Light.cpp 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591
  1. //
  2. // Copyright (c) 2008-2014 the Urho3D project.
  3. //
  4. // Permission is hereby granted, free of charge, to any person obtaining a copy
  5. // of this software and associated documentation files (the "Software"), to deal
  6. // in the Software without restriction, including without limitation the rights
  7. // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  8. // copies of the Software, and to permit persons to whom the Software is
  9. // furnished to do so, subject to the following conditions:
  10. //
  11. // The above copyright notice and this permission notice shall be included in
  12. // all copies or substantial portions of the Software.
  13. //
  14. // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15. // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16. // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  17. // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  18. // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  19. // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  20. // THE SOFTWARE.
  21. //
  22. #include "Precompiled.h"
  23. #include "Camera.h"
  24. #include "Context.h"
  25. #include "DebugRenderer.h"
  26. #include "Graphics.h"
  27. #include "Light.h"
  28. #include "Node.h"
  29. #include "OctreeQuery.h"
  30. #include "Profiler.h"
  31. #include "ResourceCache.h"
  32. #include "Texture2D.h"
  33. #include "TextureCube.h"
  34. #include "DebugNew.h"
  35. namespace Urho3D
  36. {
  37. extern const char* SCENE_CATEGORY;
  38. static const LightType DEFAULT_LIGHTTYPE = LIGHT_POINT;
  39. static const float DEFAULT_RANGE = 10.0f;
  40. static const float DEFAULT_LIGHT_FOV = 30.0f;
  41. static const float DEFAULT_SPECULARINTENSITY = 1.0f;
  42. static const float DEFAULT_BRIGHTNESS = 1.0f;
  43. static const float DEFAULT_CONSTANTBIAS = 0.0002f;
  44. static const float DEFAULT_SLOPESCALEDBIAS = 0.5f;
  45. static const float DEFAULT_BIASAUTOADJUST = 1.0f;
  46. static const float DEFAULT_SHADOWFADESTART = 0.8f;
  47. static const float DEFAULT_SHADOWQUANTIZE = 0.5f;
  48. static const float DEFAULT_SHADOWMINVIEW = 3.0f;
  49. static const float DEFAULT_SHADOWNEARFARRATIO = 0.002f;
  50. static const float DEFAULT_SHADOWSPLIT = 1000.0f;
  51. static const char* typeNames[] =
  52. {
  53. "Directional",
  54. "Spot",
  55. "Point",
  56. 0
  57. };
  58. void BiasParameters::Validate()
  59. {
  60. constantBias_ = Clamp(constantBias_, -1.0f, 1.0f);
  61. slopeScaledBias_ = Clamp(slopeScaledBias_, -16.0f, 16.0f);
  62. }
  63. void CascadeParameters::Validate()
  64. {
  65. for (unsigned i = 0; i < MAX_CASCADE_SPLITS; ++i)
  66. splits_[i] = Max(splits_[i], 0.0f);
  67. fadeStart_ = Clamp(fadeStart_, M_EPSILON, 1.0f);
  68. }
  69. void FocusParameters::Validate()
  70. {
  71. quantize_ = Max(quantize_, SHADOW_MIN_QUANTIZE);
  72. minView_ = Max(minView_, SHADOW_MIN_VIEW);
  73. }
  74. template<> LightType Variant::Get<LightType>() const
  75. {
  76. return (LightType)GetInt();
  77. }
