PhysicsWorld.cpp 33 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902
  1. //
  2. // Copyright (c) 2008-2014 the Urho3D project.
  3. //
  4. // Permission is hereby granted, free of charge, to any person obtaining a copy
  5. // of this software and associated documentation files (the "Software"), to deal
  6. // in the Software without restriction, including without limitation the rights
  7. // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  8. // copies of the Software, and to permit persons to whom the Software is
  9. // furnished to do so, subject to the following conditions:
  10. //
  11. // The above copyright notice and this permission notice shall be included in
  12. // all copies or substantial portions of the Software.
  13. //
  14. // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15. // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16. // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  17. // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  18. // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  19. // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  20. // THE SOFTWARE.
  21. //
  22. #include "Precompiled.h"
  23. #include "CollisionShape.h"
  24. #include "Constraint.h"
  25. #include "Context.h"
  26. #include "DebugRenderer.h"
  27. #include "Log.h"
  28. #include "Model.h"
  29. #include "Mutex.h"
  30. #include "PhysicsEvents.h"
  31. #include "PhysicsUtils.h"
  32. #include "PhysicsWorld.h"
  33. #include "Profiler.h"
  34. #include "Ray.h"
  35. #include "RigidBody.h"
  36. #include "Scene.h"
  37. #include "SceneEvents.h"
  38. #include "Sort.h"
  39. #include <BulletCollision/BroadphaseCollision/btDbvtBroadphase.h>
  40. #include <BulletCollision/BroadphaseCollision/btBroadphaseProxy.h>
  41. #include <BulletCollision/CollisionDispatch/btDefaultCollisionConfiguration.h>
  42. #include <BulletCollision/CollisionDispatch/btInternalEdgeUtility.h>
  43. #include <BulletCollision/CollisionShapes/btBoxShape.h>
  44. #include <BulletCollision/CollisionShapes/btSphereShape.h>
  45. #include <BulletDynamics/ConstraintSolver/btSequentialImpulseConstraintSolver.h>
  46. #include <BulletDynamics/Dynamics/btDiscreteDynamicsWorld.h>
  47. extern ContactAddedCallback gContactAddedCallback;
  48. namespace Urho3D
  49. {
  50. const char* PHYSICS_CATEGORY = "Physics";
  51. extern const char* SUBSYSTEM_CATEGORY;
  52. static const int MAX_SOLVER_ITERATIONS = 256;
  53. static const int DEFAULT_FPS = 60;
  54. static const Vector3 DEFAULT_GRAVITY = Vector3(0.0f, -9.81f, 0.0f);
  55. static bool CompareRaycastResults(const PhysicsRaycastResult& lhs, const PhysicsRaycastResult& rhs)
  56. {
  57. return lhs.distance_ < rhs.distance_;
  58. }
  59. void InternalPreTickCallback(btDynamicsWorld *world, btScalar timeStep)
  60. {
  61. static_cast<PhysicsWorld*>(world->getWorldUserInfo())->PreStep(timeStep);
  62. }
  63. void InternalTickCallback(btDynamicsWorld *world, btScalar timeStep)
  64. {
  65. static_cast<PhysicsWorld*>(world->getWorldUserInfo())->PostStep(timeStep);
  66. }
  67. static bool CustomMaterialCombinerCallback(btManifoldPoint& cp, const btCollisionObjectWrapper* colObj0Wrap, int partId0, int index0, const btCollisionObjectWrapper* colObj1Wrap, int partId1, int index1)
  68. {
  69. btAdjustInternalEdgeContacts(cp, colObj1Wrap, colObj0Wrap, partId1, index1);
  70. cp.m_combinedFriction = colObj0Wrap->getCollisionObject()->getFriction() * colObj1Wrap->getCollisionObject()->getFriction();
  71. cp.m_combinedRestitution = colObj0Wrap->getCollisionObject()->getRestitution() * colObj1Wrap->getCollisionObject()->getRestitution();
  72. return true;
  73. }
  74. /// Callback for physics world queries.
  75. struct PhysicsQueryCallback : public btCollisionWorld::ContactResultCallback
  76. {
  77. /// Construct.
  78. PhysicsQueryCallback(PODVector<RigidBody*>& result, unsigned collisionMask) : result_(result),
  79. collisionMask_(collisionMask)
  80. {
  81. }
  82. /// Add a contact result.
  83. virtual btScalar addSingleResult(btManifoldPoint &, const btCollisionObjectWrapper *colObj0Wrap, int, int, const btCollisionObjectWrapper *colObj1Wrap, int, int)
  84. {
  85. RigidBody* body = reinterpret_cast<RigidBody*>(colObj0Wrap->getCollisionObject()->getUserPointer());
  86. if (body && !result_.Contains(body) && (body->GetCollisionLayer() & collisionMask_))
  87. result_.Push(body);
  88. body = reinterpret_cast<RigidBody*>(colObj1Wrap->getCollisionObject()->getUserPointer());
  89. if (body && !result_.Contains(body) && (body->GetCollisionLayer() & collisionMask_))
  90. result_.Push(body);
  91. return 0.0f;
  92. }
  93. /// Found rigid bodies.
  94. PODVector<RigidBody*>& result_;
  95. /// Collision mask for the query.
