151. viewPort = IntRect(viewRect_.left_ / info.size_.x_, viewRect_.top_ / info.size_.y_,
  1152. viewRect_.right_ / info.size_.x_, viewRect_.bottom_ / info.size_.y_);
  1153. }
  1154. break;
  1155. }
  1156. break;
  1157. }
  1158. }
  1159. }
  1160. }
  1161. else
  1162. graphics_->SetRenderTarget(0, (RenderSurface*)0);
  1163. }
  1164. ++index;
  1165. }
  1166. while (index < MAX_RENDERTARGETS)
  1167. {
  1168. graphics_->SetRenderTarget(index, (RenderSurface*)0);
  1169. ++index;
  1170. }
  1171. graphics_->SetDepthStencil(GetDepthStencil(graphics_->GetRenderTarget(0)));
  1172. graphics_->SetViewport(viewPort);
  1173. graphics_->SetColorWrite(true);
  1174. }
  1175. void View::SetTextures(const RenderPathCommand& command)
  1176. {
  1177. ResourceCache* cache = GetSubsystem<ResourceCache>();
  1178. for (unsigned i = 0; i < MAX_TEXTURE_UNITS; ++i)
  1179. {
  1180. if (command.textureNames_[i].Empty())
  1181. continue;
  1182. // Bind the rendered output
  1183. if (!command.textureNames_[i].Compare("viewport", false))
  1184. {
  1185. graphics_->SetTexture(i, screenBuffers_[readBuffer_]);
  1186. continue;
  1187. }
  1188. // Bind a rendertarget
  1189. HashMap<StringHash, Texture2D*>::ConstIterator j = renderTargets_.Find(StringHash(command.textureNames_[i]));
  1190. if (j != renderTargets_.End())
  1191. {
  1192. graphics_->SetTexture(i, j->second_);
  1193. continue;
  1194. }
  1195. // Bind a texture from the resource system
  1196. Texture2D* texture = cache->GetResource<Texture2D>(command.textureNames_[i]);
  1197. if (texture)
  1198. graphics_->SetTexture(i, texture);
  1199. else
  1200. {
  1201. // If requesting a texture fails, clear the texture name to prevent redundant attempts
  1202. RenderPathCommand& cmdWrite = const_cast<RenderPathCommand&>(command);
  1203. cmdWrite.textureNames_[i] = String::EMPTY;
  1204. }
  1205. }
  1206. }
  1207. void View::RenderQuad(const RenderPathCommand& command)
  1208. {
  1209. // Set shaders & shader parameters and textures
  1210. graphics_->SetShaders(renderer_->GetVertexShader(command.vertexShaderName_), renderer_->GetPixelShader(command.pixelShaderName_));
  1211. const HashMap<StringHash, Vector4>& parameters = command.shaderParameters_;
  1212. for (HashMap<StringHash, Vector4>::ConstIterator k = parameters.Begin(); k != parameters.End(); ++k)
  1213. graphics_->SetShaderParameter(k->first_, k->second_);
  1214. float rtWidth = (float)rtSize_.x_;
  1215. float rtHeight = (float)rtSize_.y_;
  1216. float widthRange = 0.5f * viewSize_.x_ / rtWidth;
  1217. float heightRange = 0.5f * viewSize_.y_ / rtHeight;
  1218. #ifdef USE_OPENGL
  1219. Vector4 bufferUVOffset(((float)viewRect_.left_) / rtWidth + widthRange,
  1220. 1.0f - (((float)viewRect_.top_) / rtHeight + heightRange), widthRange, heightRange);
  1221. #else
  1222. Vector4 bufferUVOffset((0.5f + (float)viewRect_.left_) / rtWidth + widthRange,
  1223. (0.5f + (float)viewRect_.top_) / rtHeight + heightRange, widthRange, heightRange);
  1224. #endif
  1225. graphics_->SetShaderParameter(VSP_GBUFFEROFFSETS, bufferUVOffset);
  1226. graphics_->SetShaderParameter(PSP_GBUFFERINVSIZE, Vector4(1.0f / rtWidth, 1.0f / rtHeight, 0.0f, 0.0f));
  1227. // Set per-rendertarget inverse size / offset shader parameters as necessary
  1228. for (unsigned i = 0; i < renderPath_->renderTargets_.Size(); ++i)
  1229. {
  1230. const RenderTargetInfo& rtInfo = renderPath_->renderTargets_[i];
  1231. if (!rtInfo.active_)
  1232. continue;
  1233. StringHash nameHash(rtInfo.name_);
  1234. if (!renderTargets_.Contains(nameHash))
  1235. continue;
  1236. String invSizeName = rtInfo.name_ + "InvSize";
  1237. String offsetsName = rtInfo.name_ + "Offsets";
  1238. float width = (float)renderTargets_[nameHash]->GetWidth();
  1239. float height = (float)renderTargets_[nameHash]->GetHeight();
  1240. graphics_->SetShaderParameter(StringHash(invSizeName), Vector4(1.0f / width, 1.0f / height, 0.0f, 0.0f));
  1241. #ifdef USE_OPENGL
  1242. graphics_->SetShaderParameter(StringHash(offsetsName), Vector4::ZERO);
  1243. #else
  1244. graphics_->SetShaderParameter(StringHash(offsetsName), Vector4(0.5f / width, 0.5f / height, 0.0f, 0.0f));
  1245. #endif
  1246. }
  1247. graphics_->SetBlendMode(BLEND_REPLACE);
  1248. graphics_->SetDepthTest(CMP_ALWAYS);
  1249. graphics_->SetDepthWrite(false);
  1250. graphics_->SetFillMode(FILL_SOLID);
  1251. graphics_->SetScissorTest(false);
  1252. graphics_->SetStencilTest(false);
  1253. DrawFullscreenQuad(false);
  1254. }
  1255. bool View::CheckViewportRead(const RenderPathCommand& command)
  1256. {
  1257. for (unsigned i = 0; i < MAX_TEXTURE_UNITS; ++i)
  1258. {
  1259. if (!command.textureNames_[i].Empty() && !command.textureNames_[i].Compare("viewport", false))
  1260. return true;
  1261. }
  1262. return false;
  1263. }
  1264. void View::AllocateScreenBuffers()
  1265. {
  1266. unsigned neededBuffers = 0;
  1267. #ifdef USE_OPENGL
  1268. // Due to FBO limitations, in OpenGL deferred modes need to render to texture first and then blit to the backbuffer
  1269. // Also, if rendering to a texture with deferred rendering, it must be RGBA to comply with the rest of the buffers.