  78. Light::Light(Context* context) :
  79. Drawable(context, DRAWABLE_LIGHT),
  80. lightType_(DEFAULT_LIGHTTYPE),
  81. shadowBias_(BiasParameters(DEFAULT_CONSTANTBIAS, DEFAULT_SLOPESCALEDBIAS)),
  82. shadowCascade_(CascadeParameters(DEFAULT_SHADOWSPLIT, 0.0f, 0.0f, 0.0f, DEFAULT_SHADOWFADESTART)),
  83. shadowFocus_(FocusParameters(true, true, true, DEFAULT_SHADOWQUANTIZE, DEFAULT_SHADOWMINVIEW)),
  84. lightQueue_(0),
  85. specularIntensity_(DEFAULT_SPECULARINTENSITY),
  86. brightness_(DEFAULT_BRIGHTNESS),
  87. range_(DEFAULT_RANGE),
  88. fov_(DEFAULT_LIGHT_FOV),
  89. aspectRatio_(1.0f),
  90. fadeDistance_(0.0f),
  91. shadowFadeDistance_(0.0f),
  92. shadowIntensity_(0.0f),
  93. shadowResolution_(1.0f),
  94. shadowNearFarRatio_(DEFAULT_SHADOWNEARFARRATIO),
  95. perVertex_(false)
  96. {
  97. }
  98. Light::~Light()
  99. {
  100. }
  101. void Light::RegisterObject(Context* context)
  102. {
  103. context->RegisterFactory<Light>(SCENE_CATEGORY);
  104. ACCESSOR_ATTRIBUTE("Is Enabled", IsEnabled, SetEnabled, bool, true, AM_DEFAULT);
  105. ENUM_ACCESSOR_ATTRIBUTE("Light Type", GetLightType, SetLightType, LightType, typeNames, DEFAULT_LIGHTTYPE, AM_DEFAULT);
  106. REF_ACCESSOR_ATTRIBUTE("Color", GetColor, SetColor, Color, Color::WHITE, AM_DEFAULT);
  107. ACCESSOR_ATTRIBUTE("Specular Intensity", GetSpecularIntensity, SetSpecularIntensity, float, DEFAULT_SPECULARINTENSITY, AM_DEFAULT);
  108. ACCESSOR_ATTRIBUTE("Brightness Multiplier", GetBrightness, SetBrightness, float, DEFAULT_BRIGHTNESS, AM_DEFAULT);
  109. ACCESSOR_ATTRIBUTE("Range", GetRange, SetRange, float, DEFAULT_RANGE, AM_DEFAULT);
  110. ACCESSOR_ATTRIBUTE("Spot FOV", GetFov, SetFov, float, DEFAULT_LIGHT_FOV, AM_DEFAULT);
  111. ACCESSOR_ATTRIBUTE("Spot Aspect Ratio", GetAspectRatio, SetAspectRatio, float, 1.0f, AM_DEFAULT);
  112. MIXED_ACCESSOR_ATTRIBUTE("Attenuation Texture", GetRampTextureAttr, SetRampTextureAttr, ResourceRef, ResourceRef(Texture2D::GetTypeStatic()), AM_DEFAULT);
  113. MIXED_ACCESSOR_ATTRIBUTE("Light Shape Texture", GetShapeTextureAttr, SetShapeTextureAttr, ResourceRef, ResourceRef(Texture2D::GetTypeStatic()), AM_DEFAULT);
  114. ACCESSOR_ATTRIBUTE("Can Be Occluded", IsOccludee, SetOccludee, bool, true, AM_DEFAULT);
  115. ATTRIBUTE(VAR_BOOL, "Cast Shadows", castShadows_, false, AM_DEFAULT);
  116. ATTRIBUTE(VAR_BOOL, "Per Vertex", perVertex_, false, AM_DEFAULT);
  117. ACCESSOR_ATTRIBUTE("Draw Distance", GetDrawDistance, SetDrawDistance, float, 0.0f, AM_DEFAULT);
  118. ACCESSOR_ATTRIBUTE("Fade Distance", GetFadeDistance, SetFadeDistance, float, 0.0f, AM_DEFAULT);
  119. ACCESSOR_ATTRIBUTE("Shadow Distance", GetShadowDistance, SetShadowDistance, float, 0.0f, AM_DEFAULT);
  120. ACCESSOR_ATTRIBUTE("Shadow Fade Distance", GetShadowFadeDistance, SetShadowFadeDistance, float, 0.0f, AM_DEFAULT);
  121. ACCESSOR_ATTRIBUTE("Shadow Intensity", GetShadowIntensity, SetShadowIntensity, float, 0.0f, AM_DEFAULT);
  122. ACCESSOR_ATTRIBUTE("Shadow Resolution", GetShadowResolution, SetShadowResolution, float, 1.0f, AM_DEFAULT);
  123. ATTRIBUTE(VAR_BOOL, "Focus To Scene", shadowFocus_.focus_, true, AM_DEFAULT);
