ParticleEmitter2D.cpp 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351
  1. //
  2. // Copyright (c) 2008-2014 the Urho3D project.
  3. //
  4. // Permission is hereby granted, free of charge, to any person obtaining a copy
  5. // of this software and associated documentation files (the "Software"), to deal
  6. // in the Software without restriction, including without limitation the rights
  7. // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  8. // copies of the Software, and to permit persons to whom the Software is
  9. // furnished to do so, subject to the following conditions:
  10. //
  11. // The above copyright notice and this permission notice shall be included in
  12. // all copies or substantial portions of the Software.
  13. //
  14. // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15. // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16. // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  17. // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  18. // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  19. // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  20. // THE SOFTWARE.
  21. //
  22. #include "Precompiled.h"
  23. #include "Camera.h"
  24. #include "Context.h"
  25. #include "ParticleModel2D.h"
  26. #include "ParticleEmitter2D.h"
  27. #include "ResourceCache.h"
  28. #include "Scene.h"
  29. #include "SceneEvents.h"
  30. #include "DebugNew.h"
  31. namespace Urho3D
  32. {
  33. extern const char* URHO2D_CATEGORY;
  34. ParticleEmitter2D::ParticleEmitter2D(Context* context) :
  35. Drawable2D(context),
  36. lifeTime_(0.0f),
  37. numParticles_(0),
  38. emitParticleTime_(0.0f),
  39. timeBetweenParticles_(1.0f)
  40. {
  41. }
  42. ParticleEmitter2D::~ParticleEmitter2D()
  43. {
  44. }
  45. void ParticleEmitter2D::RegisterObject(Context* context)
  46. {
  47. context->RegisterFactory<ParticleEmitter2D>(URHO2D_CATEGORY);
  48. ACCESSOR_ATTRIBUTE(ParticleEmitter2D, VAR_RESOURCEREF, "Particle Model", GetParticleModelAttr, SetParticleModelAttr, ResourceRef, ResourceRef(ParticleModel2D::GetTypeStatic()), AM_DEFAULT);
  49. COPY_BASE_ATTRIBUTES(ParticleEmitter2D, Drawable2D);
  50. }
  51. void ParticleEmitter2D::OnSetEnabled()
  52. {
  53. Drawable2D::OnSetEnabled();
  54. Scene* scene = GetScene();
  55. if (scene)
  56. {
  57. if (IsEnabledEffective())
  58. SubscribeToEvent(scene, E_SCENEPOSTUPDATE, HANDLER(ParticleEmitter2D, HandleScenePostUpdate));
  59. else
  60. UnsubscribeFromEvent(scene, E_SCENEPOSTUPDATE);
  61. }
  62. }
  63. void ParticleEmitter2D::UpdateBatches(const FrameInfo& frame)
  64. {
  65. // const Matrix3x4& worldTransform = node_->GetWorldTransform();
  66. distance_ = frame.camera_->GetDistance(GetWorldBoundingBox().Center());
  67. batches_[0].distance_ = distance_;
  68. batches_[0].worldTransform_ = &Matrix3x4::IDENTITY;
  69. }
  70. void ParticleEmitter2D::Update(const FrameInfo& frame)
  71. {
  72. if (!model_)
  73. return;
  74. float timeStep = frame.timeStep_;
  75. float worldScale = GetNode()->GetWorldScale().x_;
  76. unsigned particleIndex = 0;
  77. while (particleIndex < numParticles_)
  78. {
  79. Particle2D& currentParticle = particles_[particleIndex];
  80. if (currentParticle.timeToLive_ > timeStep)
  81. {
  82. UpdateParticle(currentParticle, timeStep, worldScale);
  83. ++particleIndex;
  84. }
  85. else
  86. {
  87. if (particleIndex != numParticles_ - 1)
  88. particles_[particleIndex] = particles_[numParticles_ - 1];
  89. --numParticles_;
  90. }
  91. }
  92. if (lifeTime_< 0.0f || lifeTime_ > 0.0f)
  93. {
  94. Vector3 worldPosition = GetNode()->GetWorldPosition();
  95. float worldAngle = GetNode()->GetWorldRotation().RollAngle();
  96. emitParticleTime_ += timeStep;
  97. while (emitParticleTime_ > 0.0f)
  98. {
  99. EmitParticle(worldPosition, worldAngle, worldScale);
  100. emitParticleTime_ -= timeBetweenParticles_;
  101. }
  102. if (lifeTime_ > 0.0f)
  103. lifeTime_ = Max(0.0f, lifeTime_ - timeStep);
  104. }
  105. OnMarkedDirty(node_);
  106. }
  107. void ParticleEmitter2D::SetModel(ParticleModel2D* model)
  108. {
  109. if (model == model_)
  110. return;
  111. model_ = model;