  96. unsigned collisionMask_;
  97. };
  98. PhysicsWorld::PhysicsWorld(Context* context) :
  99. Component(context),
  100. collisionConfiguration_(0),
  101. collisionDispatcher_(0),
  102. broadphase_(0),
  103. solver_(0),
  104. world_(0),
  105. fps_(DEFAULT_FPS),
  106. timeAcc_(0.0f),
  107. maxNetworkAngularVelocity_(DEFAULT_MAX_NETWORK_ANGULAR_VELOCITY),
  108. interpolation_(true),
  109. internalEdge_(true),
  110. applyingTransforms_(false),
  111. debugRenderer_(0),
  112. debugMode_(btIDebugDraw::DBG_DrawWireframe | btIDebugDraw::DBG_DrawConstraints | btIDebugDraw::DBG_DrawConstraintLimits)
  113. {
  114. gContactAddedCallback = CustomMaterialCombinerCallback;
  115. collisionConfiguration_ = new btDefaultCollisionConfiguration();
  116. collisionDispatcher_ = new btCollisionDispatcher(collisionConfiguration_);
  117. broadphase_ = new btDbvtBroadphase();
  118. solver_ = new btSequentialImpulseConstraintSolver();
  119. world_ = new btDiscreteDynamicsWorld(collisionDispatcher_, broadphase_, solver_, collisionConfiguration_);
  120. world_->setGravity(ToBtVector3(DEFAULT_GRAVITY));
  121. world_->getDispatchInfo().m_useContinuous = true;
  122. world_->getSolverInfo().m_splitImpulse = false; // Disable by default for performance
  123. world_->setDebugDrawer(this);
  124. world_->setInternalTickCallback(InternalPreTickCallback, static_cast<void*>(this), true);
  125. world_->setInternalTickCallback(InternalTickCallback, static_cast<void*>(this), false);
  126. }
  127. PhysicsWorld::~PhysicsWorld()
  128. {
  129. if (scene_)
  130. {
  131. // Force all remaining constraints, rigid bodies and collision shapes to release themselves
  132. for (PODVector<Constraint*>::Iterator i = constraints_.Begin(); i != constraints_.End(); ++i)
  133. (*i)->ReleaseConstraint();
  134. for (PODVector<RigidBody*>::Iterator i = rigidBodies_.Begin(); i != rigidBodies_.End(); ++i)
  135. (*i)->ReleaseBody();
  136. for (PODVector<CollisionShape*>::Iterator i = collisionShapes_.Begin(); i != collisionShapes_.End(); ++i)
  137. (*i)->ReleaseShape();
  138. }
  139. delete world_;
  140. world_ = 0;
  141. delete solver_;
  142. solver_ = 0;
  143. delete broadphase_;
  144. broadphase_ = 0;
  145. delete collisionDispatcher_;
  146. collisionDispatcher_ = 0;
  147. delete collisionConfiguration_;
  148. collisionConfiguration_ = 0;
  149. }
  150. void PhysicsWorld::RegisterObject(Context* context)
  151. {
  152. context->RegisterFactory<PhysicsWorld>(SUBSYSTEM_CATEGORY);
  153. ACCESSOR_ATTRIBUTE(PhysicsWorld, VAR_VECTOR3, "Gravity", GetGravity, SetGravity, Vector3, DEFAULT_GRAVITY, AM_DEFAULT);
  154. ATTRIBUTE(PhysicsWorld, VAR_INT, "Physics FPS", fps_, DEFAULT_FPS, AM_DEFAULT);
  155. ACCESSOR_ATTRIBUTE(PhysicsWorld, VAR_INT, "Solver Iterations", GetNumIterations, SetNumIterations, int, 10, AM_DEFAULT);
  156. ATTRIBUTE(PhysicsWorld, VAR_FLOAT, "Net Max Angular Vel.", maxNetworkAngularVelocity_, DEFAULT_MAX_NETWORK_ANGULAR_VELOCITY, AM_DEFAULT);
  157. ATTRIBUTE(PhysicsWorld, VAR_BOOL, "Interpolation", interpolation_, true, AM_FILE);
  158. ATTRIBUTE(PhysicsWorld, VAR_BOOL, "Internal Edge Utility", internalEdge_, true, AM_DEFAULT);
  159. ACCESSOR_ATTRIBUTE(PhysicsWorld, VAR_BOOL, "Split Impulse", GetSplitImpulse, SetSplitImpulse, bool, false, AM_DEFAULT);
  160. }
  161. bool PhysicsWorld::isVisible(const btVector3& aabbMin, const btVector3& aabbMax)
  162. {
  163. if (debugRenderer_)
  164. return debugRenderer_->IsInside(BoundingBox(ToVector3(aabbMin), ToVector3(aabbMax)));
  165. else
  166. return false;
  167. }
  168. void PhysicsWorld::drawLine(const btVector3& from, const btVector3& to, const btVector3& color)
  169. {
  170. if (debugRenderer_)
  171. debugRenderer_->AddLine(ToVector3(from), ToVector3(to), Color(color.x(), color.y(), color.z()), debugDepthTest_);
  172. }
  173. void PhysicsWorld::DrawDebugGeometry(DebugRenderer* debug, bool depthTest)
  174. {
  175. if (debug)
  176. {
  177. PROFILE(PhysicsDrawDebug);
  178. debugRenderer_ = debug;
  179. debugDepthTest_ = depthTest;
  180. world_->debugDrawWorld();
