PhysicsWorld.cpp 41 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092
  1. //
  2. // Copyright (c) 2008-2020 the Urho3D project.
  3. //
  4. // Permission is hereby granted, free of charge, to any person obtaining a copy
  5. // of this software and associated documentation files (the "Software"), to deal
  6. // in the Software without restriction, including without limitation the rights
  7. // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  8. // copies of the Software, and to permit persons to whom the Software is
  9. // furnished to do so, subject to the following conditions:
  10. //
  11. // The above copyright notice and this permission notice shall be included in
  12. // all copies or substantial portions of the Software.
  13. //
  14. // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15. // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16. // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  17. // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  18. // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  19. // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  20. // THE SOFTWARE.
  21. //
  22. #include "../Precompiled.h"
  23. #include "../Core/Context.h"
  24. #include "../Core/Mutex.h"
  25. #include "../Core/Profiler.h"
  26. #include "../Graphics/DebugRenderer.h"
  27. #include "../Graphics/Model.h"
  28. #include "../IO/Log.h"
  29. #include "../Math/Ray.h"
  30. #include "../Physics/CollisionShape.h"
  31. #include "../Physics/Constraint.h"
  32. #include "../Physics/PhysicsEvents.h"
  33. #include "../Physics/PhysicsUtils.h"
  34. #include "../Physics/PhysicsWorld.h"
  35. #include "../Physics/RaycastVehicle.h"
  36. #include "../Physics/RigidBody.h"
  37. #include "../Scene/Scene.h"
  38. #include "../Scene/SceneEvents.h"
  39. #include <Bullet/BulletCollision/BroadphaseCollision/btDbvtBroadphase.h>
  40. #include <Bullet/BulletCollision/CollisionDispatch/btDefaultCollisionConfiguration.h>
  41. #include <Bullet/BulletCollision/CollisionDispatch/btInternalEdgeUtility.h>
  42. #include <Bullet/BulletCollision/CollisionShapes/btBoxShape.h>
  43. #include <Bullet/BulletCollision/CollisionShapes/btSphereShape.h>
  44. #include <Bullet/BulletCollision/Gimpact/btGImpactCollisionAlgorithm.h>
  45. #include <Bullet/BulletDynamics/ConstraintSolver/btSequentialImpulseConstraintSolver.h>
  46. #include <Bullet/BulletDynamics/Dynamics/btDiscreteDynamicsWorld.h>
  47. extern ContactAddedCallback gContactAddedCallback;
  48. namespace Urho3D
  49. {
  50. const char* PHYSICS_CATEGORY = "Physics";
  51. extern const char* SUBSYSTEM_CATEGORY;
  52. static const int MAX_SOLVER_ITERATIONS = 256;
  53. static const Vector3 DEFAULT_GRAVITY = Vector3(0.0f, -9.81f, 0.0f);
  54. PhysicsWorldConfig PhysicsWorld::config;
  55. static bool CompareRaycastResults(const PhysicsRaycastResult& lhs, const PhysicsRaycastResult& rhs)
  56. {
  57. return lhs.distance_ < rhs.distance_;
  58. }
  59. void InternalPreTickCallback(btDynamicsWorld* world, btScalar timeStep)
  60. {
  61. static_cast<PhysicsWorld*>(world->getWorldUserInfo())->PreStep(timeStep);
  62. }
  63. void InternalTickCallback(btDynamicsWorld* world, btScalar timeStep)
  64. {
  65. static_cast<PhysicsWorld*>(world->getWorldUserInfo())->PostStep(timeStep);
  66. }
  67. static bool CustomMaterialCombinerCallback(btManifoldPoint& cp, const btCollisionObjectWrapper* colObj0Wrap, int partId0,
  68. int index0, const btCollisionObjectWrapper* colObj1Wrap, int partId1, int index1)
  69. {
  70. // Ensure that shape type of colObj1Wrap is either btScaledBvhTriangleMeshShape or btBvhTriangleMeshShape
  71. // because btAdjustInternalEdgeContacts doesn't check types properly. Bug in the Bullet?
  72. const int shapeType = colObj1Wrap->getCollisionObject()->getCollisionShape()->getShapeType();
  73. if (shapeType == SCALED_TRIANGLE_MESH_SHAPE_PROXYTYPE || shapeType == TRIANGLE_SHAPE_PROXYTYPE
  74. || shapeType == MULTIMATERIAL_TRIANGLE_MESH_PROXYTYPE)
  75. {
  76. btAdjustInternalEdgeContacts(cp, colObj1Wrap, colObj0Wrap, partId1, index1);
  77. }
  78. cp.m_combinedFriction = colObj0Wrap->getCollisionObject()->getFriction() * colObj1Wrap->getCollisionObject()->getFriction();
  79. cp.m_combinedRestitution =
  80. colObj0Wrap->getCollisionObject()->getRestitution() * colObj1Wrap->getCollisionObject()->getRestitution();
  81. return true;
  82. }
  83. void RemoveCachedGeometryImpl(CollisionGeometryDataCache& cache, Model* model)
  84. {
  85. for (auto i = cache.Begin(); i != cache.End();)
  86. {
  87. auto current = i++;
  88. if (current->first_.first_ == model)
  89. cache.Erase(current);
  90. }
  91. }
  92. void CleanupGeometryCacheImpl(CollisionGeometryDataCache& cache)
  93. {
  94. for (auto i = cache.Begin(); i != cache.End();)
  95. {
  96. auto current = i++;
  97. if (current->second_.Refs() == 1)
  98. cache.Erase(current);
  99. }
  100. }
  101. /// Callback for physics world queries.
  102. struct PhysicsQueryCallback : public btCollisionWorld::ContactResultCallback
  103. {
  104. /// Construct.
  105. PhysicsQueryCallback(PODVector<RigidBody*>& result, unsigned collisionMask) :
  106. result_(result),
  107. collisionMask_(collisionMask)
  108. {
  109. }
  110. /// Add a contact result.