  112. MarkNetworkUpdate();
  113. if (!model_)
  114. return;
  115. SetSprite(model_->GetSprite());
  116. SetBlendMode(model_->GetBlendMode());
  117. lifeTime_ = model_->GetDuration();
  118. numParticles_ = Min((int)model_->GetMaxParticles(), (int)numParticles_);
  119. particles_.Resize(model_->GetMaxParticles());
  120. vertices_.Reserve(model_->GetMaxParticles() * 4);
  121. emitParticleTime_ = 0.0f;
  122. timeBetweenParticles_ = model_->GetParticleLifeSpan() / model_->GetMaxParticles();
  123. }
  124. ParticleModel2D* ParticleEmitter2D::GetModel() const
  125. {
  126. return model_;
  127. }
  128. void ParticleEmitter2D::SetParticleModelAttr(ResourceRef value)
  129. {
  130. ResourceCache* cache = GetSubsystem<ResourceCache>();
  131. SetModel(cache->GetResource<ParticleModel2D>(value.name_));
  132. }
  133. Urho3D::ResourceRef ParticleEmitter2D::GetParticleModelAttr() const
  134. {
  135. return GetResourceRef(model_, ParticleModel2D::GetTypeStatic());
  136. }
  137. void ParticleEmitter2D::OnNodeSet(Node* node)
  138. {
  139. Drawable2D::OnNodeSet(node);
  140. if (node)
  141. {
  142. Scene* scene = GetScene();
  143. if (scene && IsEnabledEffective())
  144. SubscribeToEvent(scene, E_SCENEPOSTUPDATE, HANDLER(ParticleEmitter2D, HandleScenePostUpdate));
  145. }
  146. }
  147. void ParticleEmitter2D::OnWorldBoundingBoxUpdate()
  148. {
  149. if (verticesDirty_)
  150. {
  151. UpdateVertices();
  152. boundingBox_.Clear();
  153. for (unsigned i = 0; i < vertices_.Size(); ++i)
  154. boundingBox_.Merge(vertices_[i].position_);
  155. }
  156. worldBoundingBox_ = boundingBox_;
  157. }
  158. void ParticleEmitter2D::UpdateVertices()
  159. {
  160. if (!verticesDirty_)
  161. return;
  162. vertices_.Clear();
  163. if (!sprite_)
  164. return;
  165. Texture2D* texture = sprite_->GetTexture();
  166. if (!texture)
  167. return;
  168. const IntRect& rectangle_ = sprite_->GetRectangle();
  169. if (rectangle_.Width() == 0 || rectangle_.Height() == 0)
  170. return;
  171. Vertex2D vertex0;
  172. Vertex2D vertex1;
  173. Vertex2D vertex2;
  174. Vertex2D vertex3;
  175. vertex0.uv_ = Vector2(0.0f, 1.0f);
  176. vertex1.uv_ = Vector2(0.0f, 0.0f);
  177. vertex2.uv_ = Vector2(1.0f, 0.0f);
  178. vertex3.uv_ = Vector2(1.0f, 1.0f);
  179. for (unsigned i = 0; i < numParticles_; ++i)
  180. {
  181. Particle2D& p = particles_[i];
  182. float c = Cos(p.rotation_);
  183. float s = Sin(p.rotation_);
  184. float add = (c + s) * p.size_ * 0.5f;
  185. float sub = (c - s) * p.size_ * 0.5f;
  186. vertex0.position_ = Vector3(p.position_.x_ - sub, p.position_.y_ - add, zValue_) * unitPerPixel_;
  187. vertex1.position_ = Vector3(p.position_.x_ - add, p.position_.y_ + sub, zValue_) * unitPerPixel_;
  188. vertex2.position_ = Vector3(p.position_.x_ + sub, p.position_.y_ + add, zValue_) * unitPerPixel_;
  189. vertex3.position_ = Vector3(p.position_.x_ + add, p.position_.y_ - sub, zValue_) * unitPerPixel_;
  190. vertex0.color_ = vertex1.color_ = vertex2.color_ = vertex3.color_ = p.color_.ToUInt();
  191. vertices_.Push(vertex0);
  192. vertices_.Push(vertex1);
  193. vertices_.Push(vertex2);
  194. vertices_.Push(vertex3);
  195. }
  196. geometryDirty_ = true;
  197. verticesDirty_ = false;
  198. }
  199. void ParticleEmitter2D::HandleScenePostUpdate(StringHash eventType, VariantMap& eventData)
  200. {
  201. MarkForUpdate();
  202. }
  203. void ParticleEmitter2D::EmitParticle(const Vector3& worldPosition, float worldAngle, float worldScale)
  204. {
  205. if (numParticles_ >= model_->GetMaxParticles())
  206. return;
  207. float lifespan = model_->GetParticleLifeSpan() + model_->GetParticleLifeSpanVariance() * Random(-1.0f, 1.0f);
  208. if (lifespan <= 0.0f)
  209. return;
  210. float invLifespan = 1.0f / lifespan;
  211. Particle2D& particle = particles_[numParticles_++];
  212. particle.timeToLive_ = lifespan;
  213. particle.startPos_.x_ = worldPosition.x_;
  214. particle.startPos_.y_ = worldPosition.y_;
  215. particle.position_.x_ = worldPosition.x_ + model_->GetSourcePositionVariance().x_ * Random(-1.0f, 1.0f);
  216. particle.position_.y_ = worldPosition.y_ + model_->GetSourcePositionVariance().y_ * Random(-1.0f, 1.0f);
