PhysicsWorld.cpp 40 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091
  1. //
  2. // Copyright (c) 2008-2017 the Urho3D project.
  3. //
  4. // Permission is hereby granted, free of charge, to any person obtaining a copy
  5. // of this software and associated documentation files (the "Software"), to deal
  6. // in the Software without restriction, including without limitation the rights
  7. // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  8. // copies of the Software, and to permit persons to whom the Software is
  9. // furnished to do so, subject to the following conditions:
  10. //
  11. // The above copyright notice and this permission notice shall be included in
  12. // all copies or substantial portions of the Software.
  13. //
  14. // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15. // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16. // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  17. // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  18. // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  19. // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  20. // THE SOFTWARE.
  21. //
  22. #include "../Precompiled.h"
  23. #include "../Core/Context.h"
  24. #include "../Core/Mutex.h"
  25. #include "../Core/Profiler.h"
  26. #include "../Graphics/DebugRenderer.h"
  27. #include "../Graphics/Model.h"
  28. #include "../IO/Log.h"
  29. #include "../Math/Ray.h"
  30. #include "../Physics/CollisionShape.h"
  31. #include "../Physics/Constraint.h"
  32. #include "../Physics/PhysicsEvents.h"
  33. #include "../Physics/PhysicsUtils.h"
  34. #include "../Physics/PhysicsWorld.h"
  35. #include "../Physics/RaycastVehicle.h"
  36. #include "../Physics/RigidBody.h"
  37. #include "../Scene/Scene.h"
  38. #include "../Scene/SceneEvents.h"
  39. #include <Bullet/BulletCollision/BroadphaseCollision/btDbvtBroadphase.h>
  40. #include <Bullet/BulletCollision/CollisionDispatch/btDefaultCollisionConfiguration.h>
  41. #include <Bullet/BulletCollision/CollisionDispatch/btInternalEdgeUtility.h>
  42. #include <Bullet/BulletCollision/CollisionShapes/btBoxShape.h>
  43. #include <Bullet/BulletCollision/CollisionShapes/btSphereShape.h>
  44. #include <Bullet/BulletDynamics/ConstraintSolver/btSequentialImpulseConstraintSolver.h>
  45. #include <Bullet/BulletDynamics/Dynamics/btDiscreteDynamicsWorld.h>
  46. extern ContactAddedCallback gContactAddedCallback;
  47. namespace Urho3D
  48. {
  49. const char* PHYSICS_CATEGORY = "Physics";
  50. extern const char* SUBSYSTEM_CATEGORY;
  51. static const int MAX_SOLVER_ITERATIONS = 256;
  52. static const int DEFAULT_FPS = 60;
  53. static const Vector3 DEFAULT_GRAVITY = Vector3(0.0f, -9.81f, 0.0f);
  54. PhysicsWorldConfig PhysicsWorld::config;
  55. static bool CompareRaycastResults(const PhysicsRaycastResult& lhs, const PhysicsRaycastResult& rhs)
  56. {
  57. return lhs.distance_ < rhs.distance_;
  58. }
  59. void InternalPreTickCallback(btDynamicsWorld* world, btScalar timeStep)
  60. {
  61. static_cast<PhysicsWorld*>(world->getWorldUserInfo())->PreStep(timeStep);
  62. }
  63. void InternalTickCallback(btDynamicsWorld* world, btScalar timeStep)
  64. {
  65. static_cast<PhysicsWorld*>(world->getWorldUserInfo())->PostStep(timeStep);
  66. }
  67. static bool CustomMaterialCombinerCallback(btManifoldPoint& cp, const btCollisionObjectWrapper* colObj0Wrap, int partId0,
  68. int index0, const btCollisionObjectWrapper* colObj1Wrap, int partId1, int index1)
  69. {
  70. btAdjustInternalEdgeContacts(cp, colObj1Wrap, colObj0Wrap, partId1, index1);
  71. cp.m_combinedFriction = colObj0Wrap->getCollisionObject()->getFriction() * colObj1Wrap->getCollisionObject()->getFriction();
  72. cp.m_combinedRestitution =
  73. colObj0Wrap->getCollisionObject()->getRestitution() * colObj1Wrap->getCollisionObject()->getRestitution();
  74. return true;
  75. }
  76. /// Callback for physics world queries.
  77. struct PhysicsQueryCallback : public btCollisionWorld::ContactResultCallback
  78. {
  79. /// Construct.
  80. PhysicsQueryCallback(PODVector<RigidBody*>& result, unsigned collisionMask) :
  81. result_(result),
  82. collisionMask_(collisionMask)
  83. {
  84. }
  85. /// Add a contact result.
  86. virtual btScalar addSingleResult(btManifoldPoint&, const btCollisionObjectWrapper* colObj0Wrap, int, int,
  87. const btCollisionObjectWrapper* colObj1Wrap, int, int)
  88. {
  89. RigidBody* body = reinterpret_cast<RigidBody*>(colObj0Wrap->getCollisionObject()->getUserPointer());
  90. if (body && !result_.Contains(body) && (body->GetCollisionLayer() & collisionMask_))
  91. result_.Push(body);
  92. body = reinterpret_cast<RigidBody*>(colObj1Wrap->getCollisionObject()->getUserPointer());
  93. if (body && !result_.Contains(body) && (body->GetCollisionLayer() & collisionMask_))
  94. result_.Push(body);
  95. return 0.0f;
  96. }
  97. /// Found rigid bodies.
  98. PODVector<RigidBody*>& result_;
  99. /// Collision mask for the query.