  111. btScalar addSingleResult(btManifoldPoint&, const btCollisionObjectWrapper* colObj0Wrap, int, int,
  112. const btCollisionObjectWrapper* colObj1Wrap, int, int) override
  113. {
  114. auto* body = reinterpret_cast<RigidBody*>(colObj0Wrap->getCollisionObject()->getUserPointer());
  115. if (body && !result_.Contains(body) && (body->GetCollisionLayer() & collisionMask_))
  116. result_.Push(body);
  117. body = reinterpret_cast<RigidBody*>(colObj1Wrap->getCollisionObject()->getUserPointer());
  118. if (body && !result_.Contains(body) && (body->GetCollisionLayer() & collisionMask_))
  119. result_.Push(body);
  120. return 0.0f;
  121. }
  122. /// Found rigid bodies.
  123. PODVector<RigidBody*>& result_;
  124. /// Collision mask for the query.
  125. unsigned collisionMask_;
  126. };
  127. PhysicsWorld::PhysicsWorld(Context* context) :
  128. Component(context),
  129. fps_(DEFAULT_FPS),
  130. debugMode_(btIDebugDraw::DBG_DrawWireframe | btIDebugDraw::DBG_DrawConstraints | btIDebugDraw::DBG_DrawConstraintLimits)
  131. {
  132. gContactAddedCallback = CustomMaterialCombinerCallback;
  133. if (PhysicsWorld::config.collisionConfig_)
  134. collisionConfiguration_ = PhysicsWorld::config.collisionConfig_;
  135. else
  136. collisionConfiguration_ = new btDefaultCollisionConfiguration();
  137. collisionDispatcher_ = new btCollisionDispatcher(collisionConfiguration_);
  138. btGImpactCollisionAlgorithm::registerAlgorithm(static_cast<btCollisionDispatcher*>(collisionDispatcher_.Get()));
  139. broadphase_ = new btDbvtBroadphase();
  140. solver_ = new btSequentialImpulseConstraintSolver();
  141. world_ = new btDiscreteDynamicsWorld(collisionDispatcher_.Get(), broadphase_.Get(), solver_.Get(), collisionConfiguration_);
  142. world_->setGravity(ToBtVector3(DEFAULT_GRAVITY));
  143. world_->getDispatchInfo().m_useContinuous = true;
  144. world_->getSolverInfo().m_splitImpulse = false; // Disable by default for performance
  145. world_->setDebugDrawer(this);
  146. world_->setInternalTickCallback(InternalPreTickCallback, static_cast<void*>(this), true);
  147. world_->setInternalTickCallback(InternalTickCallback, static_cast<void*>(this), false);
  148. world_->setSynchronizeAllMotionStates(true);
  149. }
  150. PhysicsWorld::~PhysicsWorld()
  151. {
  152. if (scene_)
  153. {
  154. // Force all remaining constraints, rigid bodies and collision shapes to release themselves
  155. for (PODVector<Constraint*>::Iterator i = constraints_.Begin(); i != constraints_.End(); ++i)
  156. (*i)->ReleaseConstraint();
  157. for (PODVector<RigidBody*>::Iterator i = rigidBodies_.Begin(); i != rigidBodies_.End(); ++i)
  158. (*i)->ReleaseBody();
  159. for (PODVector<CollisionShape*>::Iterator i = collisionShapes_.Begin(); i != collisionShapes_.End(); ++i)
  160. (*i)->ReleaseShape();
  161. }
  162. world_.Reset();
  163. solver_.Reset();
  164. broadphase_.Reset();
  165. collisionDispatcher_.Reset();
  166. // Delete configuration only if it was the default created by PhysicsWorld
  167. if (!PhysicsWorld::config.collisionConfig_)
  168. delete collisionConfiguration_;
  169. collisionConfiguration_ = nullptr;
  170. }
  171. void PhysicsWorld::RegisterObject(Context* context)
  172. {
  173. context->RegisterFactory<PhysicsWorld>(SUBSYSTEM_CATEGORY);
  174. URHO3D_MIXED_ACCESSOR_ATTRIBUTE("Gravity", GetGravity, SetGravity, Vector3, DEFAULT_GRAVITY, AM_DEFAULT);
  175. URHO3D_ATTRIBUTE("Physics FPS", int, fps_, DEFAULT_FPS, AM_DEFAULT);
  176. URHO3D_ATTRIBUTE("Max Substeps", int, maxSubSteps_, 0, AM_DEFAULT);
  177. URHO3D_ACCESSOR_ATTRIBUTE("Solver Iterations", GetNumIterations, SetNumIterations, int, 10, AM_DEFAULT);
  178. URHO3D_ATTRIBUTE("Net Max Angular Vel.", float, maxNetworkAngularVelocity_, DEFAULT_MAX_NETWORK_ANGULAR_VELOCITY, AM_DEFAULT);
  179. URHO3D_ATTRIBUTE("Interpolation", bool, interpolation_, true, AM_FILE);
  180. URHO3D_ATTRIBUTE("Internal Edge Utility", bool, internalEdge_, true, AM_DEFAULT);
  181. URHO3D_ACCESSOR_ATTRIBUTE("Split Impulse", GetSplitImpulse, SetSplitImpulse, bool, false, AM_DEFAULT);
  182. }
  183. bool PhysicsWorld::isVisible(const btVector3& aabbMin, const btVector3& aabbMax)
  184. {
  185. if (debugRenderer_)
  186. return debugRenderer_->IsInside(BoundingBox(ToVector3(aabbMin), ToVector3(aabbMax)));
  187. else
  188. return false;
  189. }
  190. void PhysicsWorld::drawLine(const btVector3& from, const btVector3& to, const btVector3& color)
  191. {
  192. if (debugRenderer_)
  193. debugRenderer_->AddLine(ToVector3(from), ToVector3(to), Color(color.x(), color.y(), color.z()), debugDepthTest_);
  194. }
  195. void PhysicsWorld::DrawDebugGeometry(DebugRenderer* debug, bool depthTest)
  196. {
  197. if (debug)
  198. {
  199. URHO3D_PROFILE(PhysicsDrawDebug);
  200. debugRenderer_ = debug;
  201. debugDepthTest_ = depthTest;
  202. world_->debugDrawWorld();
  203. debugRenderer_ = nullptr;
  204. }
  205. }
  206. void PhysicsWorld::reportErrorWarning(const char* warningString)
  207. {
  208. URHO3D_LOGWARNING("Physics: " + String(warningString));