  181. debugRenderer_ = 0;
  182. }
  183. }
  184. void PhysicsWorld::reportErrorWarning(const char* warningString)
  185. {
  186. LOGWARNING("Physics: " + String(warningString));
  187. }
  188. void PhysicsWorld::Update(float timeStep)
  189. {
  190. PROFILE(UpdatePhysics);
  191. float internalTimeStep = 1.0f / fps_;
  192. delayedWorldTransforms_.Clear();
  193. if (interpolation_)
  194. {
  195. int maxSubSteps = (int)(timeStep * fps_) + 1;
  196. world_->stepSimulation(timeStep, maxSubSteps, internalTimeStep);
  197. }
  198. else
  199. {
  200. timeAcc_ += timeStep;
  201. while (timeAcc_ >= internalTimeStep)
  202. {
  203. world_->stepSimulation(internalTimeStep, 0, internalTimeStep);
  204. timeAcc_ -= internalTimeStep;
  205. }
  206. }
  207. // Apply delayed (parented) world transforms now
  208. while (!delayedWorldTransforms_.Empty())
  209. {
  210. for (HashMap<RigidBody*, DelayedWorldTransform>::Iterator i = delayedWorldTransforms_.Begin();
  211. i != delayedWorldTransforms_.End(); ++i)
  212. {
  213. const DelayedWorldTransform& transform = i->second_;
  214. // If parent's transform has already been assigned, can proceed
  215. if (!delayedWorldTransforms_.Contains(transform.parentRigidBody_))
  216. {
  217. transform.rigidBody_->ApplyWorldTransform(transform.worldPosition_, transform.worldRotation_);
  218. delayedWorldTransforms_.Erase(i);
  219. }
  220. }
  221. }
  222. }
  223. void PhysicsWorld::UpdateCollisions()
  224. {
  225. world_->performDiscreteCollisionDetection();
  226. }
  227. void PhysicsWorld::SetFps(int fps)
  228. {
  229. fps_ = Clamp(fps, 1, 1000);
  230. MarkNetworkUpdate();
  231. }
  232. void PhysicsWorld::SetGravity(Vector3 gravity)
  233. {
  234. world_->setGravity(ToBtVector3(gravity));
  235. MarkNetworkUpdate();
  236. }
  237. void PhysicsWorld::SetNumIterations(int num)
  238. {
  239. num = Clamp(num, 1, MAX_SOLVER_ITERATIONS);
  240. world_->getSolverInfo().m_numIterations = num;
  241. MarkNetworkUpdate();
  242. }
  243. void PhysicsWorld::SetInterpolation(bool enable)
  244. {
  245. interpolation_ = enable;
  246. }
  247. void PhysicsWorld::SetInternalEdge(bool enable)
  248. {
  249. internalEdge_ = enable;
  250. MarkNetworkUpdate();
  251. }
  252. void PhysicsWorld::SetSplitImpulse(bool enable)
  253. {
  254. world_->getSolverInfo().m_splitImpulse = enable;
  255. MarkNetworkUpdate();
  256. }
  257. void PhysicsWorld::SetMaxNetworkAngularVelocity(float velocity)
  258. {
  259. maxNetworkAngularVelocity_ = Clamp(velocity, 1.0f, 32767.0f);
  260. MarkNetworkUpdate();
  261. }
  262. void PhysicsWorld::Raycast(PODVector<PhysicsRaycastResult>& result, const Ray& ray, float maxDistance, unsigned collisionMask)
  263. {
  264. PROFILE(PhysicsRaycast);
  265. btCollisionWorld::AllHitsRayResultCallback rayCallback(ToBtVector3(ray.origin_), ToBtVector3(ray.origin_ +
  266. maxDistance * ray.direction_));
  267. rayCallback.m_collisionFilterGroup = (short)0xffff;
  268. rayCallback.m_collisionFilterMask = collisionMask;
  269. world_->rayTest(rayCallback.m_rayFromWorld, rayCallback.m_rayToWorld, rayCallback);
  270. for (int i = 0; i < rayCallback.m_collisionObjects.size(); ++i)
  271. {
  272. PhysicsRaycastResult newResult;
  273. newResult.body_ = static_cast<RigidBody*>(rayCallback.m_collisionObjects[i]->getUserPointer());
  274. newResult.position_ = ToVector3(rayCallback.m_hitPointWorld[i]);
  275. newResult.normal_ = ToVector3(rayCallback.m_hitNormalWorld[i]);
  276. newResult.distance_ = (newResult.position_ - ray.origin_).Length();
  277. result.Push(newResult);
  278. }
  279. Sort(result.Begin(), result.End(), CompareRaycastResults);
  280. }
  281. void PhysicsWorld::RaycastSingle(PhysicsRaycastResult& result, const Ray& ray, float maxDistance, unsigned collisionMask)
  282. {
  283. PROFILE(PhysicsRaycastSingle);
  284. btCollisionWorld::ClosestRayResultCallback rayCallback(ToBtVector3(ray.origin_), ToBtVector3(ray.origin_ +
  285. maxDistance * ray.direction_));
  286. rayCallback.m_collisionFilterGroup = (short)0xffff;
  287. rayCallback.m_collisionFilterMask = collisionMask;