  1270. if (deferred_ && (!renderTarget_ || (deferred_ && renderTarget_->GetParentTexture()->GetFormat() !=
  1271. Graphics::GetRGBAFormat())))
  1272. neededBuffers = 1;
  1273. #endif
  1274. // If backbuffer is antialiased when using deferred rendering, need to reserve a buffer
  1275. if (deferred_ && !renderTarget_ && graphics_->GetMultiSample() > 1)
  1276. neededBuffers = 1;
  1277. unsigned format = Graphics::GetRGBFormat();
  1278. #ifdef USE_OPENGL
  1279. if (deferred_)
  1280. format = Graphics::GetRGBAFormat();
  1281. #endif
  1282. // Check for commands which read the rendered scene and allocate a buffer for each, up to 2 maximum for pingpong
  1283. /// \todo If the last copy is optimized away, this allocates an extra buffer unnecessarily
  1284. bool hasViewportRead = false;
  1285. bool hasViewportReadWrite = false;
  1286. for (unsigned i = 0; i < renderPath_->commands_.Size(); ++i)
  1287. {
  1288. const RenderPathCommand& command = renderPath_->commands_[i];
  1289. if (!command.active_)
  1290. continue;
  1291. if (CheckViewportRead(command))
  1292. {
  1293. hasViewportRead = true;
  1294. if (!command.outputNames_[0].Compare("viewport", false))
  1295. hasViewportReadWrite = true;
  1296. }
  1297. }
  1298. if (hasViewportRead && !neededBuffers)
  1299. neededBuffers = 1;
  1300. if (hasViewportReadWrite)
  1301. neededBuffers = 2;
  1302. // Allocate screen buffers with filtering active in case the quad commands need that
  1303. // Follow the sRGB mode of the destination rendertarget
  1304. bool sRGB = renderTarget_ ? renderTarget_->GetParentTexture()->GetSRGB() : graphics_->GetSRGB();
  1305. for (unsigned i = 0; i < neededBuffers; ++i)
  1306. screenBuffers_.Push(renderer_->GetScreenBuffer(rtSize_.x_, rtSize_.y_, format, true, sRGB));
  1307. // Allocate extra render targets defined by the rendering path
  1308. for (unsigned i = 0; i < renderPath_->renderTargets_.Size(); ++i)
  1309. {
  1310. const RenderTargetInfo& rtInfo = renderPath_->renderTargets_[i];
  1311. if (!rtInfo.active_)
  1312. continue;
  1313. unsigned width = rtInfo.size_.x_;
  1314. unsigned height = rtInfo.size_.y_;
  1315. if (rtInfo.sizeMode_ == SIZE_VIEWPORTDIVISOR)
  1316. {
  1317. width = viewSize_.x_ / (width ? width : 1);
  1318. height = viewSize_.y_ / (height ? height : 1);
  1319. }
  1320. if (rtInfo.sizeMode_ == SIZE_RENDERTARGETDIVISOR)
  1321. {
  1322. width = rtSize_.x_ / (width ? width : 1);
  1323. height = rtSize_.y_ / (height ? height : 1);
  1324. }
  1325. renderTargets_[StringHash(rtInfo.name_)] = renderer_->GetScreenBuffer(width, height, rtInfo.format_, rtInfo.filtered_, rtInfo.sRGB_);
  1326. }
  1327. }
  1328. void View::BlitFramebuffer(Texture2D* source, RenderSurface* destination, bool depthWrite)
  1329. {
  1330. PROFILE(BlitFramebuffer);
  1331. graphics_->SetBlendMode(BLEND_REPLACE);
  1332. graphics_->SetDepthTest(CMP_ALWAYS);
  1333. graphics_->SetDepthWrite(true);
  1334. graphics_->SetFillMode(FILL_SOLID);
  1335. graphics_->SetScissorTest(false);
  1336. graphics_->SetStencilTest(false);
  1337. graphics_->SetRenderTarget(0, destination);
  1338. for (unsigned i = 1; i < MAX_RENDERTARGETS; ++i)
  1339. graphics_->SetRenderTarget(i, (RenderSurface*)0);
  1340. graphics_->SetDepthStencil(GetDepthStencil(destination));
  1341. graphics_->SetViewport(viewRect_);
  1342. String shaderName = "CopyFramebuffer";
  1343. graphics_->SetShaders(renderer_->GetVertexShader(shaderName), renderer_->GetPixelShader(shaderName));
  1344. float rtWidth = (float)rtSize_.x_;
  1345. float rtHeight = (float)rtSize_.y_;
  1346. float widthRange = 0.5f * viewSize_.x_ / rtWidth;
  1347. float heightRange = 0.5f * viewSize_.y_ / rtHeight;
  1348. #ifdef USE_OPENGL
  1349. Vector4 bufferUVOffset(((float)viewRect_.left_) / rtWidth + widthRange,
  1350. 1.0f - (((float)viewRect_.top_) / rtHeight + heightRange), widthRange, heightRange);
  1351. #else
  1352. Vector4 bufferUVOffset((0.5f + (float)viewRect_.left_) / rtWidth + widthRange,
  1353. (0.5f + (float)viewRect_.top_) / rtHeight + heightRange, widthRange, heightRange);
  1354. #endif
  1355. graphics_->SetShaderParameter(VSP_GBUFFEROFFSETS, bufferUVOffset);
  1356. graphics_->SetTexture(TU_DIFFUSE, source);
  1357. DrawFullscreenQuad(false);
  1358. }
  1359. void View::DrawFullscreenQuad(bool nearQuad)
  1360. {
  1361. Light* quadDirLight = renderer_->GetQuadDirLight();
  1362. Geometry* geometry = renderer_->GetLightGeometry(quadDirLight);
  1363. Matrix3x4 model = Matrix3x4::IDENTITY;
  1364. Matrix4 projection = Matrix4::IDENTITY;
  1365. #ifdef USE_OPENGL
  1366. model.m23_ = nearQuad ? -1.0f : 1.0f;
  1367. #else
  1368. model.m23_ = nearQuad ? 0.0f : 1.0f;
  1369. #endif
  1370. graphics_->SetCullMode(CULL_NONE);
  1371. graphics_->SetShaderParameter(VSP_MODEL, model);
  1372. graphics_->SetShaderParameter(VSP_VIEWPROJ, projection);
  1373. graphics_->ClearTransformSources();
  1374. geometry->Draw(graphics_);
  1375. }
  1376. void View::UpdateOccluders(PODVector<Drawable*>& occluders, Camera* camera)
  1377. {
  1378. float occluderSizeThreshold_ = renderer_->GetOccluderSizeThreshold();
  1379. float halfViewSize = camera->GetHalfViewSize();
  1380. float invOrthoSize = 1.0f / camera->GetOrthoSize();
  1381. for (PODVector<Drawable*>::Iterator i = occluders.Begin(); i != occluders.End();)
  1382. {
  1383. Drawable* occluder = *i;
  1384. bool erase = false;
  1385. if (!occluder->IsInView(frame_, false))
  1386. occluder->UpdateBatches(frame_);
  1387. // Check occluder's draw distance (in main camera view)
  1388. float maxDistance = occluder->GetDrawDistance();