  209. }
  210. void PhysicsWorld::drawContactPoint(const btVector3& pointOnB, const btVector3& normalOnB, btScalar distance, int lifeTime,
  211. const btVector3& color)
  212. {
  213. }
  214. void PhysicsWorld::draw3dText(const btVector3& location, const char* textString)
  215. {
  216. }
  217. void PhysicsWorld::Update(float timeStep)
  218. {
  219. URHO3D_PROFILE(UpdatePhysics);
  220. float internalTimeStep = 1.0f / fps_;
  221. int maxSubSteps = (int)(timeStep * fps_) + 1;
  222. if (maxSubSteps_ < 0)
  223. {
  224. internalTimeStep = timeStep;
  225. maxSubSteps = 1;
  226. }
  227. else if (maxSubSteps_ > 0)
  228. maxSubSteps = Min(maxSubSteps, maxSubSteps_);
  229. delayedWorldTransforms_.Clear();
  230. simulating_ = true;
  231. if (interpolation_)
  232. world_->stepSimulation(timeStep, maxSubSteps, internalTimeStep);
  233. else
  234. {
  235. timeAcc_ += timeStep;
  236. while (timeAcc_ >= internalTimeStep && maxSubSteps > 0)
  237. {
  238. world_->stepSimulation(internalTimeStep, 0, internalTimeStep);
  239. timeAcc_ -= internalTimeStep;
  240. --maxSubSteps;
  241. }
  242. }
  243. simulating_ = false;
  244. // Apply delayed (parented) world transforms now
  245. while (!delayedWorldTransforms_.Empty())
  246. {
  247. for (HashMap<RigidBody*, DelayedWorldTransform>::Iterator i = delayedWorldTransforms_.Begin();
  248. i != delayedWorldTransforms_.End();)
  249. {
  250. const DelayedWorldTransform& transform = i->second_;
  251. // If parent's transform has already been assigned, can proceed
  252. if (!delayedWorldTransforms_.Contains(transform.parentRigidBody_))
  253. {
  254. transform.rigidBody_->ApplyWorldTransform(transform.worldPosition_, transform.worldRotation_);
  255. i = delayedWorldTransforms_.Erase(i);
  256. }
  257. else
  258. ++i;
  259. }
  260. }
  261. }
  262. void PhysicsWorld::UpdateCollisions()
  263. {
  264. world_->performDiscreteCollisionDetection();
  265. }
  266. void PhysicsWorld::SetFps(int fps)
  267. {
  268. fps_ = (unsigned)Clamp(fps, 1, 1000);
  269. MarkNetworkUpdate();
  270. }
  271. void PhysicsWorld::SetGravity(const Vector3& gravity)
  272. {
  273. world_->setGravity(ToBtVector3(gravity));
  274. MarkNetworkUpdate();
  275. }
  276. void PhysicsWorld::SetMaxSubSteps(int num)
  277. {
  278. maxSubSteps_ = num;
  279. MarkNetworkUpdate();
  280. }
  281. void PhysicsWorld::SetNumIterations(int num)
  282. {
  283. num = Clamp(num, 1, MAX_SOLVER_ITERATIONS);
  284. world_->getSolverInfo().m_numIterations = num;
  285. MarkNetworkUpdate();
  286. }
  287. void PhysicsWorld::SetUpdateEnabled(bool enable)
  288. {
  289. updateEnabled_ = enable;
  290. }
  291. void PhysicsWorld::SetInterpolation(bool enable)
  292. {
  293. interpolation_ = enable;
  294. }
  295. void PhysicsWorld::SetInternalEdge(bool enable)
  296. {
  297. internalEdge_ = enable;
  298. MarkNetworkUpdate();
  299. }
  300. void PhysicsWorld::SetSplitImpulse(bool enable)
  301. {
  302. world_->getSolverInfo().m_splitImpulse = enable;
  303. MarkNetworkUpdate();
  304. }
  305. void PhysicsWorld::SetMaxNetworkAngularVelocity(float velocity)
  306. {
  307. maxNetworkAngularVelocity_ = Clamp(velocity, 1.0f, 32767.0f);
  308. MarkNetworkUpdate();
  309. }
  310. void PhysicsWorld::Raycast(PODVector<PhysicsRaycastResult>& result, const Ray& ray, float maxDistance, unsigned collisionMask)
  311. {
  312. URHO3D_PROFILE(PhysicsRaycast);
  313. if (maxDistance >= M_INFINITY)
  314. URHO3D_LOGWARNING("Infinite maxDistance in physics raycast is not supported");
  315. btCollisionWorld::AllHitsRayResultCallback
  316. rayCallback(ToBtVector3(ray.origin_), ToBtVector3(ray.origin_ + maxDistance * ray.direction_));
  317. rayCallback.m_collisionFilterGroup = (short)0xffff;
  318. rayCallback.m_collisionFilterMask = (short)collisionMask;
  319. world_->rayTest(rayCallback.m_rayFromWorld, rayCallback.m_rayToWorld, rayCallback);
  320. for (int i = 0; i < rayCallback.m_collisionObjects.size(); ++i)
  321. {
  322. PhysicsRaycastResult newResult;
  323. newResult.body_ = static_cast<RigidBody*>(rayCallback.m_collisionObjects[i]->getUserPointer());
  324. newResult.position_ = ToVector3(rayCallback.m_hitPointWorld[i]);
  325. newResult.normal_ = ToVector3(rayCallback.m_hitNormalWorld[i]);
  326. newResult.distance_ = (newResult.position_ - ray.origin_).Length();
  327. newResult.hitFraction_ = rayCallback.m_closestHitFraction;
  328. result.Push(newResult);
  329. }
  330. Sort(result.Begin(), result.End(), CompareRaycastResults);
  331. }
  332. void PhysicsWorld::RaycastSingle(PhysicsRaycastResult& result, const Ray& ray, float maxDistance, unsigned collisionMask)
  333. {
  334. URHO3D_PROFILE(PhysicsRaycastSingle);
  335. if (maxDistance >= M_INFINITY)
  336. URHO3D_LOGWARNING("Infinite maxDistance in physics raycast is not supported");
  337. btCollisionWorld::ClosestRayResultCallback
  338. rayCallback(ToBtVector3(ray.origin_), ToBtVector3(ray.origin_ + maxDistance * ray.direction_));
  339. rayCallback.m_collisionFilterGroup = (short)0xffff;