  100. unsigned collisionMask_;
  101. };
  102. PhysicsWorld::PhysicsWorld(Context* context) :
  103. Component(context),
  104. collisionConfiguration_(0),
  105. fps_(DEFAULT_FPS),
  106. maxSubSteps_(0),
  107. timeAcc_(0.0f),
  108. maxNetworkAngularVelocity_(DEFAULT_MAX_NETWORK_ANGULAR_VELOCITY),
  109. updateEnabled_(true),
  110. interpolation_(true),
  111. internalEdge_(true),
  112. applyingTransforms_(false),
  113. simulating_(false),
  114. debugRenderer_(0),
  115. debugMode_(btIDebugDraw::DBG_DrawWireframe | btIDebugDraw::DBG_DrawConstraints | btIDebugDraw::DBG_DrawConstraintLimits)
  116. {
  117. gContactAddedCallback = CustomMaterialCombinerCallback;
  118. if (PhysicsWorld::config.collisionConfig_)
  119. collisionConfiguration_ = PhysicsWorld::config.collisionConfig_;
  120. else
  121. collisionConfiguration_ = new btDefaultCollisionConfiguration();
  122. collisionDispatcher_ = new btCollisionDispatcher(collisionConfiguration_);
  123. broadphase_ = new btDbvtBroadphase();
  124. solver_ = new btSequentialImpulseConstraintSolver();
  125. world_ = new btDiscreteDynamicsWorld(collisionDispatcher_.Get(), broadphase_.Get(), solver_.Get(), collisionConfiguration_);
  126. world_->setGravity(ToBtVector3(DEFAULT_GRAVITY));
  127. world_->getDispatchInfo().m_useContinuous = true;
  128. world_->getSolverInfo().m_splitImpulse = false; // Disable by default for performance
  129. world_->setDebugDrawer(this);
  130. world_->setInternalTickCallback(InternalPreTickCallback, static_cast<void*>(this), true);
  131. world_->setInternalTickCallback(InternalTickCallback, static_cast<void*>(this), false);
  132. }
  133. PhysicsWorld::~PhysicsWorld()
  134. {
  135. if (scene_)
  136. {
  137. // Force all remaining constraints, rigid bodies and collision shapes to release themselves
  138. for (PODVector<Constraint*>::Iterator i = constraints_.Begin(); i != constraints_.End(); ++i)
  139. (*i)->ReleaseConstraint();
  140. for (PODVector<RigidBody*>::Iterator i = rigidBodies_.Begin(); i != rigidBodies_.End(); ++i)
  141. (*i)->ReleaseBody();
  142. for (PODVector<CollisionShape*>::Iterator i = collisionShapes_.Begin(); i != collisionShapes_.End(); ++i)
  143. (*i)->ReleaseShape();
  144. }
  145. world_.Reset();
  146. solver_.Reset();
  147. broadphase_.Reset();
  148. collisionDispatcher_.Reset();
  149. // Delete configuration only if it was the default created by PhysicsWorld
  150. if (!PhysicsWorld::config.collisionConfig_)
  151. delete collisionConfiguration_;
  152. collisionConfiguration_ = 0;
  153. }
  154. void PhysicsWorld::RegisterObject(Context* context)
  155. {
  156. context->RegisterFactory<PhysicsWorld>(SUBSYSTEM_CATEGORY);
  157. URHO3D_MIXED_ACCESSOR_ATTRIBUTE("Gravity", GetGravity, SetGravity, Vector3, DEFAULT_GRAVITY, AM_DEFAULT);
  158. URHO3D_ATTRIBUTE("Physics FPS", int, fps_, DEFAULT_FPS, AM_DEFAULT);
  159. URHO3D_ATTRIBUTE("Max Substeps", int, maxSubSteps_, 0, AM_DEFAULT);
  160. URHO3D_ACCESSOR_ATTRIBUTE("Solver Iterations", GetNumIterations, SetNumIterations, int, 10, AM_DEFAULT);
  161. URHO3D_ATTRIBUTE("Net Max Angular Vel.", float, maxNetworkAngularVelocity_, DEFAULT_MAX_NETWORK_ANGULAR_VELOCITY, AM_DEFAULT);
  162. URHO3D_ATTRIBUTE("Interpolation", bool, interpolation_, true, AM_FILE);
  163. URHO3D_ATTRIBUTE("Internal Edge Utility", bool, internalEdge_, true, AM_DEFAULT);
  164. URHO3D_ACCESSOR_ATTRIBUTE("Split Impulse", GetSplitImpulse, SetSplitImpulse, bool, false, AM_DEFAULT);
  165. }
  166. bool PhysicsWorld::isVisible(const btVector3& aabbMin, const btVector3& aabbMax)
  167. {
  168. if (debugRenderer_)
  169. return debugRenderer_->IsInside(BoundingBox(ToVector3(aabbMin), ToVector3(aabbMax)));
  170. else
  171. return false;
  172. }
  173. void PhysicsWorld::drawLine(const btVector3& from, const btVector3& to, const btVector3& color)
  174. {
  175. if (debugRenderer_)
  176. debugRenderer_->AddLine(ToVector3(from), ToVector3(to), Color(color.x(), color.y(), color.z()), debugDepthTest_);
  177. }
  178. void PhysicsWorld::DrawDebugGeometry(DebugRenderer* debug, bool depthTest)
  179. {
  180. if (debug)
  181. {
  182. URHO3D_PROFILE(PhysicsDrawDebug);
  183. debugRenderer_ = debug;
  184. debugDepthTest_ = depthTest;
  185. world_->debugDrawWorld();
  186. debugRenderer_ = 0;
  187. }
  188. }
  189. void PhysicsWorld::reportErrorWarning(const char* warningString)
  190. {
  191. URHO3D_LOGWARNING("Physics: " + String(warningString));
  192. }
  193. void PhysicsWorld::drawContactPoint(const btVector3& pointOnB, const btVector3& normalOnB, btScalar distance, int lifeTime,
  194. const btVector3& color)
  195. {
  196. }
  197. void PhysicsWorld::draw3dText(const btVector3& location, const char* textString)
  198. {
  199. }
  200. void PhysicsWorld::Update(float timeStep)
  201. {
  202. URHO3D_PROFILE(UpdatePhysics);
  203. float internalTimeStep = 1.0f / fps_;
  204. int maxSubSteps = (int)(timeStep * fps_) + 1;
  205. if (maxSubSteps_ < 0)
  206. {
  207. internalTimeStep = timeStep;
  208. maxSubSteps = 1;
  209. }
  210. else if (maxSubSteps_ > 0)