  124. ATTRIBUTE(VAR_BOOL, "Non-uniform View", shadowFocus_.nonUniform_, true, AM_DEFAULT);
  125. ATTRIBUTE(VAR_BOOL, "Auto-Reduce Size", shadowFocus_.autoSize_, true, AM_DEFAULT);
  126. ATTRIBUTE(VAR_VECTOR4, "CSM Splits", shadowCascade_.splits_, Vector4(DEFAULT_SHADOWSPLIT, 0.0f, 0.0f, 0.0f), AM_DEFAULT);
  127. ATTRIBUTE(VAR_FLOAT, "CSM Fade Start", shadowCascade_.fadeStart_, DEFAULT_SHADOWFADESTART, AM_DEFAULT);
  128. ATTRIBUTE(VAR_FLOAT, "CSM Bias Auto Adjust", shadowCascade_.biasAutoAdjust_, DEFAULT_BIASAUTOADJUST, AM_DEFAULT);
  129. ATTRIBUTE(VAR_FLOAT, "View Size Quantize", shadowFocus_.quantize_, DEFAULT_SHADOWQUANTIZE, AM_DEFAULT);
  130. ATTRIBUTE(VAR_FLOAT, "View Size Minimum", shadowFocus_.minView_, DEFAULT_SHADOWMINVIEW, AM_DEFAULT);
  131. ATTRIBUTE(VAR_FLOAT, "Depth Constant Bias", shadowBias_.constantBias_, DEFAULT_CONSTANTBIAS, AM_DEFAULT);
  132. ATTRIBUTE(VAR_FLOAT, "Depth Slope Bias", shadowBias_.slopeScaledBias_, DEFAULT_SLOPESCALEDBIAS, AM_DEFAULT);
  133. ATTRIBUTE(VAR_FLOAT, "Near/Farclip Ratio", shadowNearFarRatio_, DEFAULT_SHADOWNEARFARRATIO, AM_DEFAULT);
  134. ATTRIBUTE(VAR_INT, "View Mask", viewMask_, DEFAULT_VIEWMASK, AM_DEFAULT);
  135. ATTRIBUTE(VAR_INT, "Light Mask", lightMask_, DEFAULT_LIGHTMASK, AM_DEFAULT);
  136. }
  137. void Light::OnSetAttribute(const AttributeInfo& attr, const Variant& src)
  138. {
  139. Serializable::OnSetAttribute(attr, src);
  140. // Validate the bias, cascade & focus parameters
  141. if (attr.offset_ >= offsetof(Light, shadowBias_) && attr.offset_ < (offsetof(Light, shadowBias_) + sizeof(BiasParameters)))
  142. shadowBias_.Validate();
  143. else if (attr.offset_ >= offsetof(Light, shadowCascade_) && attr.offset_ < (offsetof(Light, shadowCascade_) + sizeof(CascadeParameters)))
  144. shadowCascade_.Validate();
  145. else if (attr.offset_ >= offsetof(Light, shadowFocus_) && attr.offset_ < (offsetof(Light, shadowFocus_) + sizeof(FocusParameters)))
  146. shadowFocus_.Validate();
  147. }
  148. void Light::ProcessRayQuery(const RayOctreeQuery& query, PODVector<RayQueryResult>& results)
  149. {
  150. // Do not record a raycast result for a directional light, as it would block all other results
  151. if (lightType_ == LIGHT_DIRECTIONAL)
  152. return;
  153. float distance;
  154. switch (query.level_)
  155. {
  156. case RAY_AABB:
  157. Drawable::ProcessRayQuery(query, results);
  158. return;
  159. case RAY_OBB:
  160. {
  161. Matrix3x4 inverse(node_->GetWorldTransform().Inverse());
  162. Ray localRay = query.ray_.Transformed(inverse);
  163. distance = localRay.HitDistance(GetWorldBoundingBox().Transformed(inverse));
  164. if (distance >= query.maxDistance_)
  165. return;
  166. }
  167. break;
  168. case RAY_TRIANGLE:
  169. if (lightType_ == LIGHT_SPOT)
  170. {
  171. distance = query.ray_.HitDistance(GetFrustum());
  172. if (distance >= query.maxDistance_)
  173. return;
  174. }
  175. else
  176. {
  177. distance = query.ray_.HitDistance(Sphere(node_->GetWorldPosition(), range_));
  178. if (distance >= query.maxDistance_)