  1389. if (maxDistance <= 0.0f || occluder->GetDistance() <= maxDistance)
  1390. {
  1391. // Check that occluder is big enough on the screen
  1392. const BoundingBox& box = occluder->GetWorldBoundingBox();
  1393. float diagonal = box.Size().Length();
  1394. float compare;
  1395. if (!camera->IsOrthographic())
  1396. compare = diagonal * halfViewSize / occluder->GetDistance();
  1397. else
  1398. compare = diagonal * invOrthoSize;
  1399. if (compare < occluderSizeThreshold_)
  1400. erase = true;
  1401. else
  1402. {
  1403. // Store amount of triangles divided by screen size as a sorting key
  1404. // (best occluders are big and have few triangles)
  1405. occluder->SetSortValue((float)occluder->GetNumOccluderTriangles() / compare);
  1406. }
  1407. }
  1408. else
  1409. erase = true;
  1410. if (erase)
  1411. i = occluders.Erase(i);
  1412. else
  1413. ++i;
  1414. }
  1415. // Sort occluders so that if triangle budget is exceeded, best occluders have been drawn
  1416. if (occluders.Size())
  1417. Sort(occluders.Begin(), occluders.End(), CompareDrawables);
  1418. }
  1419. void View::DrawOccluders(OcclusionBuffer* buffer, const PODVector<Drawable*>& occluders)
  1420. {
  1421. buffer->SetMaxTriangles(maxOccluderTriangles_);
  1422. buffer->Clear();
  1423. for (unsigned i = 0; i < occluders.Size(); ++i)
  1424. {
  1425. Drawable* occluder = occluders[i];
  1426. if (i > 0)
  1427. {
  1428. // For subsequent occluders, do a test against the pixel-level occlusion buffer to see if rendering is necessary
  1429. if (!buffer->IsVisible(occluder->GetWorldBoundingBox()))
  1430. continue;
  1431. }
  1432. // Check for running out of triangles
  1433. if (!occluder->DrawOcclusion(buffer))
  1434. break;
  1435. }
  1436. buffer->BuildDepthHierarchy();
  1437. }
  1438. void View::ProcessLight(LightQueryResult& query, unsigned threadIndex)
  1439. {
  1440. Light* light = query.light_;
  1441. LightType type = light->GetLightType();
  1442. const Frustum& frustum = camera_->GetFrustum();
  1443. // Check if light should be shadowed
  1444. bool isShadowed = drawShadows_ && light->GetCastShadows() && !light->GetPerVertex() && light->GetShadowIntensity() < 1.0f;
  1445. // If shadow distance non-zero, check it
  1446. if (isShadowed && light->GetShadowDistance() > 0.0f && light->GetDistance() > light->GetShadowDistance())
  1447. isShadowed = false;
  1448. // OpenGL ES can not support point light shadows
  1449. #ifdef GL_ES_VERSION_2_0
  1450. if (isShadowed && type == LIGHT_POINT)
  1451. isShadowed = false;
  1452. #endif
  1453. // Get lit geometries. They must match the light mask and be inside the main camera frustum to be considered
  1454. PODVector<Drawable*>& tempDrawables = tempDrawables_[threadIndex];
  1455. query.litGeometries_.Clear();
  1456. switch (type)
  1457. {
  1458. case LIGHT_DIRECTIONAL:
  1459. for (unsigned i = 0; i < geometries_.Size(); ++i)
  1460. {
  1461. if (GetLightMask(geometries_[i]) & light->GetLightMask())
  1462. query.litGeometries_.Push(geometries_[i]);
  1463. }
  1464. break;
  1465. case LIGHT_SPOT:
  1466. {
  1467. FrustumOctreeQuery octreeQuery(tempDrawables, light->GetFrustum(), DRAWABLE_GEOMETRY, camera_->GetViewMask());
  1468. octree_->GetDrawables(octreeQuery);
  1469. for (unsigned i = 0; i < tempDrawables.Size(); ++i)
  1470. {
  1471. if (tempDrawables[i]->IsInView(frame_) && (GetLightMask(tempDrawables[i]) & light->GetLightMask()))
  1472. query.litGeometries_.Push(tempDrawables[i]);
  1473. }
  1474. }
  1475. break;
  1476. case LIGHT_POINT:
  1477. {
  1478. SphereOctreeQuery octreeQuery(tempDrawables, Sphere(light->GetNode()->GetWorldPosition(), light->GetRange()),
  1479. DRAWABLE_GEOMETRY, camera_->GetViewMask());
  1480. octree_->GetDrawables(octreeQuery);
  1481. for (unsigned i = 0; i < tempDrawables.Size(); ++i)
  1482. {
  1483. if (tempDrawables[i]->IsInView(frame_) && (GetLightMask(tempDrawables[i]) & light->GetLightMask()))
  1484. query.litGeometries_.Push(tempDrawables[i]);
  1485. }
  1486. }
  1487. break;
  1488. }
  1489. // If no lit geometries or not shadowed, no need to process shadow cameras
  1490. if (query.litGeometries_.Empty() || !isShadowed)
  1491. {
  1492. query.numSplits_ = 0;
  1493. return;
  1494. }
  1495. // Determine number of shadow cameras and setup their initial positions
  1496. SetupShadowCameras(query);
  1497. // Process each split for shadow casters
  1498. query.shadowCasters_.Clear();
  1499. for (unsigned i = 0; i < query.numSplits_; ++i)
  1500. {
  1501. Camera* shadowCamera = query.shadowCameras_[i];
  1502. const Frustum& shadowCameraFrustum = shadowCamera->GetFrustum();
  1503. query.shadowCasterBegin_[i] = query.shadowCasterEnd_[i] = query.shadowCasters_.Size();
  1504. // For point light check that the face is visible: if not, can skip the split
  1505. if (type == LIGHT_POINT && frustum.IsInsideFast(BoundingBox(shadowCameraFrustum)) == OUTSIDE)
  1506. continue;
  1507. // For directional light check that the split is inside the visible scene: if not, can skip the split
  1508. if (type == LIGHT_DIRECTIONAL)
  1509. {
  1510. if (minZ_ > query.shadowFarSplits_[i])
  1511. continue;
  1512. if (maxZ_ < query.shadowNearSplits_[i])
  1513. continue;
  1514. // Reuse lit geometry query for all except directional lights
  1515. ShadowCasterOctreeQuery query(tempDrawables, shadowCameraFrustum, DRAWABLE_GEOMETRY,
  1516. camera_->GetViewMask());
  1517. octree_->GetDrawables(query);
  1518. }
  1519. // Check which shadow casters actually contribute to the shadowing
  1520. ProcessShadowCasters(query, tempDrawables, i);
  1521. }