  211. maxSubSteps = Min(maxSubSteps, maxSubSteps_);
  212. delayedWorldTransforms_.Clear();
  213. simulating_ = true;
  214. if (interpolation_)
  215. world_->stepSimulation(timeStep, maxSubSteps, internalTimeStep);
  216. else
  217. {
  218. timeAcc_ += timeStep;
  219. while (timeAcc_ >= internalTimeStep && maxSubSteps > 0)
  220. {
  221. world_->stepSimulation(internalTimeStep, 0, internalTimeStep);
  222. timeAcc_ -= internalTimeStep;
  223. --maxSubSteps;
  224. }
  225. }
  226. simulating_ = false;
  227. // Apply delayed (parented) world transforms now
  228. while (!delayedWorldTransforms_.Empty())
  229. {
  230. for (HashMap<RigidBody*, DelayedWorldTransform>::Iterator i = delayedWorldTransforms_.Begin();
  231. i != delayedWorldTransforms_.End();)
  232. {
  233. const DelayedWorldTransform& transform = i->second_;
  234. // If parent's transform has already been assigned, can proceed
  235. if (!delayedWorldTransforms_.Contains(transform.parentRigidBody_))
  236. {
  237. transform.rigidBody_->ApplyWorldTransform(transform.worldPosition_, transform.worldRotation_);
  238. i = delayedWorldTransforms_.Erase(i);
  239. }
  240. else
  241. ++i;
  242. }
  243. }
  244. }
  245. void PhysicsWorld::UpdateCollisions()
  246. {
  247. world_->performDiscreteCollisionDetection();
  248. }
  249. void PhysicsWorld::SetFps(int fps)
  250. {
  251. fps_ = (unsigned)Clamp(fps, 1, 1000);
  252. MarkNetworkUpdate();
  253. }
  254. void PhysicsWorld::SetGravity(const Vector3& gravity)
  255. {
  256. world_->setGravity(ToBtVector3(gravity));
  257. MarkNetworkUpdate();
  258. }
  259. void PhysicsWorld::SetMaxSubSteps(int num)
  260. {
  261. maxSubSteps_ = num;
  262. MarkNetworkUpdate();
  263. }
  264. void PhysicsWorld::SetNumIterations(int num)
  265. {
  266. num = Clamp(num, 1, MAX_SOLVER_ITERATIONS);
  267. world_->getSolverInfo().m_numIterations = num;
  268. MarkNetworkUpdate();
  269. }
  270. void PhysicsWorld::SetUpdateEnabled(bool enable)
  271. {
  272. updateEnabled_ = enable;
  273. }
  274. void PhysicsWorld::SetInterpolation(bool enable)
  275. {
  276. interpolation_ = enable;
  277. }
  278. void PhysicsWorld::SetInternalEdge(bool enable)
  279. {
  280. internalEdge_ = enable;
  281. MarkNetworkUpdate();
  282. }
  283. void PhysicsWorld::SetSplitImpulse(bool enable)
  284. {
  285. world_->getSolverInfo().m_splitImpulse = enable;
  286. MarkNetworkUpdate();
  287. }
  288. void PhysicsWorld::SetMaxNetworkAngularVelocity(float velocity)
  289. {
  290. maxNetworkAngularVelocity_ = Clamp(velocity, 1.0f, 32767.0f);
  291. MarkNetworkUpdate();
  292. }
  293. void PhysicsWorld::Raycast(PODVector<PhysicsRaycastResult>& result, const Ray& ray, float maxDistance, unsigned collisionMask)
  294. {
  295. URHO3D_PROFILE(PhysicsRaycast);
  296. if (maxDistance >= M_INFINITY)
  297. URHO3D_LOGWARNING("Infinite maxDistance in physics raycast is not supported");
  298. btCollisionWorld::AllHitsRayResultCallback
  299. rayCallback(ToBtVector3(ray.origin_), ToBtVector3(ray.origin_ + maxDistance * ray.direction_));
  300. rayCallback.m_collisionFilterGroup = (short)0xffff;
  301. rayCallback.m_collisionFilterMask = (short)collisionMask;
  302. world_->rayTest(rayCallback.m_rayFromWorld, rayCallback.m_rayToWorld, rayCallback);
  303. for (int i = 0; i < rayCallback.m_collisionObjects.size(); ++i)
  304. {
  305. PhysicsRaycastResult newResult;
  306. newResult.body_ = static_cast<RigidBody*>(rayCallback.m_collisionObjects[i]->getUserPointer());
  307. newResult.position_ = ToVector3(rayCallback.m_hitPointWorld[i]);
  308. newResult.normal_ = ToVector3(rayCallback.m_hitNormalWorld[i]);
  309. newResult.distance_ = (newResult.position_ - ray.origin_).Length();
  310. newResult.hitFraction_ = rayCallback.m_closestHitFraction;
  311. result.Push(newResult);
  312. }
  313. Sort(result.Begin(), result.End(), CompareRaycastResults);
  314. }
  315. void PhysicsWorld::RaycastSingle(PhysicsRaycastResult& result, const Ray& ray, float maxDistance, unsigned collisionMask)
  316. {
  317. URHO3D_PROFILE(PhysicsRaycastSingle);
  318. if (maxDistance >= M_INFINITY)
  319. URHO3D_LOGWARNING("Infinite maxDistance in physics raycast is not supported");
  320. btCollisionWorld::ClosestRayResultCallback
  321. rayCallback(ToBtVector3(ray.origin_), ToBtVector3(ray.origin_ + maxDistance * ray.direction_));
  322. rayCallback.m_collisionFilterGroup = (short)0xffff;
  323. rayCallback.m_collisionFilterMask = (short)collisionMask;
  324. world_->rayTest(rayCallback.m_rayFromWorld, rayCallback.m_rayToWorld, rayCallback);
  325. if (rayCallback.hasHit())
  326. {
  327. result.position_ = ToVector3(rayCallback.m_hitPointWorld);
  328. result.normal_ = ToVector3(rayCallback.m_hitNormalWorld);
  329. result.distance_ = (result.position_ - ray.origin_).Length();
  330. result.hitFraction_ = rayCallback.m_closestHitFraction;
  331. result.body_ = static_cast<RigidBody*>(rayCallback.m_collisionObject->getUserPointer());
  332. }
  333. else
  334. {
  335. result.position_ = Vector3::ZERO;