  288. world_->rayTest(rayCallback.m_rayFromWorld, rayCallback.m_rayToWorld, rayCallback);
  289. if (rayCallback.hasHit())
  290. {
  291. result.position_ = ToVector3(rayCallback.m_hitPointWorld);
  292. result.normal_ = ToVector3(rayCallback.m_hitNormalWorld);
  293. result.distance_ = (result.position_ - ray.origin_).Length();
  294. result.body_ = static_cast<RigidBody*>(rayCallback.m_collisionObject->getUserPointer());
  295. }
  296. else
  297. {
  298. result.position_ = Vector3::ZERO;
  299. result.normal_ = Vector3::ZERO;
  300. result.distance_ = M_INFINITY;
  301. result.body_ = 0;
  302. }
  303. }
  304. void PhysicsWorld::SphereCast(PhysicsRaycastResult& result, const Ray& ray, float radius, float maxDistance, unsigned collisionMask)
  305. {
  306. PROFILE(PhysicsSphereCast);
  307. btSphereShape shape(radius);
  308. btCollisionWorld::ClosestConvexResultCallback convexCallback(ToBtVector3(ray.origin_), ToBtVector3(ray.origin_ +
  309. maxDistance * ray.direction_));
  310. convexCallback.m_collisionFilterGroup = (short)0xffff;
  311. convexCallback.m_collisionFilterMask = collisionMask;
  312. world_->convexSweepTest(&shape, btTransform(btQuaternion::getIdentity(), convexCallback.m_convexFromWorld),
  313. btTransform(btQuaternion::getIdentity(), convexCallback.m_convexToWorld), convexCallback);
  314. if (convexCallback.hasHit())
  315. {
  316. result.body_ = static_cast<RigidBody*>(convexCallback.m_hitCollisionObject->getUserPointer());
  317. result.position_ = ToVector3(convexCallback.m_hitPointWorld);
  318. result.normal_ = ToVector3(convexCallback.m_hitNormalWorld);
  319. result.distance_ = (result.position_ - ray.origin_).Length();
  320. }
  321. else
  322. {
  323. result.body_ = 0;
  324. result.position_ = Vector3::ZERO;
  325. result.normal_ = Vector3::ZERO;
  326. result.distance_ = M_INFINITY;
  327. }
  328. }
  329. void PhysicsWorld::ConvexCast(PhysicsRaycastResult& result, CollisionShape* shape, const Vector3& startPos, const Quaternion& startRot, const Vector3& endPos, const Quaternion& endRot, unsigned collisionMask)
  330. {
  331. if (!shape || !shape->GetCollisionShape())
  332. {
  333. LOGERROR("Null collision shape for convex cast");
  334. result.body_ = 0;
  335. result.position_ = Vector3::ZERO;
  336. result.normal_ = Vector3::ZERO;
  337. result.distance_ = M_INFINITY;
  338. return;
  339. }
  340. // If shape is attached in a rigidbody, set its collision group temporarily to 0 to make sure it is not returned in the sweep result
  341. RigidBody* bodyComp = shape->GetComponent<RigidBody>();
  342. btRigidBody* body = bodyComp ? bodyComp->GetBody() : (btRigidBody*)0;
  343. btBroadphaseProxy* proxy = body ? body->getBroadphaseProxy() : (btBroadphaseProxy*)0;
  344. short group = 0;
  345. if (proxy)
  346. {
  347. group = proxy->m_collisionFilterGroup;
  348. proxy->m_collisionFilterGroup = 0;
  349. }
  350. ConvexCast(result, shape->GetCollisionShape(), startPos, startRot, endPos, endRot, collisionMask);
  351. // Restore the collision group
  352. if (proxy)
  353. proxy->m_collisionFilterGroup = group;
  354. }
  355. void PhysicsWorld::ConvexCast(PhysicsRaycastResult& result, btCollisionShape* shape, const Vector3& startPos, const Quaternion& startRot, const Vector3& endPos, const Quaternion& endRot, unsigned collisionMask)
  356. {
  357. if (!shape)
  358. {
  359. LOGERROR("Null collision shape for convex cast");
  360. result.body_ = 0;
  361. result.position_ = Vector3::ZERO;
  362. result.normal_ = Vector3::ZERO;
  363. result.distance_ = M_INFINITY;
  364. return;
  365. }
  366. if (!shape->isConvex())
  367. {
  368. LOGERROR("Can not use non-convex collision shape for convex cast");
  369. result.body_ = 0;
  370. result.position_ = Vector3::ZERO;
  371. result.normal_ = Vector3::ZERO;
  372. result.distance_ = M_INFINITY;
  373. return;
  374. }
  375. PROFILE(PhysicsConvexCast);
  376. btCollisionWorld::ClosestConvexResultCallback convexCallback(ToBtVector3(startPos), ToBtVector3(endPos));
  377. convexCallback.m_collisionFilterGroup = (short)0xffff;