  1522. // If no shadow casters, the light can be rendered unshadowed. At this point we have not allocated a shadow map yet, so the
  1523. // only cost has been the shadow camera setup & queries
  1524. if (query.shadowCasters_.Empty())
  1525. query.numSplits_ = 0;
  1526. }
  1527. void View::ProcessShadowCasters(LightQueryResult& query, const PODVector<Drawable*>& drawables, unsigned splitIndex)
  1528. {
  1529. Light* light = query.light_;
  1530. Camera* shadowCamera = query.shadowCameras_[splitIndex];
  1531. const Frustum& shadowCameraFrustum = shadowCamera->GetFrustum();
  1532. const Matrix3x4& lightView = shadowCamera->GetInverseWorldTransform();
  1533. const Matrix4& lightProj = shadowCamera->GetProjection();
  1534. LightType type = light->GetLightType();
  1535. query.shadowCasterBox_[splitIndex].defined_ = false;
  1536. // Transform scene frustum into shadow camera's view space for shadow caster visibility check. For point & spot lights,
  1537. // we can use the whole scene frustum. For directional lights, use the intersection of the scene frustum and the split
  1538. // frustum, so that shadow casters do not get rendered into unnecessary splits
  1539. Frustum lightViewFrustum;
  1540. if (type != LIGHT_DIRECTIONAL)
  1541. lightViewFrustum = camera_->GetSplitFrustum(minZ_, maxZ_).Transformed(lightView);
  1542. else
  1543. lightViewFrustum = camera_->GetSplitFrustum(Max(minZ_, query.shadowNearSplits_[splitIndex]),
  1544. Min(maxZ_, query.shadowFarSplits_[splitIndex])).Transformed(lightView);
  1545. BoundingBox lightViewFrustumBox(lightViewFrustum);
  1546. // Check for degenerate split frustum: in that case there is no need to get shadow casters
  1547. if (lightViewFrustum.vertices_[0] == lightViewFrustum.vertices_[4])
  1548. return;
  1549. BoundingBox lightViewBox;
  1550. BoundingBox lightProjBox;
  1551. for (PODVector<Drawable*>::ConstIterator i = drawables.Begin(); i != drawables.End(); ++i)
  1552. {
  1553. Drawable* drawable = *i;
  1554. // In case this is a point or spot light query result reused for optimization, we may have non-shadowcasters included.
  1555. // Check for that first
  1556. if (!drawable->GetCastShadows())
  1557. continue;
  1558. // Check shadow mask
  1559. if (!(GetShadowMask(drawable) & light->GetLightMask()))
  1560. continue;
  1561. // For point light, check that this drawable is inside the split shadow camera frustum
  1562. if (type == LIGHT_POINT && shadowCameraFrustum.IsInsideFast(drawable->GetWorldBoundingBox()) == OUTSIDE)
  1563. continue;
  1564. // Note: as lights are processed threaded, it is possible a drawable's UpdateBatches() function is called several
  1565. // times. However, this should not cause problems as no scene modification happens at this point.
  1566. if (!drawable->IsInView(frame_, false))
  1567. drawable->UpdateBatches(frame_);
  1568. // Check shadow distance
  1569. float maxShadowDistance = drawable->GetShadowDistance();
  1570. float drawDistance = drawable->GetDrawDistance();
  1571. if (drawDistance > 0.0f && (maxShadowDistance <= 0.0f || drawDistance < maxShadowDistance))
  1572. maxShadowDistance = drawDistance;
  1573. if (maxShadowDistance > 0.0f && drawable->GetDistance() > maxShadowDistance)
  1574. continue;
  1575. // Project shadow caster bounding box to light view space for visibility check
  1576. lightViewBox = drawable->GetWorldBoundingBox().Transformed(lightView);
  1577. if (IsShadowCasterVisible(drawable, lightViewBox, shadowCamera, lightView, lightViewFrustum, lightViewFrustumBox))
  1578. {
  1579. // Merge to shadow caster bounding box and add to the list
  1580. if (type == LIGHT_DIRECTIONAL)
  1581. query.shadowCasterBox_[splitIndex].Merge(lightViewBox);
  1582. else
  1583. {
  1584. lightProjBox = lightViewBox.Projected(lightProj);
  1585. query.shadowCasterBox_[splitIndex].Merge(lightProjBox);
  1586. }
  1587. query.shadowCasters_.Push(drawable);
  1588. }
  1589. }
  1590. query.shadowCasterEnd_[splitIndex] = query.shadowCasters_.Size();
  1591. }
  1592. bool View::IsShadowCasterVisible(Drawable* drawable, BoundingBox lightViewBox, Camera* shadowCamera, const Matrix3x4& lightView,
  1593. const Frustum& lightViewFrustum, const BoundingBox& lightViewFrustumBox)
  1594. {
  1595. if (shadowCamera->IsOrthographic())
  1596. {
  1597. // Extrude the light space bounding box up to the far edge of the frustum's light space bounding box
  1598. lightViewBox.max_.z_ = Max(lightViewBox.max_.z_,lightViewFrustumBox.max_.z_);
  1599. return lightViewFrustum.IsInsideFast(lightViewBox) != OUTSIDE;
  1600. }
  1601. else
  1602. {
  1603. // If light is not directional, can do a simple check: if object is visible, its shadow is too
  1604. if (drawable->IsInView(frame_))
  1605. return true;
  1606. // For perspective lights, extrusion direction depends on the position of the shadow caster
  1607. Vector3 center = lightViewBox.Center();
  1608. Ray extrusionRay(center, center.Normalized());
  1609. float extrusionDistance = shadowCamera->GetFarClip();
  1610. float originalDistance = Clamp(center.Length(), M_EPSILON, extrusionDistance);
  1611. // Because of the perspective, the bounding box must also grow when it is extruded to the distance
  1612. float sizeFactor = extrusionDistance / originalDistance;
  1613. // Calculate the endpoint box and merge it to the original. Because it's axis-aligned, it will be larger
  1614. // than necessary, so the test will be conservative
  1615. Vector3 newCenter = extrusionDistance * extrusionRay.direction_;
  1616. Vector3 newHalfSize = lightViewBox.Size() * sizeFactor * 0.5f;
  1617. BoundingBox extrudedBox(newCenter - newHalfSize, newCenter + newHalfSize);
  1618. lightViewBox.Merge(extrudedBox);