  340. rayCallback.m_collisionFilterMask = (short)collisionMask;
  341. world_->rayTest(rayCallback.m_rayFromWorld, rayCallback.m_rayToWorld, rayCallback);
  342. if (rayCallback.hasHit())
  343. {
  344. result.position_ = ToVector3(rayCallback.m_hitPointWorld);
  345. result.normal_ = ToVector3(rayCallback.m_hitNormalWorld);
  346. result.distance_ = (result.position_ - ray.origin_).Length();
  347. result.hitFraction_ = rayCallback.m_closestHitFraction;
  348. result.body_ = static_cast<RigidBody*>(rayCallback.m_collisionObject->getUserPointer());
  349. }
  350. else
  351. {
  352. result.position_ = Vector3::ZERO;
  353. result.normal_ = Vector3::ZERO;
  354. result.distance_ = M_INFINITY;
  355. result.hitFraction_ = 0.0f;
  356. result.body_ = nullptr;
  357. }
  358. }
  359. void PhysicsWorld::RaycastSingleSegmented(PhysicsRaycastResult& result, const Ray& ray, float maxDistance, float segmentDistance, unsigned collisionMask, float overlapDistance)
  360. {
  361. URHO3D_PROFILE(PhysicsRaycastSingleSegmented);
  362. assert(overlapDistance < segmentDistance);
  363. if (maxDistance >= M_INFINITY)
  364. URHO3D_LOGWARNING("Infinite maxDistance in physics raycast is not supported");
  365. const btVector3 direction = ToBtVector3(ray.direction_);
  366. const auto count = CeilToInt(maxDistance / segmentDistance);
  367. btVector3 start = ToBtVector3(ray.origin_);
  368. // overlap a bit with the previous segment for better precision, to avoid missing hits
  369. const btVector3 overlap = direction * overlapDistance;
  370. float remainingDistance = maxDistance;
  371. for (auto i = 0; i < count; ++i)
  372. {
  373. const float distance = Min(remainingDistance, segmentDistance); // The last segment may be shorter
  374. const btVector3 end = start + distance * direction;
  375. btCollisionWorld::ClosestRayResultCallback rayCallback(start, end);
  376. rayCallback.m_collisionFilterGroup = (short)0xffff;
  377. rayCallback.m_collisionFilterMask = (short)collisionMask;
  378. world_->rayTest(rayCallback.m_rayFromWorld, rayCallback.m_rayToWorld, rayCallback);
  379. if (rayCallback.hasHit())
  380. {
  381. result.position_ = ToVector3(rayCallback.m_hitPointWorld);
  382. result.normal_ = ToVector3(rayCallback.m_hitNormalWorld);
  383. result.distance_ = (result.position_ - ray.origin_).Length();
  384. result.hitFraction_ = rayCallback.m_closestHitFraction;
  385. result.body_ = static_cast<RigidBody*>(rayCallback.m_collisionObject->getUserPointer());
  386. // No need to cast the rest of the segments
  387. return;
  388. }
  389. // Use the end position as the new start position
  390. start = end - overlap;
  391. remainingDistance -= segmentDistance;
  392. }
  393. // Didn't hit anything
  394. result.position_ = Vector3::ZERO;
  395. result.normal_ = Vector3::ZERO;
  396. result.distance_ = M_INFINITY;
  397. result.hitFraction_ = 0.0f;
  398. result.body_ = nullptr;
  399. }
  400. void PhysicsWorld::SphereCast(PhysicsRaycastResult& result, const Ray& ray, float radius, float maxDistance, unsigned collisionMask)
  401. {
  402. URHO3D_PROFILE(PhysicsSphereCast);
  403. if (maxDistance >= M_INFINITY)
  404. URHO3D_LOGWARNING("Infinite maxDistance in physics sphere cast is not supported");
  405. btSphereShape shape(radius);
  406. Vector3 endPos = ray.origin_ + maxDistance * ray.direction_;
  407. btCollisionWorld::ClosestConvexResultCallback
  408. convexCallback(ToBtVector3(ray.origin_), ToBtVector3(endPos));
  409. convexCallback.m_collisionFilterGroup = (short)0xffff;
  410. convexCallback.m_collisionFilterMask = (short)collisionMask;
  411. world_->convexSweepTest(&shape, btTransform(btQuaternion::getIdentity(), convexCallback.m_convexFromWorld),
  412. btTransform(btQuaternion::getIdentity(), convexCallback.m_convexToWorld), convexCallback);
  413. if (convexCallback.hasHit())
  414. {
  415. result.body_ = static_cast<RigidBody*>(convexCallback.m_hitCollisionObject->getUserPointer());
  416. result.position_ = ToVector3(convexCallback.m_hitPointWorld);
  417. result.normal_ = ToVector3(convexCallback.m_hitNormalWorld);
  418. result.distance_ = convexCallback.m_closestHitFraction * (endPos - ray.origin_).Length();
  419. result.hitFraction_ = convexCallback.m_closestHitFraction;
  420. }
  421. else
  422. {
  423. result.body_ = nullptr;
  424. result.position_ = Vector3::ZERO;
  425. result.normal_ = Vector3::ZERO;
  426. result.distance_ = M_INFINITY;
  427. result.hitFraction_ = 0.0f;
  428. }
  429. }
  430. void PhysicsWorld::ConvexCast(PhysicsRaycastResult& result, CollisionShape* shape, const Vector3& startPos,
  431. const Quaternion& startRot, const Vector3& endPos, const Quaternion& endRot, unsigned collisionMask)
  432. {
  433. if (!shape || !shape->GetCollisionShape())
  434. {
  435. URHO3D_LOGERROR("Null collision shape for convex cast");
  436. result.body_ = nullptr;
  437. result.position_ = Vector3::ZERO;
  438. result.normal_ = Vector3::ZERO;
  439. result.distance_ = M_INFINITY;
  440. result.hitFraction_ = 0.0f;
  441. return;
  442. }