  336. result.normal_ = Vector3::ZERO;
  337. result.distance_ = M_INFINITY;
  338. result.hitFraction_ = 0.0f;
  339. result.body_ = 0;
  340. }
  341. }
  342. void PhysicsWorld::RaycastSingleSegmented(PhysicsRaycastResult& result, const Ray& ray, float maxDistance, float segmentDistance, unsigned collisionMask)
  343. {
  344. URHO3D_PROFILE(PhysicsRaycastSingleSegmented);
  345. if (maxDistance >= M_INFINITY)
  346. URHO3D_LOGWARNING("Infinite maxDistance in physics raycast is not supported");
  347. btVector3 start = ToBtVector3(ray.origin_);
  348. btVector3 end;
  349. btVector3 direction = ToBtVector3(ray.direction_);
  350. float distance;
  351. for (float remainingDistance = maxDistance; remainingDistance > 0; remainingDistance -= segmentDistance)
  352. {
  353. distance = Min(remainingDistance, segmentDistance);
  354. end = start + distance * direction;
  355. btCollisionWorld::ClosestRayResultCallback rayCallback(start, end);
  356. rayCallback.m_collisionFilterGroup = (short)0xffff;
  357. rayCallback.m_collisionFilterMask = (short)collisionMask;
  358. world_->rayTest(rayCallback.m_rayFromWorld, rayCallback.m_rayToWorld, rayCallback);
  359. if (rayCallback.hasHit())
  360. {
  361. result.position_ = ToVector3(rayCallback.m_hitPointWorld);
  362. result.normal_ = ToVector3(rayCallback.m_hitNormalWorld);
  363. result.distance_ = (result.position_ - ray.origin_).Length();
  364. result.hitFraction_ = rayCallback.m_closestHitFraction;
  365. result.body_ = static_cast<RigidBody*>(rayCallback.m_collisionObject->getUserPointer());
  366. // No need to cast the rest of the segments
  367. return;
  368. }
  369. // Use the end position as the new start position
  370. start = end;
  371. }
  372. // Didn't hit anything
  373. result.position_ = Vector3::ZERO;
  374. result.normal_ = Vector3::ZERO;
  375. result.distance_ = M_INFINITY;
  376. result.hitFraction_ = 0.0f;
  377. result.body_ = 0;
  378. }
  379. void PhysicsWorld::SphereCast(PhysicsRaycastResult& result, const Ray& ray, float radius, float maxDistance, unsigned collisionMask)
  380. {
  381. URHO3D_PROFILE(PhysicsSphereCast);
  382. if (maxDistance >= M_INFINITY)
  383. URHO3D_LOGWARNING("Infinite maxDistance in physics sphere cast is not supported");
  384. btSphereShape shape(radius);
  385. Vector3 endPos = ray.origin_ + maxDistance * ray.direction_;
  386. btCollisionWorld::ClosestConvexResultCallback
  387. convexCallback(ToBtVector3(ray.origin_), ToBtVector3(endPos));
  388. convexCallback.m_collisionFilterGroup = (short)0xffff;
  389. convexCallback.m_collisionFilterMask = (short)collisionMask;
  390. world_->convexSweepTest(&shape, btTransform(btQuaternion::getIdentity(), convexCallback.m_convexFromWorld),
  391. btTransform(btQuaternion::getIdentity(), convexCallback.m_convexToWorld), convexCallback);
  392. if (convexCallback.hasHit())
  393. {
  394. result.body_ = static_cast<RigidBody*>(convexCallback.m_hitCollisionObject->getUserPointer());
  395. result.position_ = ToVector3(convexCallback.m_hitPointWorld);
  396. result.normal_ = ToVector3(convexCallback.m_hitNormalWorld);
  397. result.distance_ = convexCallback.m_closestHitFraction * (endPos - ray.origin_).Length();
  398. result.hitFraction_ = convexCallback.m_closestHitFraction;
  399. }
  400. else
  401. {
  402. result.body_ = 0;
  403. result.position_ = Vector3::ZERO;
  404. result.normal_ = Vector3::ZERO;
  405. result.distance_ = M_INFINITY;
  406. result.hitFraction_ = 0.0f;
  407. }
  408. }
  409. void PhysicsWorld::ConvexCast(PhysicsRaycastResult& result, CollisionShape* shape, const Vector3& startPos,
  410. const Quaternion& startRot, const Vector3& endPos, const Quaternion& endRot, unsigned collisionMask)
  411. {
  412. if (!shape || !shape->GetCollisionShape())
  413. {
  414. URHO3D_LOGERROR("Null collision shape for convex cast");
  415. result.body_ = 0;
  416. result.position_ = Vector3::ZERO;
  417. result.normal_ = Vector3::ZERO;
  418. result.distance_ = M_INFINITY;
  419. result.hitFraction_ = 0.0f;
  420. return;
  421. }
  422. // If shape is attached in a rigidbody, set its collision group temporarily to 0 to make sure it is not returned in the sweep result
  423. RigidBody* bodyComp = shape->GetComponent<RigidBody>();
  424. btRigidBody* body = bodyComp ? bodyComp->GetBody() : (btRigidBody*)0;
  425. btBroadphaseProxy* proxy = body ? body->getBroadphaseProxy() : (btBroadphaseProxy*)0;
  426. short group = 0;
  427. if (proxy)
  428. {
  429. group = proxy->m_collisionFilterGroup;
  430. proxy->m_collisionFilterGroup = 0;
  431. }
  432. // Take the shape's offset position & rotation into account
  433. Node* shapeNode = shape->GetNode();
  434. Matrix3x4 startTransform(startPos, startRot, shapeNode ? shapeNode->GetWorldScale() : Vector3::ONE);
  435. Matrix3x4 endTransform(endPos, endRot, shapeNode ? shapeNode->GetWorldScale() : Vector3::ONE);
  436. Vector3 effectiveStartPos = startTransform * shape->GetPosition();
  437. Vector3 effectiveEndPos = endTransform * shape->GetPosition();
  438. Quaternion effectiveStartRot = startRot * shape->GetRotation();