  1619. return lightViewFrustum.IsInsideFast(lightViewBox) != OUTSIDE;
  1620. }
  1621. }
  1622. IntRect View::GetShadowMapViewport(Light* light, unsigned splitIndex, Texture2D* shadowMap)
  1623. {
  1624. unsigned width = shadowMap->GetWidth();
  1625. unsigned height = shadowMap->GetHeight();
  1626. int maxCascades = renderer_->GetMaxShadowCascades();
  1627. switch (light->GetLightType())
  1628. {
  1629. case LIGHT_DIRECTIONAL:
  1630. if (maxCascades == 1)
  1631. return IntRect(0, 0, width, height);
  1632. else if (maxCascades == 2)
  1633. return IntRect(splitIndex * width / 2, 0, (splitIndex + 1) * width / 2, height);
  1634. else
  1635. return IntRect((splitIndex & 1) * width / 2, (splitIndex / 2) * height / 2, ((splitIndex & 1) + 1) * width / 2,
  1636. (splitIndex / 2 + 1) * height / 2);
  1637. case LIGHT_SPOT:
  1638. return IntRect(0, 0, width, height);
  1639. case LIGHT_POINT:
  1640. return IntRect((splitIndex & 1) * width / 2, (splitIndex / 2) * height / 3, ((splitIndex & 1) + 1) * width / 2,
  1641. (splitIndex / 2 + 1) * height / 3);
  1642. }
  1643. return IntRect();
  1644. }
  1645. void View::SetupShadowCameras(LightQueryResult& query)
  1646. {
  1647. Light* light = query.light_;
  1648. int splits = 0;
  1649. switch (light->GetLightType())
  1650. {
  1651. case LIGHT_DIRECTIONAL:
  1652. {
  1653. const CascadeParameters& cascade = light->GetShadowCascade();
  1654. float nearSplit = camera_->GetNearClip();
  1655. float farSplit;
  1656. while (splits < renderer_->GetMaxShadowCascades())
  1657. {
  1658. // If split is completely beyond camera far clip, we are done
  1659. if (nearSplit > camera_->GetFarClip())
  1660. break;
  1661. farSplit = Min(camera_->GetFarClip(), cascade.splits_[splits]);
  1662. if (farSplit <= nearSplit)
  1663. break;
  1664. // Setup the shadow camera for the split
  1665. Camera* shadowCamera = renderer_->GetShadowCamera();
  1666. query.shadowCameras_[splits] = shadowCamera;
  1667. query.shadowNearSplits_[splits] = nearSplit;
  1668. query.shadowFarSplits_[splits] = farSplit;
  1669. SetupDirLightShadowCamera(shadowCamera, light, nearSplit, farSplit);
  1670. nearSplit = farSplit;
  1671. ++splits;
  1672. }
  1673. }
  1674. break;
  1675. case LIGHT_SPOT:
  1676. {
  1677. Camera* shadowCamera = renderer_->GetShadowCamera();
  1678. query.shadowCameras_[0] = shadowCamera;
  1679. Node* cameraNode = shadowCamera->GetNode();
  1680. Node* lightNode = light->GetNode();
  1681. cameraNode->SetTransform(lightNode->GetWorldPosition(), lightNode->GetWorldRotation());
  1682. shadowCamera->SetNearClip(light->GetShadowNearFarRatio() * light->GetRange());
  1683. shadowCamera->SetFarClip(light->GetRange());
  1684. shadowCamera->SetFov(light->GetFov());
  1685. shadowCamera->SetAspectRatio(light->GetAspectRatio());
  1686. splits = 1;
  1687. }
  1688. break;
  1689. case LIGHT_POINT:
  1690. {
  1691. for (unsigned i = 0; i < MAX_CUBEMAP_FACES; ++i)
  1692. {
  1693. Camera* shadowCamera = renderer_->GetShadowCamera();
  1694. query.shadowCameras_[i] = shadowCamera;
  1695. Node* cameraNode = shadowCamera->GetNode();
  1696. // When making a shadowed point light, align the splits along X, Y and Z axes regardless of light rotation
  1697. cameraNode->SetPosition(light->GetNode()->GetWorldPosition());
  1698. cameraNode->SetDirection(directions[i]);
  1699. shadowCamera->SetNearClip(light->GetShadowNearFarRatio() * light->GetRange());
  1700. shadowCamera->SetFarClip(light->GetRange());
  1701. shadowCamera->SetFov(90.0f);
  1702. shadowCamera->SetAspectRatio(1.0f);
  1703. }
  1704. splits = MAX_CUBEMAP_FACES;
  1705. }
  1706. break;
  1707. }
  1708. query.numSplits_ = splits;
  1709. }
  1710. void View::SetupDirLightShadowCamera(Camera* shadowCamera, Light* light, float nearSplit, float farSplit)
  1711. {
  1712. Node* shadowCameraNode = shadowCamera->GetNode();
  1713. Node* lightNode = light->GetNode();
  1714. float extrusionDistance = camera_->GetFarClip();
  1715. const FocusParameters& parameters = light->GetShadowFocus();
  1716. // Calculate initial position & rotation
  1717. Vector3 pos = cameraNode_->GetWorldPosition() - extrusionDistance * lightNode->GetWorldDirection();
  1718. shadowCameraNode->SetTransform(pos, lightNode->GetWorldRotation());
  1719. // Calculate main camera shadowed frustum in light's view space
  1720. farSplit = Min(farSplit, camera_->GetFarClip());
  1721. // Use the scene Z bounds to limit frustum size if applicable
  1722. if (parameters.focus_)
  1723. {
  1724. nearSplit = Max(minZ_, nearSplit);
  1725. farSplit = Min(maxZ_, farSplit);
  1726. }
  1727. Frustum splitFrustum = camera_->GetSplitFrustum(nearSplit, farSplit);
  1728. Polyhedron frustumVolume;
  1729. frustumVolume.Define(splitFrustum);
  1730. // If focusing enabled, clip the frustum volume by the combined bounding box of the lit geometries within the frustum
  1731. if (parameters.focus_)
  1732. {
  1733. BoundingBox litGeometriesBox;
  1734. for (unsigned i = 0; i < geometries_.Size(); ++i)
  1735. {
  1736. Drawable* drawable = geometries_[i];
  1737. // Skip skyboxes as they have undefinedly large bounding box size
  1738. if (drawable->GetType() == Skybox::GetTypeStatic())
  1739. continue;
  1740. if (drawable->GetMinZ() <= farSplit && drawable->GetMaxZ() >= nearSplit &&
  1741. (GetLightMask(drawable) & light->GetLightMask()))
  1742. litGeometriesBox.Merge(drawable->GetWorldBoundingBox());
  1743. }
  1744. if (litGeometriesBox.defined_)
  1745. {
  1746. frustumVolume.Clip(litGeometriesBox);
  1747. // If volume became empty, restore it to avoid zero size
  1748. if (frustumVolume.Empty())