  443. // If shape is attached in a rigidbody, set its collision group temporarily to 0 to make sure it is not returned in the sweep result
  444. auto* bodyComp = shape->GetComponent<RigidBody>();
  445. btRigidBody* body = bodyComp ? bodyComp->GetBody() : nullptr;
  446. btBroadphaseProxy* proxy = body ? body->getBroadphaseProxy() : nullptr;
  447. short group = 0;
  448. if (proxy)
  449. {
  450. group = proxy->m_collisionFilterGroup;
  451. proxy->m_collisionFilterGroup = 0;
  452. }
  453. // Take the shape's offset position & rotation into account
  454. Node* shapeNode = shape->GetNode();
  455. Matrix3x4 startTransform(startPos, startRot, shapeNode ? shapeNode->GetWorldScale() : Vector3::ONE);
  456. Matrix3x4 endTransform(endPos, endRot, shapeNode ? shapeNode->GetWorldScale() : Vector3::ONE);
  457. Vector3 effectiveStartPos = startTransform * shape->GetPosition();
  458. Vector3 effectiveEndPos = endTransform * shape->GetPosition();
  459. Quaternion effectiveStartRot = startRot * shape->GetRotation();
  460. Quaternion effectiveEndRot = endRot * shape->GetRotation();
  461. ConvexCast(result, shape->GetCollisionShape(), effectiveStartPos, effectiveStartRot, effectiveEndPos, effectiveEndRot, collisionMask);
  462. // Restore the collision group
  463. if (proxy)
  464. proxy->m_collisionFilterGroup = group;
  465. }
  466. void PhysicsWorld::ConvexCast(PhysicsRaycastResult& result, btCollisionShape* shape, const Vector3& startPos,
  467. const Quaternion& startRot, const Vector3& endPos, const Quaternion& endRot, unsigned collisionMask)
  468. {
  469. if (!shape)
  470. {
  471. URHO3D_LOGERROR("Null collision shape for convex cast");
  472. result.body_ = nullptr;
  473. result.position_ = Vector3::ZERO;
  474. result.normal_ = Vector3::ZERO;
  475. result.distance_ = M_INFINITY;
  476. result.hitFraction_ = 0.0f;
  477. return;
  478. }
  479. if (!shape->isConvex())
  480. {
  481. URHO3D_LOGERROR("Can not use non-convex collision shape for convex cast");
  482. result.body_ = nullptr;
  483. result.position_ = Vector3::ZERO;
  484. result.normal_ = Vector3::ZERO;
  485. result.distance_ = M_INFINITY;
  486. result.hitFraction_ = 0.0f;
  487. return;
  488. }
  489. URHO3D_PROFILE(PhysicsConvexCast);
  490. btCollisionWorld::ClosestConvexResultCallback convexCallback(ToBtVector3(startPos), ToBtVector3(endPos));
  491. convexCallback.m_collisionFilterGroup = (short)0xffff;
  492. convexCallback.m_collisionFilterMask = (short)collisionMask;
  493. world_->convexSweepTest(static_cast<btConvexShape*>(shape), btTransform(ToBtQuaternion(startRot),
  494. convexCallback.m_convexFromWorld), btTransform(ToBtQuaternion(endRot), convexCallback.m_convexToWorld),
  495. convexCallback);
  496. if (convexCallback.hasHit())
  497. {
  498. result.body_ = static_cast<RigidBody*>(convexCallback.m_hitCollisionObject->getUserPointer());
  499. result.position_ = ToVector3(convexCallback.m_hitPointWorld);
  500. result.normal_ = ToVector3(convexCallback.m_hitNormalWorld);
  501. result.distance_ = convexCallback.m_closestHitFraction * (endPos - startPos).Length();
  502. result.hitFraction_ = convexCallback.m_closestHitFraction;
  503. }
  504. else
  505. {
  506. result.body_ = nullptr;
  507. result.position_ = Vector3::ZERO;
  508. result.normal_ = Vector3::ZERO;
  509. result.distance_ = M_INFINITY;
  510. result.hitFraction_ = 0.0f;
  511. }
  512. }
  513. void PhysicsWorld::RemoveCachedGeometry(Model* model)
  514. {
  515. RemoveCachedGeometryImpl(triMeshCache_, model);
  516. RemoveCachedGeometryImpl(convexCache_, model);
  517. RemoveCachedGeometryImpl(gimpactTrimeshCache_, model);
  518. }
  519. void PhysicsWorld::GetRigidBodies(PODVector<RigidBody*>& result, const Sphere& sphere, unsigned collisionMask)
  520. {
  521. URHO3D_PROFILE(PhysicsSphereQuery);
  522. result.Clear();
  523. btSphereShape sphereShape(sphere.radius_);
  524. UniquePtr<btRigidBody> tempRigidBody(new btRigidBody(1.0f, nullptr, &sphereShape));
  525. tempRigidBody->setWorldTransform(btTransform(btQuaternion::getIdentity(), ToBtVector3(sphere.center_)));
  526. // Need to activate the temporary rigid body to get reliable results from static, sleeping objects
  527. tempRigidBody->activate();
  528. world_->addRigidBody(tempRigidBody.Get());
  529. PhysicsQueryCallback callback(result, collisionMask);
  530. world_->contactTest(tempRigidBody.Get(), callback);
  531. world_->removeRigidBody(tempRigidBody.Get());
  532. }
  533. void PhysicsWorld::GetRigidBodies(PODVector<RigidBody*>& result, const BoundingBox& box, unsigned collisionMask)
  534. {
  535. URHO3D_PROFILE(PhysicsBoxQuery);
  536. result.Clear();
  537. btBoxShape boxShape(ToBtVector3(box.HalfSize()));
  538. UniquePtr<btRigidBody> tempRigidBody(new btRigidBody(1.0f, nullptr, &boxShape));
  539. tempRigidBody->setWorldTransform(btTransform(btQuaternion::getIdentity(), ToBtVector3(box.Center())));
  540. tempRigidBody->activate();
  541. world_->addRigidBody(tempRigidBody.Get());
  542. PhysicsQueryCallback callback(result, collisionMask);