  378. convexCallback.m_collisionFilterMask = collisionMask;
  379. world_->convexSweepTest(static_cast<btConvexShape*>(shape), btTransform(ToBtQuaternion(startRot),
  380. convexCallback.m_convexFromWorld), btTransform(ToBtQuaternion(endRot), convexCallback.m_convexToWorld),
  381. convexCallback);
  382. if (convexCallback.hasHit())
  383. {
  384. result.body_ = static_cast<RigidBody*>(convexCallback.m_hitCollisionObject->getUserPointer());
  385. result.position_ = ToVector3(convexCallback.m_hitPointWorld);
  386. result.normal_ = ToVector3(convexCallback.m_hitNormalWorld);
  387. result.distance_ = (result.position_ - startPos).Length();
  388. }
  389. else
  390. {
  391. result.body_ = 0;
  392. result.position_ = Vector3::ZERO;
  393. result.normal_ = Vector3::ZERO;
  394. result.distance_ = M_INFINITY;
  395. }
  396. }
  397. void PhysicsWorld::RemoveCachedGeometry(Model* model)
  398. {
  399. for (HashMap<Pair<Model*, unsigned>, SharedPtr<CollisionGeometryData> >::Iterator i = triMeshCache_.Begin();
  400. i != triMeshCache_.End();)
  401. {
  402. HashMap<Pair<Model*, unsigned>, SharedPtr<CollisionGeometryData> >::Iterator current = i++;
  403. if (current->first_.first_ == model)
  404. triMeshCache_.Erase(current);
  405. }
  406. for (HashMap<Pair<Model*, unsigned>, SharedPtr<CollisionGeometryData> >::Iterator i = convexCache_.Begin();
  407. i != convexCache_.End();)
  408. {
  409. HashMap<Pair<Model*, unsigned>, SharedPtr<CollisionGeometryData> >::Iterator current = i++;
  410. if (current->first_.first_ == model)
  411. convexCache_.Erase(current);
  412. }
  413. }
  414. void PhysicsWorld::GetRigidBodies(PODVector<RigidBody*>& result, const Sphere& sphere, unsigned collisionMask)
  415. {
  416. PROFILE(PhysicsSphereQuery);
  417. result.Clear();
  418. btSphereShape sphereShape(sphere.radius_);
  419. btRigidBody* tempRigidBody = new btRigidBody(1.0f, 0, &sphereShape);
  420. tempRigidBody->setWorldTransform(btTransform(btQuaternion::getIdentity(), ToBtVector3(sphere.center_)));
  421. // Need to activate the temporary rigid body to get reliable results from static, sleeping objects
  422. tempRigidBody->activate();
  423. world_->addRigidBody(tempRigidBody);
  424. PhysicsQueryCallback callback(result, collisionMask);
  425. world_->contactTest(tempRigidBody, callback);
  426. world_->removeRigidBody(tempRigidBody);
  427. delete tempRigidBody;
  428. }
  429. void PhysicsWorld::GetRigidBodies(PODVector<RigidBody*>& result, const BoundingBox& box, unsigned collisionMask)
  430. {
  431. PROFILE(PhysicsBoxQuery);
  432. result.Clear();
  433. btBoxShape boxShape(ToBtVector3(box.HalfSize()));
  434. btRigidBody* tempRigidBody = new btRigidBody(1.0f, 0, &boxShape);
  435. tempRigidBody->setWorldTransform(btTransform(btQuaternion::getIdentity(), ToBtVector3(box.Center())));
  436. tempRigidBody->activate();
  437. world_->addRigidBody(tempRigidBody);
  438. PhysicsQueryCallback callback(result, collisionMask);
  439. world_->contactTest(tempRigidBody, callback);
  440. world_->removeRigidBody(tempRigidBody);
  441. delete tempRigidBody;
  442. }
  443. void PhysicsWorld::GetRigidBodies(PODVector<RigidBody*>& result, const RigidBody* body)
  444. {
  445. PROFILE(GetCollidingBodies);
  446. result.Clear();
  447. for (HashMap<Pair<WeakPtr<RigidBody>, WeakPtr<RigidBody> >, btPersistentManifold*>::Iterator i = currentCollisions_.Begin();
  448. i != currentCollisions_.End(); ++i)
  449. {
  450. if (i->first_.first_ == body)
  451. result.Push(i->first_.second_);
  452. else if (i->first_.second_ == body)
  453. result.Push(i->first_.first_);
  454. }
  455. }
  456. Vector3 PhysicsWorld::GetGravity() const
  457. {
  458. return ToVector3(world_->getGravity());
  459. }
  460. int PhysicsWorld::GetNumIterations() const
  461. {
  462. return world_->getSolverInfo().m_numIterations;
  463. }
  464. bool PhysicsWorld::GetSplitImpulse() const
  465. {
  466. return world_->getSolverInfo().m_splitImpulse != 0;
  467. }
  468. void PhysicsWorld::AddRigidBody(RigidBody* body)
  469. {
  470. rigidBodies_.Push(body);