  179. return;
  180. }
  181. break;
  182. }
  183. // If the code reaches here then we have a hit
  184. RayQueryResult result;
  185. result.position_ = query.ray_.origin_ + distance * query.ray_.direction_;
  186. result.normal_ = -query.ray_.direction_;
  187. result.distance_ = distance;
  188. result.drawable_ = this;
  189. result.node_ = node_;
  190. result.subObject_ = M_MAX_UNSIGNED;
  191. results.Push(result);
  192. }
  193. void Light::UpdateBatches(const FrameInfo& frame)
  194. {
  195. switch (lightType_)
  196. {
  197. case LIGHT_DIRECTIONAL:
  198. // Directional light affects the whole scene, so it is always "closest"
  199. distance_ = 0.0f;
  200. break;
  201. default:
  202. distance_ = frame.camera_->GetDistance(node_->GetWorldPosition());
  203. break;
  204. }
  205. }
  206. void Light::DrawDebugGeometry(DebugRenderer* debug, bool depthTest)
  207. {
  208. Color color = GetEffectiveColor();
  209. if (debug && IsEnabledEffective())
  210. {
  211. switch (lightType_)
  212. {
  213. case LIGHT_DIRECTIONAL:
  214. {
  215. Vector3 start = node_->GetWorldPosition();
  216. Vector3 end = start + node_->GetWorldDirection() * 10.f;
  217. for (int i = -1; i < 2; ++i)
  218. {
  219. for (int j = -1; j < 2; ++j)
  220. {
  221. Vector3 offset = Vector3::UP * (5.f * i) + Vector3::RIGHT * (5.f * j);
  222. debug->AddSphere(Sphere(start + offset, 0.1f), color, depthTest);
  223. debug->AddLine(start + offset, end + offset, color, depthTest);
  224. }
  225. }
  226. }
  227. break;
  228. case LIGHT_SPOT:
  229. debug->AddFrustum(GetFrustum(), color, depthTest);
  230. break;
  231. case LIGHT_POINT:
  232. debug->AddSphere(Sphere(node_->GetWorldPosition(), range_), color, depthTest);
  233. break;
  234. }
  235. }
  236. }
  237. void Light::SetLightType(LightType type)
  238. {
  239. lightType_ = type;
  240. OnMarkedDirty(node_);
  241. MarkNetworkUpdate();
  242. }
  243. void Light::SetPerVertex(bool enable)
  244. {
  245. perVertex_ = enable;
  246. MarkNetworkUpdate();
  247. }
  248. void Light::SetColor(const Color& color)
  249. {
  250. color_ = Color(color.r_, color.g_, color.b_, 1.0f);
  251. MarkNetworkUpdate();
  252. }
  253. void Light::SetSpecularIntensity(float intensity)
  254. {
  255. specularIntensity_ = Max(intensity, 0.0f);
  256. MarkNetworkUpdate();
  257. }
  258. void Light::SetBrightness(float brightness)
  259. {
  260. brightness_ = brightness;
  261. MarkNetworkUpdate();
  262. }
  263. void Light::SetRange(float range)
  264. {
  265. range_ = Max(range, 0.0f);
  266. OnMarkedDirty(node_);
  267. MarkNetworkUpdate();
  268. }
  269. void Light::SetFov(float fov)
  270. {
  271. fov_ = Clamp(fov, 0.0f, M_MAX_FOV);
  272. OnMarkedDirty(node_);
  273. MarkNetworkUpdate();
  274. }
  275. void Light::SetAspectRatio(float aspectRatio)
  276. {
  277. aspectRatio_ = Max(aspectRatio, M_EPSILON);
  278. OnMarkedDirty(node_);
  279. MarkNetworkUpdate();
  280. }
  281. void Light::SetShadowNearFarRatio(float nearFarRatio)
  282. {
  283. shadowNearFarRatio_ = Clamp(nearFarRatio, 0.0f, 0.5f);