  1749. frustumVolume.Define(splitFrustum);
  1750. }
  1751. }
  1752. // Transform frustum volume to light space
  1753. const Matrix3x4& lightView = shadowCamera->GetInverseWorldTransform();
  1754. frustumVolume.Transform(lightView);
  1755. // Fit the frustum volume inside a bounding box. If uniform size, use a sphere instead
  1756. BoundingBox shadowBox;
  1757. if (!parameters.nonUniform_)
  1758. shadowBox.Define(Sphere(frustumVolume));
  1759. else
  1760. shadowBox.Define(frustumVolume);
  1761. shadowCamera->SetOrthographic(true);
  1762. shadowCamera->SetAspectRatio(1.0f);
  1763. shadowCamera->SetNearClip(0.0f);
  1764. shadowCamera->SetFarClip(shadowBox.max_.z_);
  1765. // Center shadow camera on the bounding box. Can not snap to texels yet as the shadow map viewport is unknown
  1766. QuantizeDirLightShadowCamera(shadowCamera, light, IntRect(0, 0, 0, 0), shadowBox);
  1767. }
  1768. void View::FinalizeShadowCamera(Camera* shadowCamera, Light* light, const IntRect& shadowViewport,
  1769. const BoundingBox& shadowCasterBox)
  1770. {
  1771. const FocusParameters& parameters = light->GetShadowFocus();
  1772. float shadowMapWidth = (float)(shadowViewport.Width());
  1773. LightType type = light->GetLightType();
  1774. if (type == LIGHT_DIRECTIONAL)
  1775. {
  1776. BoundingBox shadowBox;
  1777. shadowBox.max_.y_ = shadowCamera->GetOrthoSize() * 0.5f;
  1778. shadowBox.max_.x_ = shadowCamera->GetAspectRatio() * shadowBox.max_.y_;
  1779. shadowBox.min_.y_ = -shadowBox.max_.y_;
  1780. shadowBox.min_.x_ = -shadowBox.max_.x_;
  1781. // Requantize and snap to shadow map texels
  1782. QuantizeDirLightShadowCamera(shadowCamera, light, shadowViewport, shadowBox);
  1783. }
  1784. if (type == LIGHT_SPOT)
  1785. {
  1786. if (parameters.focus_)
  1787. {
  1788. float viewSizeX = Max(Abs(shadowCasterBox.min_.x_), Abs(shadowCasterBox.max_.x_));
  1789. float viewSizeY = Max(Abs(shadowCasterBox.min_.y_), Abs(shadowCasterBox.max_.y_));
  1790. float viewSize = Max(viewSizeX, viewSizeY);
  1791. // Scale the quantization parameters, because view size is in projection space (-1.0 - 1.0)
  1792. float invOrthoSize = 1.0f / shadowCamera->GetOrthoSize();
  1793. float quantize = parameters.quantize_ * invOrthoSize;
  1794. float minView = parameters.minView_ * invOrthoSize;
  1795. viewSize = Max(ceilf(viewSize / quantize) * quantize, minView);
  1796. if (viewSize < 1.0f)
  1797. shadowCamera->SetZoom(1.0f / viewSize);
  1798. }
  1799. }
  1800. // Perform a finalization step for all lights: ensure zoom out of 2 pixels to eliminate border filtering issues
  1801. // For point lights use 4 pixels, as they must not cross sides of the virtual cube map (maximum 3x3 PCF)
  1802. if (shadowCamera->GetZoom() >= 1.0f)
  1803. {
  1804. if (light->GetLightType() != LIGHT_POINT)
  1805. shadowCamera->SetZoom(shadowCamera->GetZoom() * ((shadowMapWidth - 2.0f) / shadowMapWidth));
  1806. else
  1807. {
  1808. #ifdef USE_OPENGL
  1809. shadowCamera->SetZoom(shadowCamera->GetZoom() * ((shadowMapWidth - 3.0f) / shadowMapWidth));
  1810. #else
  1811. shadowCamera->SetZoom(shadowCamera->GetZoom() * ((shadowMapWidth - 4.0f) / shadowMapWidth));
  1812. #endif
  1813. }
  1814. }
  1815. }
  1816. void View::QuantizeDirLightShadowCamera(Camera* shadowCamera, Light* light, const IntRect& shadowViewport,
  1817. const BoundingBox& viewBox)
  1818. {
  1819. Node* shadowCameraNode = shadowCamera->GetNode();
  1820. const FocusParameters& parameters = light->GetShadowFocus();
  1821. float shadowMapWidth = (float)(shadowViewport.Width());
  1822. float minX = viewBox.min_.x_;
  1823. float minY = viewBox.min_.y_;
  1824. float maxX = viewBox.max_.x_;
  1825. float maxY = viewBox.max_.y_;
  1826. Vector2 center((minX + maxX) * 0.5f, (minY + maxY) * 0.5f);
  1827. Vector2 viewSize(maxX - minX, maxY - minY);
  1828. // Quantize size to reduce swimming
  1829. // Note: if size is uniform and there is no focusing, quantization is unnecessary
  1830. if (parameters.nonUniform_)
  1831. {
  1832. viewSize.x_ = ceilf(sqrtf(viewSize.x_ / parameters.quantize_));
  1833. viewSize.y_ = ceilf(sqrtf(viewSize.y_ / parameters.quantize_));
  1834. viewSize.x_ = Max(viewSize.x_ * viewSize.x_ * parameters.quantize_, parameters.minView_);
  1835. viewSize.y_ = Max(viewSize.y_ * viewSize.y_ * parameters.quantize_, parameters.minView_);
  1836. }
  1837. else if (parameters.focus_)
  1838. {
  1839. viewSize.x_ = Max(viewSize.x_, viewSize.y_);
  1840. viewSize.x_ = ceilf(sqrtf(viewSize.x_ / parameters.quantize_));
  1841. viewSize.x_ = Max(viewSize.x_ * viewSize.x_ * parameters.quantize_, parameters.minView_);
  1842. viewSize.y_ = viewSize.x_;
  1843. }
  1844. shadowCamera->SetOrthoSize(viewSize);
  1845. // Center shadow camera to the view space bounding box
  1846. Quaternion rot(shadowCameraNode->GetWorldRotation());
  1847. Vector3 adjust(center.x_, center.y_, 0.0f);
  1848. shadowCameraNode->Translate(rot * adjust);
  1849. // If the shadow map viewport is known, snap to whole texels
  1850. if (shadowMapWidth > 0.0f)
  1851. {
  1852. Vector3 viewPos(rot.Inverse() * shadowCameraNode->GetWorldPosition());
  1853. // Take into account that shadow map border will not be used
  1854. float invActualSize = 1.0f / (shadowMapWidth - 2.0f);
  1855. Vector2 texelSize(viewSize.x_ * invActualSize, viewSize.y_ * invActualSize);
  1856. Vector3 snap(-fmodf(viewPos.x_, texelSize.x_), -fmodf(viewPos.y_, texelSize.y_), 0.0f);
  1857. shadowCameraNode->Translate(rot * snap);
  1858. }
  1859. }
  1860. void View::FindZone(Drawable* drawable)
  1861. {
  1862. Vector3 center = drawable->GetWorldBoundingBox().Center();