  543. world_->contactTest(tempRigidBody.Get(), callback);
  544. world_->removeRigidBody(tempRigidBody.Get());
  545. }
  546. void PhysicsWorld::GetRigidBodies(PODVector<RigidBody*>& result, const RigidBody* body)
  547. {
  548. URHO3D_PROFILE(PhysicsBodyQuery);
  549. result.Clear();
  550. if (!body || !body->GetBody())
  551. return;
  552. PhysicsQueryCallback callback(result, body->GetCollisionMask());
  553. world_->contactTest(body->GetBody(), callback);
  554. // Remove the body itself from the returned list
  555. for (unsigned i = 0; i < result.Size(); i++)
  556. {
  557. if (result[i] == body)
  558. {
  559. result.Erase(i);
  560. break;
  561. }
  562. }
  563. }
  564. void PhysicsWorld::GetCollidingBodies(PODVector<RigidBody*>& result, const RigidBody* body)
  565. {
  566. URHO3D_PROFILE(GetCollidingBodies);
  567. result.Clear();
  568. for (HashMap<Pair<WeakPtr<RigidBody>, WeakPtr<RigidBody> >, ManifoldPair>::Iterator i = currentCollisions_.Begin();
  569. i != currentCollisions_.End(); ++i)
  570. {
  571. if (i->first_.first_ == body)
  572. {
  573. if (i->first_.second_)
  574. result.Push(i->first_.second_);
  575. }
  576. else if (i->first_.second_ == body)
  577. {
  578. if (i->first_.first_)
  579. result.Push(i->first_.first_);
  580. }
  581. }
  582. }
  583. Vector3 PhysicsWorld::GetGravity() const
  584. {
  585. return ToVector3(world_->getGravity());
  586. }
  587. int PhysicsWorld::GetNumIterations() const
  588. {
  589. return world_->getSolverInfo().m_numIterations;
  590. }
  591. bool PhysicsWorld::GetSplitImpulse() const
  592. {
  593. return world_->getSolverInfo().m_splitImpulse != 0;
  594. }
  595. void PhysicsWorld::AddRigidBody(RigidBody* body)
  596. {
  597. rigidBodies_.Push(body);
  598. }
  599. void PhysicsWorld::RemoveRigidBody(RigidBody* body)
  600. {
  601. rigidBodies_.Remove(body);
  602. // Remove possible dangling pointer from the delayedWorldTransforms structure
  603. delayedWorldTransforms_.Erase(body);
  604. }
  605. void PhysicsWorld::AddCollisionShape(CollisionShape* shape)
  606. {
  607. collisionShapes_.Push(shape);
  608. }
  609. void PhysicsWorld::RemoveCollisionShape(CollisionShape* shape)
  610. {
  611. collisionShapes_.Remove(shape);
  612. }
  613. void PhysicsWorld::AddConstraint(Constraint* constraint)
  614. {
  615. constraints_.Push(constraint);
  616. }
  617. void PhysicsWorld::RemoveConstraint(Constraint* constraint)
  618. {
  619. constraints_.Remove(constraint);
  620. }
  621. void PhysicsWorld::AddDelayedWorldTransform(const DelayedWorldTransform& transform)
  622. {
  623. delayedWorldTransforms_[transform.rigidBody_] = transform;
  624. }
  625. void PhysicsWorld::DrawDebugGeometry(bool depthTest)
  626. {
  627. auto* debug = GetComponent<DebugRenderer>();
  628. DrawDebugGeometry(debug, depthTest);
  629. }
  630. void PhysicsWorld::SetDebugRenderer(DebugRenderer* debug)
  631. {
  632. debugRenderer_ = debug;
  633. }
  634. void PhysicsWorld::SetDebugDepthTest(bool enable)
  635. {
  636. debugDepthTest_ = enable;
  637. }
  638. void PhysicsWorld::CleanupGeometryCache()
  639. {
  640. // Remove cached shapes whose only reference is the cache itself
  641. CleanupGeometryCacheImpl(triMeshCache_);
  642. CleanupGeometryCacheImpl(convexCache_);
  643. CleanupGeometryCacheImpl(gimpactTrimeshCache_);
  644. }
  645. void PhysicsWorld::OnSceneSet(Scene* scene)
  646. {
  647. // Subscribe to the scene subsystem update, which will trigger the physics simulation step
  648. if (scene)
  649. {
  650. scene_ = GetScene();
  651. SubscribeToEvent(scene_, E_SCENESUBSYSTEMUPDATE, URHO3D_HANDLER(PhysicsWorld, HandleSceneSubsystemUpdate));
  652. }
  653. else
  654. UnsubscribeFromEvent(E_SCENESUBSYSTEMUPDATE);
  655. }
  656. void PhysicsWorld::HandleSceneSubsystemUpdate(StringHash eventType, VariantMap& eventData)
  657. {
  658. if (!updateEnabled_)
  659. return;
  660. using namespace SceneSubsystemUpdate;
  661. Update(eventData[P_TIMESTEP].GetFloat());
  662. }
  663. void PhysicsWorld::PreStep(float timeStep)
  664. {
  665. // Send pre-step event
  666. using namespace PhysicsPreStep;
  667. VariantMap& eventData = GetEventDataMap();
  668. eventData[P_WORLD] = this;
  669. eventData[P_TIMESTEP] = timeStep;
  670. SendEvent(E_PHYSICSPRESTEP, eventData);
  671. // Start profiling block for the actual simulation step
  672. #ifdef URHO3D_PROFILING
  673. auto* profiler = GetSubsystem<Profiler>();
  674. if (profiler)
  675. profiler->BeginBlock("StepSimulation");
  676. #endif
  677. }
  678. void PhysicsWorld::PostStep(float timeStep)
  679. {
  680. #ifdef URHO3D_PROFILING
  681. auto* profiler = GetSubsystem<Profiler>();
  682. if (profiler)
  683. profiler->EndBlock();
  684. #endif
  685. SendCollisionEvents();
  686. // Send post-step event
  687. using namespace PhysicsPostStep;
  688. VariantMap& eventData = GetEventDataMap();
  689. eventData[P_WORLD] = this;
  690. eventData[P_TIMESTEP] = timeStep;
  691. SendEvent(E_PHYSICSPOSTSTEP, eventData);
  692. }
  693. void PhysicsWorld::SendCollisionEvents()