  284. MarkNetworkUpdate();
  285. }
  286. void Light::SetFadeDistance(float distance)
  287. {
  288. fadeDistance_ = Max(distance, 0.0f);
  289. MarkNetworkUpdate();
  290. }
  291. void Light::SetShadowBias(const BiasParameters& parameters)
  292. {
  293. shadowBias_ = parameters;
  294. shadowBias_.Validate();
  295. MarkNetworkUpdate();
  296. }
  297. void Light::SetShadowCascade(const CascadeParameters& parameters)
  298. {
  299. shadowCascade_ = parameters;
  300. shadowCascade_.Validate();
  301. MarkNetworkUpdate();
  302. }
  303. void Light::SetShadowFocus(const FocusParameters& parameters)
  304. {
  305. shadowFocus_ = parameters;
  306. shadowFocus_.Validate();
  307. MarkNetworkUpdate();
  308. }
  309. void Light::SetShadowFadeDistance(float distance)
  310. {
  311. shadowFadeDistance_ = Max(distance, 0.0f);
  312. MarkNetworkUpdate();
  313. }
  314. void Light::SetShadowIntensity(float intensity)
  315. {
  316. shadowIntensity_ = Clamp(intensity, 0.0f, 1.0f);
  317. MarkNetworkUpdate();
  318. }
  319. void Light::SetShadowResolution(float resolution)
  320. {
  321. shadowResolution_ = Clamp(resolution, 0.125f, 1.0f);
  322. MarkNetworkUpdate();
  323. }
  324. void Light::SetRampTexture(Texture* texture)
  325. {
  326. rampTexture_ = texture;
  327. MarkNetworkUpdate();
  328. }
  329. void Light::SetShapeTexture(Texture* texture)
  330. {
  331. shapeTexture_ = texture;
  332. MarkNetworkUpdate();
  333. }
  334. Frustum Light::GetFrustum() const
  335. {
  336. // Note: frustum is unaffected by node or parent scale
  337. Matrix3x4 frustumTransform(node_ ? Matrix3x4(node_->GetWorldPosition(), node_->GetWorldRotation(), 1.0f) :
  338. Matrix3x4::IDENTITY);
  339. Frustum ret;
  340. ret.Define(fov_, aspectRatio_, 1.0f, M_MIN_NEARCLIP, range_, frustumTransform);
  341. return ret;
  342. }
  343. int Light::GetNumShadowSplits() const
  344. {
  345. int ret = 1;
  346. if (shadowCascade_.splits_[1] > shadowCascade_.splits_[0])
  347. {
  348. ++ret;
  349. if (shadowCascade_.splits_[2] > shadowCascade_.splits_[1])
  350. {
  351. ++ret;
  352. if (shadowCascade_.splits_[3] > shadowCascade_.splits_[2])
  353. ++ret;
  354. }
  355. }
  356. ret = Min(ret, MAX_CASCADE_SPLITS);
  357. // Shader Model 2 can only support 3 splits max. due to pixel shader instruction count limits
  358. if (ret == 4)
  359. {
  360. Graphics* graphics = GetSubsystem<Graphics>();
  361. if (graphics && !graphics->GetSM3Support())
  362. --ret;
  363. }
  364. return ret;
  365. }
  366. Matrix3x4 Light::GetDirLightTransform(Camera* camera, bool getNearQuad)
  367. {
  368. if (!camera)
  369. return Matrix3x4::IDENTITY;
  370. Vector3 nearVector, farVector;
  371. camera->GetFrustumSize(nearVector, farVector);
  372. float nearClip = camera->GetNearClip();
  373. float farClip = camera->GetFarClip();
  374. float distance = getNearQuad ? nearClip : farClip;
  375. if (!camera->IsOrthographic())
  376. farVector *= (distance / farClip);
  377. else
  378. farVector.z_ *= (distance / farClip);
  379. // Set an epsilon from clip planes due to possible inaccuracy