  217. float angle = worldAngle + model_->GetEmitAngle() + model_->GetEmitAngleVariance() * Random(-1.0f, 1.0f);
  218. float speed = worldScale * (model_->GetSpeed() + model_->GetSpeedVariance() * Random(-1.0f, 1.0f));
  219. particle.velocity_.x_ = speed * Cos(angle);
  220. particle.velocity_.y_ = speed * Sin(angle);
  221. particle.radius_ = worldScale * (model_->GetMaxRadius() + model_->GetMaxRadiusVariance() * Random(-1.0f, 1.0f));
  222. particle.radiusDelta_ = worldScale * (model_->GetMaxRadius() * invLifespan);
  223. particle.rotation_ = worldAngle + model_->GetEmitAngle() + model_->GetEmitAngleVariance() * Random(-1.0f, 1.0f);
  224. particle.rotationDelta_ = model_->GetRotatePerSecond() + model_->GetRotatePerSecondVariance() * Random(-1.0f, 1.0f);
  225. particle.radialAccel_ = worldScale * (model_->GetRadialAcceleration() + model_->GetRadialAccelerationVariance() * Random(-1.0f, 1.0f));
  226. particle.tangentialAccel_ = worldScale * (model_->GetTangentialAcceleration() + model_->GetTangentialAccelerationVariance() * Random(-1.0f, 1.0f));
  227. float particleStartSize = worldScale * Max(0.1f, model_->GetStartParticleSize() + model_->GetStartParticleSizeVariance() * Random(-1.0f, 1.0f));
  228. float particleFinishSize = worldScale * Max(0.1f, model_->GetEndParticleSize() + model_->GetEndParticleSizeVariance() * Random(-1.0f, 1.0f));
  229. particle.size_ = particleStartSize;
  230. particle.sizeDelta_ = (particleFinishSize - particleStartSize) * invLifespan;
  231. Color startColor = model_->GetStartColor() + model_->GetStartColorVariance() * Random(-1.0f, 1.0f);
  232. Color endColor = model_->GetEndColor() + model_->GetEndColorVariance() * Random(-1.0f, 1.0f);
  233. Color colorDelta;
  234. colorDelta.r_ = (endColor.r_ - startColor.r_) * invLifespan;
  235. colorDelta.g_ = (endColor.g_ - startColor.g_) * invLifespan;
  236. colorDelta.b_ = (endColor.b_ - startColor.b_) * invLifespan;
  237. colorDelta.a_ = (endColor.a_ - startColor.a_) * invLifespan;
  238. particle.color_ = startColor;
  239. particle.colorDelta_ = colorDelta;
  240. }
  241. void ParticleEmitter2D::UpdateParticle(Particle2D& particle, float timeStep, float worldScale)
  242. {
  243. timeStep = Min(timeStep, particle.timeToLive_);
  244. particle.timeToLive_ -= timeStep;
  245. if (model_->GetEmitterType() == EMITTER_TYPE_RADIAL)
  246. {
  247. particle.rotation_ += particle.rotationDelta_ * timeStep;
  248. particle.radius_ -= particle.radiusDelta_ * timeStep;
  249. Vector3 worldPosition = GetNode()->GetWorldPosition();
  250. particle.position_.x_ = worldPosition.x_ - cosf(particle.rotation_) * particle.radius_;
  251. particle.position_.y_ = worldPosition.y_ - sinf(particle.rotation_) * particle.radius_;
  252. if (particle.radius_ < model_->GetMinRadius() * worldScale)
  253. particle.timeToLive_ = 0.0f;
  254. }
  255. else
  256. {
  257. float distanceX = particle.position_.x_ - particle.startPos_.x_;
  258. float distanceY = particle.position_.y_ - particle.startPos_.y_;
  259. float distanceScalar = Max(0.01f, sqrtf(distanceX * distanceX + distanceY * distanceY));
  260. float radialX = distanceX / distanceScalar;
  261. float radialY = distanceY / distanceScalar;
  262. float tangentialX = radialX;
  263. float tangentialY = radialY;
  264. radialX *= particle.radialAccel_;
  265. radialY *= particle.radialAccel_;
  266. float newY = tangentialX;
  267. tangentialX = -tangentialY * particle.tangentialAccel_;
  268. tangentialY = newY * particle.tangentialAccel_;
  269. particle.velocity_.x_ += timeStep * (model_->GetGravity().x_ + radialX + tangentialX);
  270. particle.velocity_.y_ += timeStep * (model_->GetGravity().y_ + radialY + tangentialY);
  271. particle.position_.x_ += particle.velocity_.x_ * timeStep;
  272. particle.position_.y_ += particle.velocity_.y_ * timeStep;
  273. }
  274. particle.size_ += particle.sizeDelta_ * timeStep;
  275. particle.color_.r_ += particle.colorDelta_.r_ * timeStep;
  276. particle.color_.g_ += particle.colorDelta_.g_ * timeStep;
  277. particle.color_.b_ += particle.colorDelta_.b_ * timeStep;
  278. particle.color_.a_ += particle.colorDelta_.a_ * timeStep;
  279. }
  280. }