  471. }
  472. void PhysicsWorld::RemoveRigidBody(RigidBody* body)
  473. {
  474. rigidBodies_.Remove(body);
  475. }
  476. void PhysicsWorld::AddCollisionShape(CollisionShape* shape)
  477. {
  478. collisionShapes_.Push(shape);
  479. }
  480. void PhysicsWorld::RemoveCollisionShape(CollisionShape* shape)
  481. {
  482. collisionShapes_.Remove(shape);
  483. }
  484. void PhysicsWorld::AddConstraint(Constraint* constraint)
  485. {
  486. constraints_.Push(constraint);
  487. }
  488. void PhysicsWorld::RemoveConstraint(Constraint* constraint)
  489. {
  490. constraints_.Remove(constraint);
  491. }
  492. void PhysicsWorld::AddDelayedWorldTransform(const DelayedWorldTransform& transform)
  493. {
  494. delayedWorldTransforms_[transform.rigidBody_] = transform;
  495. }
  496. void PhysicsWorld::DrawDebugGeometry(bool depthTest)
  497. {
  498. DebugRenderer* debug = GetComponent<DebugRenderer>();
  499. DrawDebugGeometry(debug, depthTest);
  500. }
  501. void PhysicsWorld::SetDebugRenderer(DebugRenderer* debug)
  502. {
  503. debugRenderer_ = debug;
  504. }
  505. void PhysicsWorld::SetDebugDepthTest(bool enable)
  506. {
  507. debugDepthTest_ = enable;
  508. }
  509. void PhysicsWorld::CleanupGeometryCache()
  510. {
  511. // Remove cached shapes whose only reference is the cache itself
  512. for (HashMap<Pair<Model*, unsigned>, SharedPtr<CollisionGeometryData> >::Iterator i = triMeshCache_.Begin();
  513. i != triMeshCache_.End();)
  514. {
  515. HashMap<Pair<Model*, unsigned>, SharedPtr<CollisionGeometryData> >::Iterator current = i++;
  516. if (current->second_.Refs() == 1)
  517. triMeshCache_.Erase(current);
  518. }
  519. for (HashMap<Pair<Model*, unsigned>, SharedPtr<CollisionGeometryData> >::Iterator i = convexCache_.Begin();
  520. i != convexCache_.End();)
  521. {
  522. HashMap<Pair<Model*, unsigned>, SharedPtr<CollisionGeometryData> >::Iterator current = i++;
  523. if (current->second_.Refs() == 1)
  524. convexCache_.Erase(current);
  525. }
  526. }
  527. void PhysicsWorld::OnNodeSet(Node* node)
  528. {
  529. // Subscribe to the scene subsystem update, which will trigger the physics simulation step
  530. if (node)
  531. {
  532. scene_ = GetScene();
  533. SubscribeToEvent(node, E_SCENESUBSYSTEMUPDATE, HANDLER(PhysicsWorld, HandleSceneSubsystemUpdate));
  534. }
  535. }
  536. void PhysicsWorld::HandleSceneSubsystemUpdate(StringHash eventType, VariantMap& eventData)
  537. {
  538. using namespace SceneSubsystemUpdate;
  539. Update(eventData[P_TIMESTEP].GetFloat());
  540. }
  541. void PhysicsWorld::PreStep(float timeStep)
  542. {
  543. // Send pre-step event
  544. using namespace PhysicsPreStep;
  545. VariantMap& eventData = GetEventDataMap();
  546. eventData[P_WORLD] = this;
  547. eventData[P_TIMESTEP] = timeStep;
  548. SendEvent(E_PHYSICSPRESTEP, eventData);
  549. // Start profiling block for the actual simulation step
  550. #ifdef URHO3D_PROFILING
  551. Profiler* profiler = GetSubsystem<Profiler>();
  552. if (profiler)
  553. profiler->BeginBlock("StepSimulation");
  554. #endif
  555. }
  556. void PhysicsWorld::PostStep(float timeStep)
  557. {
  558. #ifdef URHO3D_PROFILING
  559. Profiler* profiler = GetSubsystem<Profiler>();
  560. if (profiler)
  561. profiler->EndBlock();
  562. #endif
  563. SendCollisionEvents();
  564. // Send post-step event
  565. using namespace PhysicsPreStep;
  566. VariantMap& eventData = GetEventDataMap();
  567. eventData[P_WORLD] = this;
  568. eventData[P_TIMESTEP] = timeStep;
  569. SendEvent(E_PHYSICSPOSTSTEP, eventData);
  570. }
  571. void PhysicsWorld::SendCollisionEvents()
  572. {
  573. PROFILE(SendCollisionEvents);
  574. currentCollisions_.Clear();
  575. physicsCollisionData_.Clear();
  576. nodeCollisionData_.Clear();
  577. int numManifolds = collisionDispatcher_->getNumManifolds();
  578. if (numManifolds)
  579. {
  580. physicsCollisionData_[PhysicsCollision::P_WORLD] = this;
  581. for (int i = 0; i < numManifolds; ++i)
  582. {
  583. btPersistentManifold* contactManifold = collisionDispatcher_->getManifoldByIndexInternal(i);