  439. Quaternion effectiveEndRot = endRot * shape->GetRotation();
  440. ConvexCast(result, shape->GetCollisionShape(), effectiveStartPos, effectiveStartRot, effectiveEndPos, effectiveEndRot, collisionMask);
  441. // Restore the collision group
  442. if (proxy)
  443. proxy->m_collisionFilterGroup = group;
  444. }
  445. void PhysicsWorld::ConvexCast(PhysicsRaycastResult& result, btCollisionShape* shape, const Vector3& startPos,
  446. const Quaternion& startRot, const Vector3& endPos, const Quaternion& endRot, unsigned collisionMask)
  447. {
  448. if (!shape)
  449. {
  450. URHO3D_LOGERROR("Null collision shape for convex cast");
  451. result.body_ = 0;
  452. result.position_ = Vector3::ZERO;
  453. result.normal_ = Vector3::ZERO;
  454. result.distance_ = M_INFINITY;
  455. result.hitFraction_ = 0.0f;
  456. return;
  457. }
  458. if (!shape->isConvex())
  459. {
  460. URHO3D_LOGERROR("Can not use non-convex collision shape for convex cast");
  461. result.body_ = 0;
  462. result.position_ = Vector3::ZERO;
  463. result.normal_ = Vector3::ZERO;
  464. result.distance_ = M_INFINITY;
  465. result.hitFraction_ = 0.0f;
  466. return;
  467. }
  468. URHO3D_PROFILE(PhysicsConvexCast);
  469. btCollisionWorld::ClosestConvexResultCallback convexCallback(ToBtVector3(startPos), ToBtVector3(endPos));
  470. convexCallback.m_collisionFilterGroup = (short)0xffff;
  471. convexCallback.m_collisionFilterMask = (short)collisionMask;
  472. world_->convexSweepTest(static_cast<btConvexShape*>(shape), btTransform(ToBtQuaternion(startRot),
  473. convexCallback.m_convexFromWorld), btTransform(ToBtQuaternion(endRot), convexCallback.m_convexToWorld),
  474. convexCallback);
  475. if (convexCallback.hasHit())
  476. {
  477. result.body_ = static_cast<RigidBody*>(convexCallback.m_hitCollisionObject->getUserPointer());
  478. result.position_ = ToVector3(convexCallback.m_hitPointWorld);
  479. result.normal_ = ToVector3(convexCallback.m_hitNormalWorld);
  480. result.distance_ = convexCallback.m_closestHitFraction * (endPos - startPos).Length();
  481. result.hitFraction_ = convexCallback.m_closestHitFraction;
  482. }
  483. else
  484. {
  485. result.body_ = 0;
  486. result.position_ = Vector3::ZERO;
  487. result.normal_ = Vector3::ZERO;
  488. result.distance_ = M_INFINITY;
  489. result.hitFraction_ = 0.0f;
  490. }
  491. }
  492. void PhysicsWorld::RemoveCachedGeometry(Model* model)
  493. {
  494. for (HashMap<Pair<Model*, unsigned>, SharedPtr<CollisionGeometryData> >::Iterator i = triMeshCache_.Begin();
  495. i != triMeshCache_.End();)
  496. {
  497. HashMap<Pair<Model*, unsigned>, SharedPtr<CollisionGeometryData> >::Iterator current = i++;
  498. if (current->first_.first_ == model)
  499. triMeshCache_.Erase(current);
  500. }
  501. for (HashMap<Pair<Model*, unsigned>, SharedPtr<CollisionGeometryData> >::Iterator i = convexCache_.Begin();
  502. i != convexCache_.End();)
  503. {
  504. HashMap<Pair<Model*, unsigned>, SharedPtr<CollisionGeometryData> >::Iterator current = i++;
  505. if (current->first_.first_ == model)
  506. convexCache_.Erase(current);
  507. }
  508. }
  509. void PhysicsWorld::GetRigidBodies(PODVector<RigidBody*>& result, const Sphere& sphere, unsigned collisionMask)
  510. {
  511. URHO3D_PROFILE(PhysicsSphereQuery);
  512. result.Clear();
  513. btSphereShape sphereShape(sphere.radius_);
  514. UniquePtr<btRigidBody> tempRigidBody(new btRigidBody(1.0f, 0, &sphereShape));
  515. tempRigidBody->setWorldTransform(btTransform(btQuaternion::getIdentity(), ToBtVector3(sphere.center_)));
  516. // Need to activate the temporary rigid body to get reliable results from static, sleeping objects
  517. tempRigidBody->activate();
  518. world_->addRigidBody(tempRigidBody.Get());
  519. PhysicsQueryCallback callback(result, collisionMask);
  520. world_->contactTest(tempRigidBody.Get(), callback);
  521. world_->removeRigidBody(tempRigidBody.Get());
  522. }
  523. void PhysicsWorld::GetRigidBodies(PODVector<RigidBody*>& result, const BoundingBox& box, unsigned collisionMask)
  524. {
  525. URHO3D_PROFILE(PhysicsBoxQuery);
  526. result.Clear();
  527. btBoxShape boxShape(ToBtVector3(box.HalfSize()));
  528. UniquePtr<btRigidBody> tempRigidBody(new btRigidBody(1.0f, 0, &boxShape));
  529. tempRigidBody->setWorldTransform(btTransform(btQuaternion::getIdentity(), ToBtVector3(box.Center())));
  530. tempRigidBody->activate();
  531. world_->addRigidBody(tempRigidBody.Get());
  532. PhysicsQueryCallback callback(result, collisionMask);
  533. world_->contactTest(tempRigidBody.Get(), callback);
  534. world_->removeRigidBody(tempRigidBody.Get());
  535. }
  536. void PhysicsWorld::GetRigidBodies(PODVector<RigidBody*>& result, const RigidBody* body)
  537. {
  538. URHO3D_PROFILE(PhysicsBodyQuery);
  539. result.Clear();
  540. if (!body || !body->GetBody())
  541. return;
  542. PhysicsQueryCallback callback(result, body->GetCollisionMask());
  543. world_->contactTest(body->GetBody(), callback);
  544. // Remove the body itself from the returned list