  380. /// \todo Rather set an identity projection matrix
  381. farVector.z_ = Clamp(farVector.z_, (1.0f + M_LARGE_EPSILON) * nearClip, (1.0f - M_LARGE_EPSILON) * farClip);
  382. return Matrix3x4(Vector3(0.0f, 0.0f, farVector.z_), Quaternion::IDENTITY, Vector3(farVector.x_, farVector.y_, 1.0f));
  383. }
  384. const Matrix3x4& Light::GetVolumeTransform(Camera* camera)
  385. {
  386. if (!node_)
  387. return Matrix3x4::IDENTITY;
  388. switch (lightType_)
  389. {
  390. case LIGHT_DIRECTIONAL:
  391. volumeTransform_ = GetDirLightTransform(camera);
  392. break;
  393. case LIGHT_SPOT:
  394. {
  395. float yScale = tanf(fov_ * M_DEGTORAD * 0.5f) * range_;
  396. float xScale = aspectRatio_ * yScale;
  397. volumeTransform_ = Matrix3x4(node_->GetWorldPosition(), node_->GetWorldRotation(), Vector3(xScale, yScale, range_));
  398. }
  399. break;
  400. case LIGHT_POINT:
  401. volumeTransform_ = Matrix3x4(node_->GetWorldPosition(), Quaternion::IDENTITY, range_);
  402. break;
  403. }
  404. return volumeTransform_;
  405. }
  406. void Light::SetRampTextureAttr(const ResourceRef& value)
  407. {
  408. ResourceCache* cache = GetSubsystem<ResourceCache>();
  409. rampTexture_ = static_cast<Texture*>(cache->GetResource(value.type_, value.name_));
  410. }
  411. void Light::SetShapeTextureAttr(const ResourceRef& value)
  412. {
  413. ResourceCache* cache = GetSubsystem<ResourceCache>();
  414. shapeTexture_ = static_cast<Texture*>(cache->GetResource(value.type_, value.name_));
  415. }
  416. ResourceRef Light::GetRampTextureAttr() const
  417. {
  418. return GetResourceRef(rampTexture_, Texture2D::GetTypeStatic());
  419. }
  420. ResourceRef Light::GetShapeTextureAttr() const
  421. {
  422. return GetResourceRef(shapeTexture_, lightType_ == LIGHT_POINT ? TextureCube::GetTypeStatic() : Texture2D::GetTypeStatic());
  423. }
  424. void Light::OnWorldBoundingBoxUpdate()
  425. {
  426. switch (lightType_)
  427. {
  428. case LIGHT_DIRECTIONAL:
  429. // Directional light always sets humongous bounding box not affected by transform
  430. worldBoundingBox_.Define(-M_LARGE_VALUE, M_LARGE_VALUE);
  431. break;
  432. case LIGHT_SPOT:
  433. // Frustum is already transformed into world space
  434. worldBoundingBox_.Define(GetFrustum());
  435. break;
  436. case LIGHT_POINT:
  437. {
  438. const Vector3& center = node_->GetWorldPosition();
  439. Vector3 edge(range_, range_, range_);
  440. worldBoundingBox_.Define(center - edge, center + edge);
  441. }
  442. break;
  443. }
  444. }
  445. void Light::SetIntensitySortValue(float distance)
  446. {
  447. // When sorting lights globally, give priority to directional lights so that they will be combined into the ambient pass
  448. if (!IsNegative())
  449. {
  450. if (lightType_ != LIGHT_DIRECTIONAL)
  451. sortValue_ = Max(distance, M_MIN_NEARCLIP) / GetIntensityDivisor();
  452. else
  453. sortValue_ = M_EPSILON / GetIntensityDivisor();
  454. }
  455. else
  456. {
  457. // Give extra priority to negative lights in the global sorting order so that they're handled first, right after ambient.