  584. // First check that there are actual contacts, as the manifold exists also when objects are close but not touching
  585. if (!contactManifold->getNumContacts())
  586. continue;
  587. const btCollisionObject* objectA = contactManifold->getBody0();
  588. const btCollisionObject* objectB = contactManifold->getBody1();
  589. RigidBody* bodyA = static_cast<RigidBody*>(objectA->getUserPointer());
  590. RigidBody* bodyB = static_cast<RigidBody*>(objectB->getUserPointer());
  591. // If it's not a rigidbody, maybe a ghost object
  592. if (!bodyA || !bodyB)
  593. continue;
  594. // Skip collision event signaling if both objects are static, or if collision event mode does not match
  595. if (bodyA->GetMass() == 0.0f && bodyB->GetMass() == 0.0f)
  596. continue;
  597. if (bodyA->GetCollisionEventMode() == COLLISION_NEVER || bodyB->GetCollisionEventMode() == COLLISION_NEVER)
  598. continue;
  599. if (bodyA->GetCollisionEventMode() == COLLISION_ACTIVE && bodyB->GetCollisionEventMode() == COLLISION_ACTIVE &&
  600. !bodyA->IsActive() && !bodyB->IsActive())
  601. continue;
  602. WeakPtr<RigidBody> bodyWeakA(bodyA);
  603. WeakPtr<RigidBody> bodyWeakB(bodyB);
  604. Pair<WeakPtr<RigidBody>, WeakPtr<RigidBody> > bodyPair;
  605. if (bodyA < bodyB)
  606. bodyPair = MakePair(bodyWeakA, bodyWeakB);
  607. else
  608. bodyPair = MakePair(bodyWeakB, bodyWeakA);
  609. // First only store the collision pair as weak pointers and the manifold pointer, so user code can safely destroy
  610. // objects during collision event handling
  611. currentCollisions_[bodyPair] = contactManifold;
  612. }
  613. for (HashMap<Pair<WeakPtr<RigidBody>, WeakPtr<RigidBody> >, btPersistentManifold*>::Iterator i = currentCollisions_.Begin();
  614. i != currentCollisions_.End(); ++i)
  615. {
  616. RigidBody* bodyA = i->first_.first_;
  617. RigidBody* bodyB = i->first_.second_;
  618. if (!bodyA || !bodyB)
  619. continue;
  620. btPersistentManifold* contactManifold = i->second_;
  621. Node* nodeA = bodyA->GetNode();
  622. Node* nodeB = bodyB->GetNode();
  623. WeakPtr<Node> nodeWeakA(nodeA);
  624. WeakPtr<Node> nodeWeakB(nodeB);
  625. bool trigger = bodyA->IsTrigger() || bodyB->IsTrigger();
  626. bool newCollision = !previousCollisions_.Contains(i->first_);
  627. physicsCollisionData_[PhysicsCollision::P_NODEA] = nodeA;
  628. physicsCollisionData_[PhysicsCollision::P_NODEB] = nodeB;
  629. physicsCollisionData_[PhysicsCollision::P_BODYA] = bodyA;
  630. physicsCollisionData_[PhysicsCollision::P_BODYB] = bodyB;
  631. physicsCollisionData_[PhysicsCollision::P_TRIGGER] = trigger;
  632. contacts_.Clear();
  633. for (int j = 0; j < contactManifold->getNumContacts(); ++j)
  634. {
  635. btManifoldPoint& point = contactManifold->getContactPoint(j);
  636. contacts_.WriteVector3(ToVector3(point.m_positionWorldOnB));
  637. contacts_.WriteVector3(ToVector3(point.m_normalWorldOnB));
  638. contacts_.WriteFloat(point.m_distance1);
  639. contacts_.WriteFloat(point.m_appliedImpulse);
  640. }
  641. physicsCollisionData_[PhysicsCollision::P_CONTACTS] = contacts_.GetBuffer();
  642. // Send separate collision start event if collision is new
  643. if (newCollision)
  644. {
  645. SendEvent(E_PHYSICSCOLLISIONSTART, physicsCollisionData_);
  646. // Skip rest of processing if either of the nodes or bodies is removed as a response to the event
  647. if (!nodeWeakA || !nodeWeakB || !i->first_.first_ || !i->first_.second_)
  648. continue;
  649. }
  650. // Then send the ongoing collision event
  651. SendEvent(E_PHYSICSCOLLISION, physicsCollisionData_);
  652. if (!nodeWeakA || !nodeWeakB || !i->first_.first_ || !i->first_.second_)
  653. continue;
  654. nodeCollisionData_[NodeCollision::P_BODY] = bodyA;
  655. nodeCollisionData_[NodeCollision::P_OTHERNODE] = nodeB;
  656. nodeCollisionData_[NodeCollision::P_OTHERBODY] = bodyB;
  657. nodeCollisionData_[NodeCollision::P_TRIGGER] = trigger;
  658. nodeCollisionData_[NodeCollision::P_CONTACTS] = contacts_.GetBuffer();
  659. if (newCollision)
  660. {
  661. nodeA->SendEvent(E_NODECOLLISIONSTART, nodeCollisionData_);