  1863. int bestPriority = M_MIN_INT;
  1864. Zone* newZone = 0;
  1865. // If bounding box center is in view, the zone assignment is conclusive also for next frames. Otherwise it is temporary
  1866. // (possibly incorrect) and must be re-evaluated on the next frame
  1867. bool temporary = !camera_->GetFrustum().IsInside(center);
  1868. // First check if the last zone remains a conclusive result
  1869. Zone* lastZone = drawable->GetLastZone();
  1870. if (lastZone && lastZone->GetPriority() >= highestZonePriority_ &&
  1871. (drawable->GetZoneMask() & lastZone->GetZoneMask()) && lastZone->IsInside(center))
  1872. newZone = lastZone;
  1873. else
  1874. {
  1875. for (PODVector<Zone*>::Iterator i = zones_.Begin(); i != zones_.End(); ++i)
  1876. {
  1877. Zone* zone = *i;
  1878. int priority = zone->GetPriority();
  1879. if (priority > bestPriority && (drawable->GetZoneMask() & zone->GetZoneMask()) && zone->IsInside(center))
  1880. {
  1881. newZone = zone;
  1882. bestPriority = priority;
  1883. }
  1884. }
  1885. }
  1886. drawable->SetZone(newZone, temporary);
  1887. }
  1888. Zone* View::GetZone(Drawable* drawable)
  1889. {
  1890. if (cameraZoneOverride_)
  1891. return cameraZone_;
  1892. Zone* drawableZone = drawable->GetZone();
  1893. return drawableZone ? drawableZone : cameraZone_;
  1894. }
  1895. unsigned View::GetLightMask(Drawable* drawable)
  1896. {
  1897. return drawable->GetLightMask() & GetZone(drawable)->GetLightMask();
  1898. }
  1899. unsigned View::GetShadowMask(Drawable* drawable)
  1900. {
  1901. return drawable->GetShadowMask() & GetZone(drawable)->GetShadowMask();
  1902. }
  1903. unsigned long long View::GetVertexLightQueueHash(const PODVector<Light*>& vertexLights)
  1904. {
  1905. unsigned long long hash = 0;
  1906. for (PODVector<Light*>::ConstIterator i = vertexLights.Begin(); i != vertexLights.End(); ++i)
  1907. hash += (unsigned long long)(*i);
  1908. return hash;
  1909. }
  1910. Technique* View::GetTechnique(Drawable* drawable, Material* material)
  1911. {
  1912. if (!material)
  1913. {
  1914. const Vector<TechniqueEntry>& techniques = renderer_->GetDefaultMaterial()->GetTechniques();
  1915. return techniques.Size() ? techniques[0].technique_ : (Technique*)0;
  1916. }
  1917. const Vector<TechniqueEntry>& techniques = material->GetTechniques();
  1918. // If only one technique, no choice
  1919. if (techniques.Size() == 1)
  1920. return techniques[0].technique_;
  1921. else
  1922. {
  1923. float lodDistance = drawable->GetLodDistance();
  1924. // Check for suitable technique. Techniques should be ordered like this:
  1925. // Most distant & highest quality
  1926. // Most distant & lowest quality
  1927. // Second most distant & highest quality
  1928. // ...
  1929. for (unsigned i = 0; i < techniques.Size(); ++i)
  1930. {
  1931. const TechniqueEntry& entry = techniques[i];
  1932. Technique* tech = entry.technique_;
  1933. if (!tech || (tech->IsSM3() && !graphics_->GetSM3Support()) || materialQuality_ < entry.qualityLevel_)
  1934. continue;
  1935. if (lodDistance >= entry.lodDistance_)
  1936. return tech;
  1937. }
  1938. // If no suitable technique found, fallback to the last
  1939. return techniques.Size() ? techniques.Back().technique_ : (Technique*)0;
  1940. }
  1941. }
  1942. void View::CheckMaterialForAuxView(Material* material)
  1943. {
  1944. const SharedPtr<Texture>* textures = material->GetTextures();
  1945. for (unsigned i = 0; i < MAX_MATERIAL_TEXTURE_UNITS; ++i)
  1946. {
  1947. Texture* texture = textures[i];
  1948. if (texture && texture->GetUsage() == TEXTURE_RENDERTARGET)
  1949. {
  1950. // Have to check cube & 2D textures separately
  1951. if (texture->GetType() == Texture2D::GetTypeStatic())
  1952. {
  1953. Texture2D* tex2D = static_cast<Texture2D*>(texture);
  1954. RenderSurface* target = tex2D->GetRenderSurface();
  1955. if (target && target->GetUpdateMode() == SURFACE_UPDATEVISIBLE)
  1956. target->QueueUpdate();
  1957. }
  1958. else if (texture->GetType() == TextureCube::GetTypeStatic())
  1959. {
  1960. TextureCube* texCube = static_cast<TextureCube*>(texture);
  1961. for (unsigned j = 0; j < MAX_CUBEMAP_FACES; ++j)
  1962. {
  1963. RenderSurface* target = texCube->GetRenderSurface((CubeMapFace)j);
  1964. if (target && target->GetUpdateMode() == SURFACE_UPDATEVISIBLE)
  1965. target->QueueUpdate();
  1966. }
  1967. }
  1968. }
  1969. }
  1970. // Flag as processed so we can early-out next time we come across this material on the same frame
  1971. material->MarkForAuxView(frame_.frameNumber_);
  1972. }
  1973. void View::AddBatchToQueue(BatchQueue& batchQueue, Batch& batch, Technique* tech, bool allowInstancing, bool allowShadows)
  1974. {
  1975. if (!batch.material_)
  1976. batch.material_ = renderer_->GetDefaultMaterial();
  1977. // Convert to instanced if possible
  1978. if (allowInstancing && batch.geometryType_ == GEOM_STATIC && batch.geometry_->GetIndexBuffer() && !batch.shaderData_ &&
  1979. !batch.overrideView_)
  1980. batch.geometryType_ = GEOM_INSTANCED;
  1981. if (batch.geometryType_ == GEOM_INSTANCED)
  1982. {
  1983. HashMap<BatchGroupKey, BatchGroup>* groups = batch.isBase_ ? &batchQueue.baseBatchGroups_ : &batchQueue.batchGroups_;
  1984. BatchGroupKey key(batch);
  1985. HashMap<BatchGroupKey, BatchGroup>::Iterator i = groups->Find(key);
  1986. if (i == groups->End())
  1987. {
  1988. // Create a new group based on the batch
  1989. renderer_->SetBatchShaders(batch, tech, allowShadows);
  1990. BatchGroup newGroup(batch);
  1991. newGroup.CalculateSortKey();
  1992. newGroup.instances_.Push(InstanceData(batch.worldTransform_, batch.distance_));