  545. for (unsigned i = 0; i < result.Size(); i++)
  546. {
  547. if (result[i] == body)
  548. {
  549. result.Erase(i);
  550. break;
  551. }
  552. }
  553. }
  554. void PhysicsWorld::GetCollidingBodies(PODVector<RigidBody*>& result, const RigidBody* body)
  555. {
  556. URHO3D_PROFILE(GetCollidingBodies);
  557. result.Clear();
  558. for (HashMap<Pair<WeakPtr<RigidBody>, WeakPtr<RigidBody> >, ManifoldPair>::Iterator i = currentCollisions_.Begin();
  559. i != currentCollisions_.End(); ++i)
  560. {
  561. if (i->first_.first_ == body)
  562. {
  563. if (i->first_.second_)
  564. result.Push(i->first_.second_);
  565. }
  566. else if (i->first_.second_ == body)
  567. {
  568. if (i->first_.first_)
  569. result.Push(i->first_.first_);
  570. }
  571. }
  572. }
  573. Vector3 PhysicsWorld::GetGravity() const
  574. {
  575. return ToVector3(world_->getGravity());
  576. }
  577. int PhysicsWorld::GetNumIterations() const
  578. {
  579. return world_->getSolverInfo().m_numIterations;
  580. }
  581. bool PhysicsWorld::GetSplitImpulse() const
  582. {
  583. return world_->getSolverInfo().m_splitImpulse != 0;
  584. }
  585. void PhysicsWorld::AddRigidBody(RigidBody* body)
  586. {
  587. rigidBodies_.Push(body);
  588. }
  589. void PhysicsWorld::RemoveRigidBody(RigidBody* body)
  590. {
  591. rigidBodies_.Remove(body);
  592. // Remove possible dangling pointer from the delayedWorldTransforms structure
  593. delayedWorldTransforms_.Erase(body);
  594. }
  595. void PhysicsWorld::AddCollisionShape(CollisionShape* shape)
  596. {
  597. collisionShapes_.Push(shape);
  598. }
  599. void PhysicsWorld::RemoveCollisionShape(CollisionShape* shape)
  600. {
  601. collisionShapes_.Remove(shape);
  602. }
  603. void PhysicsWorld::AddConstraint(Constraint* constraint)
  604. {
  605. constraints_.Push(constraint);
  606. }
  607. void PhysicsWorld::RemoveConstraint(Constraint* constraint)
  608. {
  609. constraints_.Remove(constraint);
  610. }
  611. void PhysicsWorld::AddDelayedWorldTransform(const DelayedWorldTransform& transform)
  612. {
  613. delayedWorldTransforms_[transform.rigidBody_] = transform;
  614. }
  615. void PhysicsWorld::DrawDebugGeometry(bool depthTest)
  616. {
  617. DebugRenderer* debug = GetComponent<DebugRenderer>();
  618. DrawDebugGeometry(debug, depthTest);
  619. }
  620. void PhysicsWorld::SetDebugRenderer(DebugRenderer* debug)
  621. {
  622. debugRenderer_ = debug;
  623. }
  624. void PhysicsWorld::SetDebugDepthTest(bool enable)
  625. {
  626. debugDepthTest_ = enable;
  627. }
  628. void PhysicsWorld::CleanupGeometryCache()
  629. {
  630. // Remove cached shapes whose only reference is the cache itself
  631. for (HashMap<Pair<Model*, unsigned>, SharedPtr<CollisionGeometryData> >::Iterator i = triMeshCache_.Begin();
  632. i != triMeshCache_.End();)
  633. {
  634. HashMap<Pair<Model*, unsigned>, SharedPtr<CollisionGeometryData> >::Iterator current = i++;
  635. if (current->second_.Refs() == 1)
  636. triMeshCache_.Erase(current);
  637. }
  638. for (HashMap<Pair<Model*, unsigned>, SharedPtr<CollisionGeometryData> >::Iterator i = convexCache_.Begin();
  639. i != convexCache_.End();)
  640. {
  641. HashMap<Pair<Model*, unsigned>, SharedPtr<CollisionGeometryData> >::Iterator current = i++;
  642. if (current->second_.Refs() == 1)
  643. convexCache_.Erase(current);
  644. }
  645. }
  646. void PhysicsWorld::OnSceneSet(Scene* scene)
  647. {
  648. // Subscribe to the scene subsystem update, which will trigger the physics simulation step
  649. if (scene)
  650. {
  651. scene_ = GetScene();
  652. SubscribeToEvent(scene_, E_SCENESUBSYSTEMUPDATE, URHO3D_HANDLER(PhysicsWorld, HandleSceneSubsystemUpdate));
  653. }
  654. else
  655. UnsubscribeFromEvent(E_SCENESUBSYSTEMUPDATE);
  656. }
  657. void PhysicsWorld::HandleSceneSubsystemUpdate(StringHash eventType, VariantMap& eventData)
  658. {
  659. if (!updateEnabled_)
  660. return;
  661. using namespace SceneSubsystemUpdate;
  662. Update(eventData[P_TIMESTEP].GetFloat());
  663. }
  664. void PhysicsWorld::PreStep(float timeStep)
  665. {
  666. // Send pre-step event
  667. using namespace PhysicsPreStep;
  668. VariantMap& eventData = GetEventDataMap();
  669. eventData[P_WORLD] = this;
  670. eventData[P_TIMESTEP] = timeStep;
  671. SendEvent(E_PHYSICSPRESTEP, eventData);
  672. // Start profiling block for the actual simulation step
  673. #ifdef URHO3D_PROFILING
  674. Profiler* profiler = GetSubsystem<Profiler>();
  675. if (profiler)
  676. profiler->BeginBlock("StepSimulation");
  677. #endif
  678. }
  679. void PhysicsWorld::PostStep(float timeStep)
  680. {
  681. #ifdef URHO3D_PROFILING
  682. Profiler* profiler = GetSubsystem<Profiler>();
  683. if (profiler)
  684. profiler->EndBlock();
  685. #endif
  686. SendCollisionEvents();
  687. // Send post-step event
  688. using namespace PhysicsPostStep;
  689. VariantMap& eventData = GetEventDataMap();
  690. eventData[P_WORLD] = this;
  691. eventData[P_TIMESTEP] = timeStep;
  692. SendEvent(E_PHYSICSPOSTSTEP, eventData);
  693. }