  458. // Positive lights are added after them
  459. if (lightType_ != LIGHT_DIRECTIONAL)
  460. sortValue_ = -Max(distance, M_MIN_NEARCLIP) * GetIntensityDivisor();
  461. else
  462. sortValue_ = -M_LARGE_VALUE * GetIntensityDivisor();
  463. }
  464. }
  465. void Light::SetIntensitySortValue(const BoundingBox& box)
  466. {
  467. // When sorting lights for object's maximum light cap, give priority based on attenuation and intensity
  468. switch (lightType_)
  469. {
  470. case LIGHT_DIRECTIONAL:
  471. sortValue_ = 1.0f / GetIntensityDivisor();
  472. break;
  473. case LIGHT_SPOT:
  474. {
  475. Vector3 centerPos = box.Center();
  476. Vector3 lightPos = node_->GetWorldPosition();
  477. Vector3 lightDir = node_->GetWorldDirection();
  478. Ray lightRay(lightPos, lightDir);
  479. Vector3 centerProj = lightRay.Project(centerPos);
  480. float centerDistance = (centerProj - lightPos).Length();
  481. Ray centerRay(centerProj, centerPos - centerProj);
  482. float centerAngle = centerRay.HitDistance(box) / centerDistance;
  483. // Check if a corner of the bounding box is closer to the light ray than the center, use its angle in that case
  484. Vector3 cornerPos = centerPos + box.HalfSize() * Vector3(centerPos.x_ < centerProj.x_ ? 1.0f : -1.0f,
  485. centerPos.y_ < centerProj.y_ ? 1.0f : -1.0f, centerPos.z_ < centerProj.z_ ? 1.0f : -1.0f);
  486. Vector3 cornerProj = lightRay.Project(cornerPos);
  487. float cornerDistance = (cornerProj - lightPos).Length();
  488. float cornerAngle = (cornerPos - cornerProj).Length() / cornerDistance;
  489. float spotAngle = Min(centerAngle, cornerAngle);
  490. float maxAngle = tanf(fov_ * M_DEGTORAD * 0.5f);
  491. float spotFactor = Min(spotAngle / maxAngle, 1.0f);
  492. // We do not know the actual range attenuation ramp, so take only spot attenuation into account
  493. float att = Max(1.0f - spotFactor * spotFactor, M_EPSILON);
  494. sortValue_ = 1.0f / GetIntensityDivisor(att);
  495. }
  496. break;
  497. case LIGHT_POINT:
  498. {
  499. Vector3 centerPos = box.Center();
  500. Vector3 lightPos = node_->GetWorldPosition();
  501. Vector3 lightDir = (centerPos - lightPos).Normalized();
  502. Ray lightRay(lightPos, lightDir);
  503. float distance = lightRay.HitDistance(box);
  504. float normDistance = distance / range_;
  505. float att = Max(1.0f - normDistance * normDistance, M_EPSILON);
  506. sortValue_ = 1.0f / (Max(color_.SumRGB(), 0.0f) * att + M_EPSILON);
  507. }
  508. break;
  509. }
  510. }
  511. void Light::SetLightQueue(LightBatchQueue* queue)
  512. {
  513. lightQueue_ = queue;
  514. }
  515. }