  1993. groups->Insert(MakePair(key, newGroup));
  1994. }
  1995. else
  1996. i->second_.instances_.Push(InstanceData(batch.worldTransform_, batch.distance_));
  1997. }
  1998. else
  1999. {
  2000. renderer_->SetBatchShaders(batch, tech, allowShadows);
  2001. batch.CalculateSortKey();
  2002. batchQueue.batches_.Push(batch);
  2003. }
  2004. }
  2005. void View::PrepareInstancingBuffer()
  2006. {
  2007. PROFILE(PrepareInstancingBuffer);
  2008. unsigned totalInstances = 0;
  2009. for (HashMap<StringHash, BatchQueue>::Iterator i = batchQueues_.Begin(); i != batchQueues_.End(); ++i)
  2010. totalInstances += i->second_.GetNumInstances();
  2011. for (Vector<LightBatchQueue>::Iterator i = lightQueues_.Begin(); i != lightQueues_.End(); ++i)
  2012. {
  2013. for (unsigned j = 0; j < i->shadowSplits_.Size(); ++j)
  2014. totalInstances += i->shadowSplits_[j].shadowBatches_.GetNumInstances();
  2015. totalInstances += i->litBatches_.GetNumInstances();
  2016. }
  2017. // If fail to set buffer size, fall back to per-group locking
  2018. if (totalInstances && renderer_->ResizeInstancingBuffer(totalInstances))
  2019. {
  2020. VertexBuffer* instancingBuffer = renderer_->GetInstancingBuffer();
  2021. unsigned freeIndex = 0;
  2022. void* dest = instancingBuffer->Lock(0, totalInstances, true);
  2023. if (!dest)
  2024. return;
  2025. for (HashMap<StringHash, BatchQueue>::Iterator i = batchQueues_.Begin(); i != batchQueues_.End(); ++i)
  2026. i->second_.SetTransforms(this, dest, freeIndex);
  2027. for (Vector<LightBatchQueue>::Iterator i = lightQueues_.Begin(); i != lightQueues_.End(); ++i)
  2028. {
  2029. for (unsigned j = 0; j < i->shadowSplits_.Size(); ++j)
  2030. i->shadowSplits_[j].shadowBatches_.SetTransforms(this, dest, freeIndex);
  2031. i->litBatches_.SetTransforms(this, dest, freeIndex);
  2032. }
  2033. instancingBuffer->Unlock();
  2034. }
  2035. }
  2036. void View::SetupLightVolumeBatch(Batch& batch)
  2037. {
  2038. Light* light = batch.lightQueue_->light_;
  2039. LightType type = light->GetLightType();
  2040. Vector3 cameraPos = cameraNode_->GetWorldPosition();
  2041. float lightDist;
  2042. graphics_->SetBlendMode(BLEND_ADD);
  2043. graphics_->SetDepthBias(0.0f, 0.0f);
  2044. graphics_->SetDepthWrite(false);
  2045. graphics_->SetFillMode(FILL_SOLID);
  2046. if (type != LIGHT_DIRECTIONAL)
  2047. {
  2048. if (type == LIGHT_POINT)
  2049. lightDist = Sphere(light->GetNode()->GetWorldPosition(), light->GetRange() * 1.25f).Distance(cameraPos);
  2050. else
  2051. lightDist = light->GetFrustum().Distance(cameraPos);
  2052. // Draw front faces if not inside light volume
  2053. if (lightDist < camera_->GetNearClip() * 2.0f)
  2054. {
  2055. renderer_->SetCullMode(CULL_CW, camera_);
  2056. graphics_->SetDepthTest(CMP_GREATER);
  2057. }
  2058. else
  2059. {
  2060. renderer_->SetCullMode(CULL_CCW, camera_);
  2061. graphics_->SetDepthTest(CMP_LESSEQUAL);
  2062. }
  2063. }
  2064. else
  2065. {
  2066. // In case the same camera is used for multiple views with differing aspect ratios (not recommended)
  2067. // refresh the directional light's model transform before rendering
  2068. light->GetVolumeTransform(camera_);
  2069. graphics_->SetCullMode(CULL_NONE);
  2070. graphics_->SetDepthTest(CMP_ALWAYS);
  2071. }
  2072. graphics_->SetScissorTest(false);
  2073. graphics_->SetStencilTest(true, CMP_NOTEQUAL, OP_KEEP, OP_KEEP, OP_KEEP, 0, light->GetLightMask());
  2074. }
  2075. void View::RenderShadowMap(const LightBatchQueue& queue)
  2076. {
  2077. PROFILE(RenderShadowMap);
  2078. Texture2D* shadowMap = queue.shadowMap_;
  2079. graphics_->SetTexture(TU_SHADOWMAP, 0);
  2080. graphics_->SetColorWrite(false);
  2081. graphics_->SetFillMode(FILL_SOLID);
  2082. graphics_->SetStencilTest(false);
  2083. graphics_->SetRenderTarget(0, shadowMap->GetRenderSurface()->GetLinkedRenderTarget());
  2084. graphics_->SetDepthStencil(shadowMap);
  2085. graphics_->SetViewport(IntRect(0, 0, shadowMap->GetWidth(), shadowMap->GetHeight()));
  2086. graphics_->Clear(CLEAR_DEPTH);
  2087. // Set shadow depth bias
  2088. BiasParameters parameters = queue.light_->GetShadowBias();
  2089. // Adjust the light's constant depth bias according to global shadow map resolution
  2090. /// \todo Should remove this adjustment and find a more flexible solution
  2091. unsigned shadowMapSize = renderer_->GetShadowMapSize();
  2092. if (shadowMapSize <= 512)
  2093. parameters.constantBias_ *= 2.0f;
  2094. else if (shadowMapSize >= 2048)
  2095. parameters.constantBias_ *= 0.5f;
  2096. graphics_->SetDepthBias(parameters.constantBias_, parameters.slopeScaledBias_);
  2097. // Render each of the splits
  2098. for (unsigned i = 0; i < queue.shadowSplits_.Size(); ++i)
  2099. {
  2100. const ShadowBatchQueue& shadowQueue = queue.shadowSplits_[i];
  2101. if (!shadowQueue.shadowBatches_.IsEmpty())
  2102. {
  2103. graphics_->SetViewport(shadowQueue.shadowViewport_);
  2104. shadowQueue.shadowBatches_.Draw(this);
  2105. }
  2106. }
  2107. graphics_->SetColorWrite(true);
  2108. graphics_->SetDepthBias(0.0f, 0.0f);
  2109. }
  2110. RenderSurface* View::GetDepthStencil(RenderSurface* renderTarget)
  2111. {
  2112. // If using the backbuffer, return the backbuffer depth-stencil
  2113. if (!renderTarget)
  2114. return 0;
  2115. // Then check for linked depth-stencil
  2116. RenderSurface* depthStencil = renderTarget->GetLinkedDepthStencil();
  2117. // Finally get one from Renderer
  2118. if (!depthStencil)
  2119. depthStencil = renderer_->GetDepthStencil(renderTarget->GetWidth(), renderTarget->GetHeight());
  2120. return depthStencil;
  2121. }
  2122. }