  694. void PhysicsWorld::SendCollisionEvents()
  695. {
  696. URHO3D_PROFILE(SendCollisionEvents);
  697. currentCollisions_.Clear();
  698. physicsCollisionData_.Clear();
  699. nodeCollisionData_.Clear();
  700. int numManifolds = collisionDispatcher_->getNumManifolds();
  701. if (numManifolds)
  702. {
  703. physicsCollisionData_[PhysicsCollision::P_WORLD] = this;
  704. for (int i = 0; i < numManifolds; ++i)
  705. {
  706. btPersistentManifold* contactManifold = collisionDispatcher_->getManifoldByIndexInternal(i);
  707. // First check that there are actual contacts, as the manifold exists also when objects are close but not touching
  708. if (!contactManifold->getNumContacts())
  709. continue;
  710. const btCollisionObject* objectA = contactManifold->getBody0();
  711. const btCollisionObject* objectB = contactManifold->getBody1();
  712. RigidBody* bodyA = static_cast<RigidBody*>(objectA->getUserPointer());
  713. RigidBody* bodyB = static_cast<RigidBody*>(objectB->getUserPointer());
  714. // If it's not a rigidbody, maybe a ghost object
  715. if (!bodyA || !bodyB)
  716. continue;
  717. // Skip collision event signaling if both objects are static, or if collision event mode does not match
  718. if (bodyA->GetMass() == 0.0f && bodyB->GetMass() == 0.0f)
  719. continue;
  720. if (bodyA->GetCollisionEventMode() == COLLISION_NEVER || bodyB->GetCollisionEventMode() == COLLISION_NEVER)
  721. continue;
  722. if (bodyA->GetCollisionEventMode() == COLLISION_ACTIVE && bodyB->GetCollisionEventMode() == COLLISION_ACTIVE &&
  723. !bodyA->IsActive() && !bodyB->IsActive())
  724. continue;
  725. WeakPtr<RigidBody> bodyWeakA(bodyA);
  726. WeakPtr<RigidBody> bodyWeakB(bodyB);
  727. // First only store the collision pair as weak pointers and the manifold pointer, so user code can safely destroy
  728. // objects during collision event handling
  729. Pair<WeakPtr<RigidBody>, WeakPtr<RigidBody> > bodyPair;
  730. if (bodyA < bodyB)
  731. {
  732. bodyPair = MakePair(bodyWeakA, bodyWeakB);
  733. currentCollisions_[bodyPair].manifold_ = contactManifold;
  734. }
  735. else
  736. {
  737. bodyPair = MakePair(bodyWeakB, bodyWeakA);
  738. currentCollisions_[bodyPair].flippedManifold_ = contactManifold;
  739. }
  740. }
  741. for (HashMap<Pair<WeakPtr<RigidBody>, WeakPtr<RigidBody> >, ManifoldPair>::Iterator i = currentCollisions_.Begin();
  742. i != currentCollisions_.End(); ++i)
  743. {
  744. RigidBody* bodyA = i->first_.first_;
  745. RigidBody* bodyB = i->first_.second_;
  746. if (!bodyA || !bodyB)
  747. continue;
  748. Node* nodeA = bodyA->GetNode();
  749. Node* nodeB = bodyB->GetNode();
  750. WeakPtr<Node> nodeWeakA(nodeA);
  751. WeakPtr<Node> nodeWeakB(nodeB);
  752. bool trigger = bodyA->IsTrigger() || bodyB->IsTrigger();
  753. bool newCollision = !previousCollisions_.Contains(i->first_);
  754. physicsCollisionData_[PhysicsCollision::P_NODEA] = nodeA;
  755. physicsCollisionData_[PhysicsCollision::P_NODEB] = nodeB;
  756. physicsCollisionData_[PhysicsCollision::P_BODYA] = bodyA;
  757. physicsCollisionData_[PhysicsCollision::P_BODYB] = bodyB;
  758. physicsCollisionData_[PhysicsCollision::P_TRIGGER] = trigger;
  759. contacts_.Clear();
  760. // "Pointers not flipped"-manifold, send unmodified normals
  761. btPersistentManifold* contactManifold = i->second_.manifold_;
  762. if (contactManifold)
  763. {
  764. for (int j = 0; j < contactManifold->getNumContacts(); ++j)
  765. {
  766. btManifoldPoint& point = contactManifold->getContactPoint(j);
  767. contacts_.WriteVector3(ToVector3(point.m_positionWorldOnB));
  768. contacts_.WriteVector3(ToVector3(point.m_normalWorldOnB));
  769. contacts_.WriteFloat(point.m_distance1);
  770. contacts_.WriteFloat(point.m_appliedImpulse);
  771. }
  772. }
  773. // "Pointers flipped"-manifold, flip normals also
  774. contactManifold = i->second_.flippedManifold_;
  775. if (contactManifold)
  776. {
  777. for (int j = 0; j < contactManifold->getNumContacts(); ++j)
  778. {
  779. btManifoldPoint& point = contactManifold->getContactPoint(j);
  780. contacts_.WriteVector3(ToVector3(point.m_positionWorldOnB));
  781. contacts_.WriteVector3(-ToVector3(point.m_normalWorldOnB));
  782. contacts_.WriteFloat(point.m_distance1);
  783. contacts_.WriteFloat(point.m_appliedImpulse);
  784. }
  785. }
  786. physicsCollisionData_[PhysicsCollision::P_CONTACTS] = contacts_.GetBuffer();
  787. // Send separate collision start event if collision is new
  788. if (newCollision)
  789. {
  790. SendEvent(E_PHYSICSCOLLISIONSTART, physicsCollisionData_);
  791. // Skip rest of processing if either of the nodes or bodies is removed as a response to the event
  792. if (!nodeWeakA || !nodeWeakB || !i->first_.first_ || !i->first_.second_)
  793. continue;
  794. }
  795. // Then send the ongoing collision event
  796. SendEvent(E_PHYSICSCOLLISION, physicsCollisionData_);
  797. if (!nodeWeakA || !nodeWeakB || !i->first_.first_ || !i->first_.second_)
  798. continue;
  799. nodeCollisionData_[NodeCollision::P_BODY] = bodyA;
  800. nodeCollisionData_[NodeCollision::P_OTHERNODE] = nodeB;