  694. {
  695. URHO3D_PROFILE(SendCollisionEvents);
  696. currentCollisions_.Clear();
  697. physicsCollisionData_.Clear();
  698. nodeCollisionData_.Clear();
  699. int numManifolds = collisionDispatcher_->getNumManifolds();
  700. if (numManifolds)
  701. {
  702. physicsCollisionData_[PhysicsCollision::P_WORLD] = this;
  703. for (int i = 0; i < numManifolds; ++i)
  704. {
  705. btPersistentManifold* contactManifold = collisionDispatcher_->getManifoldByIndexInternal(i);
  706. // First check that there are actual contacts, as the manifold exists also when objects are close but not touching
  707. if (!contactManifold->getNumContacts())
  708. continue;
  709. const btCollisionObject* objectA = contactManifold->getBody0();
  710. const btCollisionObject* objectB = contactManifold->getBody1();
  711. auto* bodyA = static_cast<RigidBody*>(objectA->getUserPointer());
  712. auto* bodyB = static_cast<RigidBody*>(objectB->getUserPointer());
  713. // If it's not a rigidbody, maybe a ghost object
  714. if (!bodyA || !bodyB)
  715. continue;
  716. // Skip collision event signaling if both objects are static, or if collision event mode does not match
  717. if (bodyA->GetMass() == 0.0f && bodyB->GetMass() == 0.0f)
  718. continue;
  719. if (bodyA->GetCollisionEventMode() == COLLISION_NEVER || bodyB->GetCollisionEventMode() == COLLISION_NEVER)
  720. continue;
  721. if (bodyA->GetCollisionEventMode() == COLLISION_ACTIVE && bodyB->GetCollisionEventMode() == COLLISION_ACTIVE &&
  722. !bodyA->IsActive() && !bodyB->IsActive())
  723. continue;
  724. WeakPtr<RigidBody> bodyWeakA(bodyA);
  725. WeakPtr<RigidBody> bodyWeakB(bodyB);
  726. // First only store the collision pair as weak pointers and the manifold pointer, so user code can safely destroy
  727. // objects during collision event handling
  728. Pair<WeakPtr<RigidBody>, WeakPtr<RigidBody> > bodyPair;
  729. if (bodyA < bodyB)
  730. {
  731. bodyPair = MakePair(bodyWeakA, bodyWeakB);
  732. currentCollisions_[bodyPair].manifold_ = contactManifold;
  733. }
  734. else
  735. {
  736. bodyPair = MakePair(bodyWeakB, bodyWeakA);
  737. currentCollisions_[bodyPair].flippedManifold_ = contactManifold;
  738. }
  739. }
  740. for (HashMap<Pair<WeakPtr<RigidBody>, WeakPtr<RigidBody> >, ManifoldPair>::Iterator i = currentCollisions_.Begin();
  741. i != currentCollisions_.End(); ++i)
  742. {
  743. RigidBody* bodyA = i->first_.first_;
  744. RigidBody* bodyB = i->first_.second_;
  745. if (!bodyA || !bodyB)
  746. continue;
  747. Node* nodeA = bodyA->GetNode();
  748. Node* nodeB = bodyB->GetNode();
  749. WeakPtr<Node> nodeWeakA(nodeA);
  750. WeakPtr<Node> nodeWeakB(nodeB);
  751. bool trigger = bodyA->IsTrigger() || bodyB->IsTrigger();
  752. bool newCollision = !previousCollisions_.Contains(i->first_);
  753. physicsCollisionData_[PhysicsCollision::P_NODEA] = nodeA;
  754. physicsCollisionData_[PhysicsCollision::P_NODEB] = nodeB;
  755. physicsCollisionData_[PhysicsCollision::P_BODYA] = bodyA;
  756. physicsCollisionData_[PhysicsCollision::P_BODYB] = bodyB;
  757. physicsCollisionData_[PhysicsCollision::P_TRIGGER] = trigger;
  758. contacts_.Clear();
  759. // "Pointers not flipped"-manifold, send unmodified normals
  760. btPersistentManifold* contactManifold = i->second_.manifold_;
  761. if (contactManifold)
  762. {
  763. for (int j = 0; j < contactManifold->getNumContacts(); ++j)
  764. {
  765. btManifoldPoint& point = contactManifold->getContactPoint(j);
  766. contacts_.WriteVector3(ToVector3(point.m_positionWorldOnB));
  767. contacts_.WriteVector3(ToVector3(point.m_normalWorldOnB));
  768. contacts_.WriteFloat(point.m_distance1);
  769. contacts_.WriteFloat(point.m_appliedImpulse);
  770. }
  771. }
  772. // "Pointers flipped"-manifold, flip normals also
  773. contactManifold = i->second_.flippedManifold_;
  774. if (contactManifold)
  775. {
  776. for (int j = 0; j < contactManifold->getNumContacts(); ++j)
  777. {
  778. btManifoldPoint& point = contactManifold->getContactPoint(j);
  779. contacts_.WriteVector3(ToVector3(point.m_positionWorldOnB));
  780. contacts_.WriteVector3(-ToVector3(point.m_normalWorldOnB));
  781. contacts_.WriteFloat(point.m_distance1);
  782. contacts_.WriteFloat(point.m_appliedImpulse);
  783. }
  784. }
  785. physicsCollisionData_[PhysicsCollision::P_CONTACTS] = contacts_.GetBuffer();
  786. // Send separate collision start event if collision is new
  787. if (newCollision)
  788. {
  789. SendEvent(E_PHYSICSCOLLISIONSTART, physicsCollisionData_);
  790. // Skip rest of processing if either of the nodes or bodies is removed as a response to the event
  791. if (!nodeWeakA || !nodeWeakB || !i->first_.first_ || !i->first_.second_)
  792. continue;
  793. }
  794. // Then send the ongoing collision event
  795. SendEvent(E_PHYSICSCOLLISION, physicsCollisionData_);
  796. if (!nodeWeakA || !nodeWeakB || !i->first_.first_ || !i->first_.second_)
  797. continue;
  798. nodeCollisionData_[NodeCollision::P_BODY] = bodyA;
  799. nodeCollisionData_[NodeCollision::P_OTHERNODE] = nodeB;
