04_StaticScene.as 6.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151
  1. // Static 3D scene example.
  2. // This sample demonstrates:
  3. // - Creating a 3D scene with static content
  4. // - Displaying the scene using the Renderer subsystem
  5. // - Handling keyboard and mouse input to move a freelook camera
  6. #include "Scripts/Utilities/Sample.as"
  7. void Start()
  8. {
  9. // Execute the common startup for samples
  10. SampleStart();
  11. // Create the scene content
  12. CreateScene();
  13. // Create the UI content
  14. CreateInstructions();
  15. // Setup the viewport for displaying the scene
  16. SetupViewport();
  17. // Hook up to the frame update events
  18. SubscribeToEvents();
  19. }
  20. void CreateScene()
  21. {
  22. scene_ = Scene();
  23. // Create the Octree component to the scene. This is required before adding any drawable components, or else nothing will
  24. // show up. The default octree volume will be from (-1000, -1000, -1000) to (1000, 1000, 1000) in world coordinates; it
  25. // is also legal to place objects outside the volume but their visibility can then not be checked in a hierarchically
  26. // optimizing manner
  27. scene_.CreateComponent("Octree");
  28. // Create a child scene node (at world origin) and a StaticModel component into it. Set the StaticModel to show a simple
  29. // plane mesh with a "stone" material. Note that naming the scene nodes is optional. Scale the scene node larger
  30. // (100 x 100 world units)
  31. Node@ planeNode = scene_.CreateChild("Plane");
  32. planeNode.scale = Vector3(100.0f, 1.0f, 100.0f);
  33. StaticModel@ planeObject = planeNode.CreateComponent("StaticModel");
  34. planeObject.model = cache.GetResource("Model", "Models/Plane.mdl");
  35. planeObject.material = cache.GetResource("Material", "Materials/StoneTiled.xml");
  36. // Create a directional light to the world so that we can see something. The light scene node's orientation controls the
  37. // light direction; we will use the SetDirection() function which calculates the orientation from a forward direction vector.
  38. // The light will use default settings (white light, no shadows)
  39. Node@ lightNode = scene_.CreateChild("DirectionalLight");
  40. lightNode.direction = Vector3(0.6f, -1.0f, 0.8f); // The direction vector does not need to be normalized
  41. Light@ light = lightNode.CreateComponent("Light");
  42. light.lightType = LIGHT_DIRECTIONAL;
  43. // Create more StaticModel objects to the scene, randomly positioned, rotated and scaled. For rotation, we construct a
  44. // quaternion from Euler angles where the Y angle (rotation about the Y axis) is randomized. The mushroom model contains
  45. // LOD levels, so the StaticModel component will automatically select the LOD level according to the view distance (you'll
  46. // see the model get simpler as it moves further away). Finally, rendering a large number of the same object with the
  47. // same material allows instancing to be used, if the GPU supports it. This reduces the amount of CPU work in rendering the
  48. // scene.
  49. const uint NUM_OBJECTS = 200;
  50. for (uint i = 0; i < NUM_OBJECTS; ++i)
  51. {
  52. Node@ mushroomNode = scene_.CreateChild("Mushroom");
  53. mushroomNode.position = Vector3(Random(90.0f) - 45.0f, 0.0f, Random(90.0f) - 45.0f);
  54. mushroomNode.rotation = Quaternion(0.0f, Random(360.0f), 0.0f);
  55. mushroomNode.SetScale(0.5f + Random(2.0f));
  56. StaticModel@ mushroomObject = mushroomNode.CreateComponent("StaticModel");
  57. mushroomObject.model = cache.GetResource("Model", "Models/Mushroom.mdl");
  58. mushroomObject.material = cache.GetResource("Material", "Materials/Mushroom.xml");
  59. }
  60. // Create a scene node for the camera, which we will move around
  61. // The camera will use default settings (1000 far clip distance, 45 degrees FOV, set aspect ratio automatically)
  62. cameraNode = scene_.CreateChild("Camera");
  63. cameraNode.CreateComponent("Camera");
  64. // Set an initial position for the camera scene node above the plane
  65. cameraNode.position = Vector3(0.0f, 5.0f, 0.0f);
  66. }
  67. void CreateInstructions()
  68. {
  69. // Construct new Text object, set string to display and font to use
  70. Text@ instructionText = ui.root.CreateChild("Text");
  71. instructionText.text = "Use WASD keys and mouse to move";
  72. instructionText.SetFont(cache.GetResource("Font", "Fonts/Anonymous Pro.ttf"), 15);
  73. // Position the text relative to the screen center
  74. instructionText.horizontalAlignment = HA_CENTER;
  75. instructionText.verticalAlignment = VA_CENTER;
  76. instructionText.SetPosition(0, ui.root.height / 4);
  77. }
  78. void SetupViewport()
  79. {
  80. // Set up a viewport to the Renderer subsystem so that the 3D scene can be seen. We need to define the scene and the camera
  81. // at minimum. Additionally we could configure the viewport screen size and the rendering path (eg. forward / deferred) to
  82. // use, but now we just use full screen and default render path configured in the engine command line options
  83. Viewport@ viewport = Viewport(scene_, cameraNode.GetComponent("Camera"));
  84. renderer.viewports[0] = viewport;
  85. }
  86. void MoveCamera(float timeStep)
  87. {
  88. // Do not move if the UI has a focused element (the console)
  89. if (ui.focusElement !is null)
  90. return;
  91. // Movement speed as world units per second
  92. const float MOVE_SPEED = 20.0f;
  93. // Mouse sensitivity as degrees per pixel
  94. const float MOUSE_SENSITIVITY = 0.1f;
  95. // Use this frame's mouse motion to adjust camera node yaw and pitch. Clamp the pitch between -90 and 90 degrees
  96. IntVector2 mouseMove = input.mouseMove;
  97. yaw += MOUSE_SENSITIVITY * mouseMove.x;
  98. pitch += MOUSE_SENSITIVITY * mouseMove.y;
  99. pitch = Clamp(pitch, -90.0f, 90.0f);
  100. // Construct new orientation for the camera scene node from yaw and pitch. Roll is fixed to zero
  101. cameraNode.rotation = Quaternion(pitch, yaw, 0.0f);
  102. // Read WASD keys and move the camera scene node to the corresponding direction if they are pressed
  103. // Use the Translate() function (default local space) to move relative to the node's orientation.
  104. if (input.keyDown['W'])
  105. cameraNode.Translate(Vector3(0.0f, 0.0f, 1.0f) * MOVE_SPEED * timeStep);
  106. if (input.keyDown['S'])
  107. cameraNode.Translate(Vector3(0.0f, 0.0f, -1.0f) * MOVE_SPEED * timeStep);
  108. if (input.keyDown['A'])
  109. cameraNode.Translate(Vector3(-1.0f, 0.0f, 0.0f) * MOVE_SPEED * timeStep);
  110. if (input.keyDown['D'])
  111. cameraNode.Translate(Vector3(1.0f, 0.0f, 0.0f) * MOVE_SPEED * timeStep);
  112. }
  113. void SubscribeToEvents()
  114. {
  115. // Subscribe HandleUpdate() function for processing update events
  116. SubscribeToEvent("Update", "HandleUpdate");
  117. }
  118. void HandleUpdate(StringHash eventType, VariantMap& eventData)
  119. {
  120. // Take the frame time step, which is stored as a float
  121. float timeStep = eventData["TimeStep"].GetFloat();
  122. // Move the camera, scale movement with time step
  123. MoveCamera(timeStep);
  124. }
  125. // Create XML patch instructions for screen joystick layout specific to this sample app
  126. String patchInstructions = "";