  801. nodeCollisionData_[NodeCollision::P_OTHERBODY] = bodyB;
  802. nodeCollisionData_[NodeCollision::P_TRIGGER] = trigger;
  803. nodeCollisionData_[NodeCollision::P_CONTACTS] = contacts_.GetBuffer();
  804. if (newCollision)
  805. {
  806. nodeA->SendEvent(E_NODECOLLISIONSTART, nodeCollisionData_);
  807. if (!nodeWeakA || !nodeWeakB || !i->first_.first_ || !i->first_.second_)
  808. continue;
  809. }
  810. nodeA->SendEvent(E_NODECOLLISION, nodeCollisionData_);
  811. if (!nodeWeakA || !nodeWeakB || !i->first_.first_ || !i->first_.second_)
  812. continue;
  813. // Flip perspective to body B
  814. contacts_.Clear();
  815. contactManifold = i->second_.manifold_;
  816. if (contactManifold)
  817. {
  818. for (int j = 0; j < contactManifold->getNumContacts(); ++j)
  819. {
  820. btManifoldPoint& point = contactManifold->getContactPoint(j);
  821. contacts_.WriteVector3(ToVector3(point.m_positionWorldOnB));
  822. contacts_.WriteVector3(-ToVector3(point.m_normalWorldOnB));
  823. contacts_.WriteFloat(point.m_distance1);
  824. contacts_.WriteFloat(point.m_appliedImpulse);
  825. }
  826. }
  827. contactManifold = i->second_.flippedManifold_;
  828. if (contactManifold)
  829. {
  830. for (int j = 0; j < contactManifold->getNumContacts(); ++j)
  831. {
  832. btManifoldPoint& point = contactManifold->getContactPoint(j);
  833. contacts_.WriteVector3(ToVector3(point.m_positionWorldOnB));
  834. contacts_.WriteVector3(ToVector3(point.m_normalWorldOnB));
  835. contacts_.WriteFloat(point.m_distance1);
  836. contacts_.WriteFloat(point.m_appliedImpulse);
  837. }
  838. }
  839. nodeCollisionData_[NodeCollision::P_BODY] = bodyB;
  840. nodeCollisionData_[NodeCollision::P_OTHERNODE] = nodeA;
  841. nodeCollisionData_[NodeCollision::P_OTHERBODY] = bodyA;
  842. nodeCollisionData_[NodeCollision::P_CONTACTS] = contacts_.GetBuffer();
  843. if (newCollision)
  844. {
  845. nodeB->SendEvent(E_NODECOLLISIONSTART, nodeCollisionData_);
  846. if (!nodeWeakA || !nodeWeakB || !i->first_.first_ || !i->first_.second_)
  847. continue;
  848. }
  849. nodeB->SendEvent(E_NODECOLLISION, nodeCollisionData_);
  850. }
  851. }
  852. // Send collision end events as applicable
  853. {
  854. physicsCollisionData_[PhysicsCollisionEnd::P_WORLD] = this;
  855. for (HashMap<Pair<WeakPtr<RigidBody>, WeakPtr<RigidBody> >, ManifoldPair>::Iterator
  856. i = previousCollisions_.Begin(); i != previousCollisions_.End(); ++i)
  857. {
  858. if (!currentCollisions_.Contains(i->first_))
  859. {
  860. RigidBody* bodyA = i->first_.first_;
  861. RigidBody* bodyB = i->first_.second_;
  862. if (!bodyA || !bodyB)
  863. continue;
  864. bool trigger = bodyA->IsTrigger() || bodyB->IsTrigger();
  865. // Skip collision event signaling if both objects are static, or if collision event mode does not match
  866. if (bodyA->GetMass() == 0.0f && bodyB->GetMass() == 0.0f)
  867. continue;
  868. if (bodyA->GetCollisionEventMode() == COLLISION_NEVER || bodyB->GetCollisionEventMode() == COLLISION_NEVER)
  869. continue;
  870. if (bodyA->GetCollisionEventMode() == COLLISION_ACTIVE && bodyB->GetCollisionEventMode() == COLLISION_ACTIVE &&
  871. !bodyA->IsActive() && !bodyB->IsActive())
  872. continue;
  873. Node* nodeA = bodyA->GetNode();
  874. Node* nodeB = bodyB->GetNode();
  875. WeakPtr<Node> nodeWeakA(nodeA);
  876. WeakPtr<Node> nodeWeakB(nodeB);
  877. physicsCollisionData_[PhysicsCollisionEnd::P_BODYA] = bodyA;
  878. physicsCollisionData_[PhysicsCollisionEnd::P_BODYB] = bodyB;
  879. physicsCollisionData_[PhysicsCollisionEnd::P_NODEA] = nodeA;
  880. physicsCollisionData_[PhysicsCollisionEnd::P_NODEB] = nodeB;
  881. physicsCollisionData_[PhysicsCollisionEnd::P_TRIGGER] = trigger;
  882. SendEvent(E_PHYSICSCOLLISIONEND, physicsCollisionData_);
  883. // Skip rest of processing if either of the nodes or bodies is removed as a response to the event
  884. if (!nodeWeakA || !nodeWeakB || !i->first_.first_ || !i->first_.second_)
  885. continue;
  886. nodeCollisionData_[NodeCollisionEnd::P_BODY] = bodyA;
  887. nodeCollisionData_[NodeCollisionEnd::P_OTHERNODE] = nodeB;
  888. nodeCollisionData_[NodeCollisionEnd::P_OTHERBODY] = bodyB;
  889. nodeCollisionData_[NodeCollisionEnd::P_TRIGGER] = trigger;
  890. nodeA->SendEvent(E_NODECOLLISIONEND, nodeCollisionData_);
  891. if (!nodeWeakA || !nodeWeakB || !i->first_.first_ || !i->first_.second_)
  892. continue;
  893. nodeCollisionData_[NodeCollisionEnd::P_BODY] = bodyB;
  894. nodeCollisionData_[NodeCollisionEnd::P_OTHERNODE] = nodeA;
  895. nodeCollisionData_[NodeCollisionEnd::P_OTHERBODY] = bodyA;
  896. nodeB->SendEvent(E_NODECOLLISIONEND, nodeCollisionData_);
  897. }
  898. }
  899. }
  900. previousCollisions_ = currentCollisions_;
  901. }
  902. void RegisterPhysicsLibrary(Context* context)
  903. {
  904. CollisionShape::RegisterObject(context);
  905. RigidBody::RegisterObject(context);
  906. Constraint::RegisterObject(context);
  907. PhysicsWorld::RegisterObject(context);
  908. RaycastVehicle::RegisterObject(context);
  909. }
  910. }