  662. if (!nodeWeakA || !nodeWeakB || !i->first_.first_ || !i->first_.second_)
  663. continue;
  664. }
  665. nodeA->SendEvent(E_NODECOLLISION, nodeCollisionData_);
  666. if (!nodeWeakA || !nodeWeakB || !i->first_.first_ || !i->first_.second_)
  667. continue;
  668. contacts_.Clear();
  669. for (int j = 0; j < contactManifold->getNumContacts(); ++j)
  670. {
  671. btManifoldPoint& point = contactManifold->getContactPoint(j);
  672. contacts_.WriteVector3(ToVector3(point.m_positionWorldOnB));
  673. contacts_.WriteVector3(-ToVector3(point.m_normalWorldOnB));
  674. contacts_.WriteFloat(point.m_distance1);
  675. contacts_.WriteFloat(point.m_appliedImpulse);
  676. }
  677. nodeCollisionData_[NodeCollision::P_BODY] = bodyB;
  678. nodeCollisionData_[NodeCollision::P_OTHERNODE] = nodeA;
  679. nodeCollisionData_[NodeCollision::P_OTHERBODY] = bodyA;
  680. nodeCollisionData_[NodeCollision::P_CONTACTS] = contacts_.GetBuffer();
  681. if (newCollision)
  682. {
  683. nodeB->SendEvent(E_NODECOLLISIONSTART, nodeCollisionData_);
  684. if (!nodeWeakA || !nodeWeakB || !i->first_.first_ || !i->first_.second_)
  685. continue;
  686. }
  687. nodeB->SendEvent(E_NODECOLLISION, nodeCollisionData_);
  688. }
  689. }
  690. // Send collision end events as applicable
  691. {
  692. physicsCollisionData_[PhysicsCollisionEnd::P_WORLD] = this;
  693. for (HashMap<Pair<WeakPtr<RigidBody>, WeakPtr<RigidBody> >, btPersistentManifold*>::Iterator i = previousCollisions_.Begin(); i != previousCollisions_.End(); ++i)
  694. {
  695. if (!currentCollisions_.Contains(i->first_))
  696. {
  697. RigidBody* bodyA = i->first_.first_;
  698. RigidBody* bodyB = i->first_.second_;
  699. if (!bodyA || !bodyB)
  700. continue;
  701. bool trigger = bodyA->IsTrigger() || bodyB->IsTrigger();
  702. // Skip collision event signaling if both objects are static, or if collision event mode does not match
  703. if (bodyA->GetMass() == 0.0f && bodyB->GetMass() == 0.0f)
  704. continue;
  705. if (bodyA->GetCollisionEventMode() == COLLISION_NEVER || bodyB->GetCollisionEventMode() == COLLISION_NEVER)
  706. continue;
  707. if (bodyA->GetCollisionEventMode() == COLLISION_ACTIVE && bodyB->GetCollisionEventMode() == COLLISION_ACTIVE &&
  708. !bodyA->IsActive() && !bodyB->IsActive())
  709. continue;
  710. Node* nodeA = bodyA->GetNode();
  711. Node* nodeB = bodyB->GetNode();
  712. WeakPtr<Node> nodeWeakA(nodeA);
  713. WeakPtr<Node> nodeWeakB(nodeB);
  714. physicsCollisionData_[PhysicsCollisionEnd::P_BODYA] = bodyA;
  715. physicsCollisionData_[PhysicsCollisionEnd::P_BODYB] = bodyB;
  716. physicsCollisionData_[PhysicsCollisionEnd::P_NODEA] = nodeA;
  717. physicsCollisionData_[PhysicsCollisionEnd::P_NODEB] = nodeB;
  718. physicsCollisionData_[PhysicsCollisionEnd::P_TRIGGER] = trigger;
  719. SendEvent(E_PHYSICSCOLLISIONEND, physicsCollisionData_);
  720. // Skip rest of processing if either of the nodes or bodies is removed as a response to the event
  721. if (!nodeWeakA || !nodeWeakB || !i->first_.first_ || !i->first_.second_)
  722. continue;
  723. nodeCollisionData_[NodeCollisionEnd::P_BODY] = bodyA;
  724. nodeCollisionData_[NodeCollisionEnd::P_OTHERNODE] = nodeB;
  725. nodeCollisionData_[NodeCollisionEnd::P_OTHERBODY] = bodyB;
  726. nodeCollisionData_[NodeCollisionEnd::P_TRIGGER] = trigger;
  727. nodeA->SendEvent(E_NODECOLLISIONEND, nodeCollisionData_);
  728. if (!nodeWeakA || !nodeWeakB || !i->first_.first_ || !i->first_.second_)
  729. continue;
  730. nodeCollisionData_[NodeCollisionEnd::P_BODY] = bodyB;
  731. nodeCollisionData_[NodeCollisionEnd::P_OTHERNODE] = nodeA;
  732. nodeCollisionData_[NodeCollisionEnd::P_OTHERBODY] = bodyA;
  733. nodeB->SendEvent(E_NODECOLLISIONEND, nodeCollisionData_);
  734. }
  735. }
  736. }
  737. previousCollisions_ = currentCollisions_;
  738. }
  739. void RegisterPhysicsLibrary(Context* context)
  740. {
  741. CollisionShape::RegisterObject(context);
  742. RigidBody::RegisterObject(context);
  743. Constraint::RegisterObject(context);
  744. PhysicsWorld::RegisterObject(context);
  745. }
  746. }