  800. nodeCollisionData_[NodeCollision::P_OTHERBODY] = bodyB;
  801. nodeCollisionData_[NodeCollision::P_TRIGGER] = trigger;
  802. nodeCollisionData_[NodeCollision::P_CONTACTS] = contacts_.GetBuffer();
  803. if (newCollision)
  804. {
  805. nodeA->SendEvent(E_NODECOLLISIONSTART, nodeCollisionData_);
  806. if (!nodeWeakA || !nodeWeakB || !i->first_.first_ || !i->first_.second_)
  807. continue;
  808. }
  809. nodeA->SendEvent(E_NODECOLLISION, nodeCollisionData_);
  810. if (!nodeWeakA || !nodeWeakB || !i->first_.first_ || !i->first_.second_)
  811. continue;
  812. // Flip perspective to body B
  813. contacts_.Clear();
  814. contactManifold = i->second_.manifold_;
  815. if (contactManifold)
  816. {
  817. for (int j = 0; j < contactManifold->getNumContacts(); ++j)
  818. {
  819. btManifoldPoint& point = contactManifold->getContactPoint(j);
  820. contacts_.WriteVector3(ToVector3(point.m_positionWorldOnB));
  821. contacts_.WriteVector3(-ToVector3(point.m_normalWorldOnB));
  822. contacts_.WriteFloat(point.m_distance1);
  823. contacts_.WriteFloat(point.m_appliedImpulse);
  824. }
  825. }
  826. contactManifold = i->second_.flippedManifold_;
  827. if (contactManifold)
  828. {
  829. for (int j = 0; j < contactManifold->getNumContacts(); ++j)
  830. {
  831. btManifoldPoint& point = contactManifold->getContactPoint(j);
  832. contacts_.WriteVector3(ToVector3(point.m_positionWorldOnB));
  833. contacts_.WriteVector3(ToVector3(point.m_normalWorldOnB));
  834. contacts_.WriteFloat(point.m_distance1);
  835. contacts_.WriteFloat(point.m_appliedImpulse);
  836. }
  837. }
  838. nodeCollisionData_[NodeCollision::P_BODY] = bodyB;
  839. nodeCollisionData_[NodeCollision::P_OTHERNODE] = nodeA;
  840. nodeCollisionData_[NodeCollision::P_OTHERBODY] = bodyA;
  841. nodeCollisionData_[NodeCollision::P_CONTACTS] = contacts_.GetBuffer();
  842. if (newCollision)
  843. {
  844. nodeB->SendEvent(E_NODECOLLISIONSTART, nodeCollisionData_);
  845. if (!nodeWeakA || !nodeWeakB || !i->first_.first_ || !i->first_.second_)
  846. continue;
  847. }
  848. nodeB->SendEvent(E_NODECOLLISION, nodeCollisionData_);
  849. }
  850. }
  851. // Send collision end events as applicable
  852. {
  853. physicsCollisionData_[PhysicsCollisionEnd::P_WORLD] = this;
  854. for (HashMap<Pair<WeakPtr<RigidBody>, WeakPtr<RigidBody> >, ManifoldPair>::Iterator
  855. i = previousCollisions_.Begin(); i != previousCollisions_.End(); ++i)
  856. {
  857. if (!currentCollisions_.Contains(i->first_))
  858. {
  859. RigidBody* bodyA = i->first_.first_;
  860. RigidBody* bodyB = i->first_.second_;
  861. if (!bodyA || !bodyB)
  862. continue;
  863. bool trigger = bodyA->IsTrigger() || bodyB->IsTrigger();
  864. // Skip collision event signaling if both objects are static, or if collision event mode does not match
  865. if (bodyA->GetMass() == 0.0f && bodyB->GetMass() == 0.0f)
  866. continue;
  867. if (bodyA->GetCollisionEventMode() == COLLISION_NEVER || bodyB->GetCollisionEventMode() == COLLISION_NEVER)
  868. continue;
  869. if (bodyA->GetCollisionEventMode() == COLLISION_ACTIVE && bodyB->GetCollisionEventMode() == COLLISION_ACTIVE &&
  870. !bodyA->IsActive() && !bodyB->IsActive())
  871. continue;
  872. Node* nodeA = bodyA->GetNode();
  873. Node* nodeB = bodyB->GetNode();
  874. WeakPtr<Node> nodeWeakA(nodeA);
  875. WeakPtr<Node> nodeWeakB(nodeB);
  876. physicsCollisionData_[PhysicsCollisionEnd::P_BODYA] = bodyA;
  877. physicsCollisionData_[PhysicsCollisionEnd::P_BODYB] = bodyB;
  878. physicsCollisionData_[PhysicsCollisionEnd::P_NODEA] = nodeA;
  879. physicsCollisionData_[PhysicsCollisionEnd::P_NODEB] = nodeB;
  880. physicsCollisionData_[PhysicsCollisionEnd::P_TRIGGER] = trigger;
  881. SendEvent(E_PHYSICSCOLLISIONEND, physicsCollisionData_);
  882. // Skip rest of processing if either of the nodes or bodies is removed as a response to the event
  883. if (!nodeWeakA || !nodeWeakB || !i->first_.first_ || !i->first_.second_)
  884. continue;
  885. nodeCollisionData_[NodeCollisionEnd::P_BODY] = bodyA;
  886. nodeCollisionData_[NodeCollisionEnd::P_OTHERNODE] = nodeB;
  887. nodeCollisionData_[NodeCollisionEnd::P_OTHERBODY] = bodyB;
  888. nodeCollisionData_[NodeCollisionEnd::P_TRIGGER] = trigger;
  889. nodeA->SendEvent(E_NODECOLLISIONEND, nodeCollisionData_);
  890. if (!nodeWeakA || !nodeWeakB || !i->first_.first_ || !i->first_.second_)
  891. continue;
  892. nodeCollisionData_[NodeCollisionEnd::P_BODY] = bodyB;
  893. nodeCollisionData_[NodeCollisionEnd::P_OTHERNODE] = nodeA;
  894. nodeCollisionData_[NodeCollisionEnd::P_OTHERBODY] = bodyA;
  895. nodeB->SendEvent(E_NODECOLLISIONEND, nodeCollisionData_);
  896. }
  897. }
  898. }
  899. previousCollisions_ = currentCollisions_;
  900. }
  901. void RegisterPhysicsLibrary(Context* context)
  902. {
  903. CollisionShape::RegisterObject(context);
  904. RigidBody::RegisterObject(context);
  905. Constraint::RegisterObject(context);
  906. PhysicsWorld::RegisterObject(context);
  907. RaycastVehicle::RegisterObject(context);
  908. }
  909. }