A scalable overlay networking tool with a focus on performance, simplicity and security
#nebula #tailscale #mesh #vpn #overlay #p2p

Wade Simmons 2f77dfa703 Merge pull request #88 from slackhq/github-actions-gofmt 5 gadi atpakaļ
.github 2f77dfa703 Merge pull request #88 from slackhq/github-actions-gofmt 5 gadi atpakaļ
cert 1884aec113 get rid of the annotation "errors" on github actions 5 gadi atpakaļ
cmd df43f6466e gofmt 5 gadi atpakaļ
examples a086d60edc Allow configuration of dns listener host/port (#74) 5 gadi atpakaļ
sshd f22b4b584d Public Release 5 gadi atpakaļ
.gitignore c4c334fedb Support for 1.0.0 release 5 gadi atpakaļ
AUTHORS f22b4b584d Public Release 5 gadi atpakaļ
LICENSE f22b4b584d Public Release 5 gadi atpakaļ
Makefile cbf8319eb2 Add linux-386, linux-ppc64le targets (#56) 5 gadi atpakaļ
README.md dfc67909d6 Update README.md 5 gadi atpakaļ
bits.go f22b4b584d Public Release 5 gadi atpakaļ
bits_test.go f22b4b584d Public Release 5 gadi atpakaļ
cert.go f22b4b584d Public Release 5 gadi atpakaļ
cidr_radix.go c1182869c4 Add a way to find the most specific network 5 gadi atpakaļ
cidr_radix_test.go c1182869c4 Add a way to find the most specific network 5 gadi atpakaļ
config.go f65702a3b8 Better error message when no config files found 5 gadi atpakaļ
config_test.go f22b4b584d Public Release 5 gadi atpakaļ
connection_manager.go f22b4b584d Public Release 5 gadi atpakaļ
connection_manager_test.go 1640a9bc77 Fail with a better error message if lh a hosts is unparsable 5 gadi atpakaļ
connection_state.go f22b4b584d Public Release 5 gadi atpakaļ
dns_server.go a086d60edc Allow configuration of dns listener host/port (#74) 5 gadi atpakaļ
dns_server_test.go f22b4b584d Public Release 5 gadi atpakaļ
firewall.go f22b4b584d Public Release 5 gadi atpakaļ
firewall_test.go df43f6466e gofmt 5 gadi atpakaļ
go.mod 8ed69c8eaf make nebula a service that can install itself 5 gadi atpakaļ
go.sum 00d6973e27 remove some boilerplate + better messages 5 gadi atpakaļ
handshake.go 6a460ba38b remove old hmac function. superceded by ix_psk0 5 gadi atpakaļ
handshake_ix.go 89f0d998cf remove old debug print statements 5 gadi atpakaļ
handshake_manager.go f22b4b584d Public Release 5 gadi atpakaļ
handshake_manager_test.go f22b4b584d Public Release 5 gadi atpakaļ
header.go f22b4b584d Public Release 5 gadi atpakaļ
header_test.go f22b4b584d Public Release 5 gadi atpakaļ
hostmap.go f22b4b584d Public Release 5 gadi atpakaļ
hostmap_test.go f22b4b584d Public Release 5 gadi atpakaļ
inside.go f22b4b584d Public Release 5 gadi atpakaļ
interface.go 6a460ba38b remove old hmac function. superceded by ix_psk0 5 gadi atpakaļ
lighthouse.go 1640a9bc77 Fail with a better error message if lh a hosts is unparsable 5 gadi atpakaļ
lighthouse_test.go 1640a9bc77 Fail with a better error message if lh a hosts is unparsable 5 gadi atpakaļ
main.go a086d60edc Allow configuration of dns listener host/port (#74) 5 gadi atpakaļ
main_test.go f22b4b584d Public Release 5 gadi atpakaļ
metadata.go f22b4b584d Public Release 5 gadi atpakaļ
nebula.pb.go f22b4b584d Public Release 5 gadi atpakaļ
nebula.proto f22b4b584d Public Release 5 gadi atpakaļ
noise.go f22b4b584d Public Release 5 gadi atpakaļ
outside.go f22b4b584d Public Release 5 gadi atpakaļ
outside_test.go f22b4b584d Public Release 5 gadi atpakaļ
ssh.go df43f6466e gofmt 5 gadi atpakaļ
stats.go f22b4b584d Public Release 5 gadi atpakaļ
timeout.go f22b4b584d Public Release 5 gadi atpakaļ
timeout_system.go f22b4b584d Public Release 5 gadi atpakaļ
timeout_system_test.go f22b4b584d Public Release 5 gadi atpakaļ
timeout_test.go f22b4b584d Public Release 5 gadi atpakaļ
tun_common.go f22b4b584d Public Release 5 gadi atpakaļ
tun_darwin.go f22b4b584d Public Release 5 gadi atpakaļ
tun_linux.go cbf8319eb2 Add linux-386, linux-ppc64le targets (#56) 5 gadi atpakaļ
tun_test.go f22b4b584d Public Release 5 gadi atpakaļ
tun_windows.go f22b4b584d Public Release 5 gadi atpakaļ
udp_darwin.go f22b4b584d Public Release 5 gadi atpakaļ
udp_generic.go f22b4b584d Public Release 5 gadi atpakaļ
udp_linux.go cbf8319eb2 Add linux-386, linux-ppc64le targets (#56) 5 gadi atpakaļ
udp_linux_32.go 4bbf6dc29c Rework udp for linux into just 2 files, add more mips targets 5 gadi atpakaļ
udp_linux_64.go 4bbf6dc29c Rework udp for linux into just 2 files, add more mips targets 5 gadi atpakaļ
udp_windows.go f22b4b584d Public Release 5 gadi atpakaļ

README.md

What is Nebula?

Nebula is a scalable overlay networking tool with a focus on performance, simplicity and security. It lets you seamlessly connect computers anywhere in the world. Nebula is portable, and runs on Linux, OSX, and Windows. (Also: keep this quiet, but we have an early prototype running on iOS). It can be used to connect a small number of computers, but is also able to connect tens of thousands of computers.

Nebula incorporates a number of existing concepts like encryption, security groups, certificates, and tunneling, and each of those individual pieces existed before Nebula in various forms. What makes Nebula different to existing offerings is that it brings all of these ideas together, resulting in a sum that is greater than its individual parts.

You can read more about Nebula here.

Technical Overview

Nebula is a mutually authenticated peer-to-peer software defined network based on the Noise Protocol Framework. Nebula uses certificates to assert a node's IP address, name, and membership within user-defined groups. Nebula's user-defined groups allow for provider agnostic traffic filtering between nodes. Discovery nodes allow individual peers to find each other and optionally use UDP hole punching to establish connections from behind most firewalls or NATs. Users can move data between nodes in any number of cloud service providers, datacenters, and endpoints, without needing to maintain a particular addressing scheme.

Nebula uses elliptic curve Diffie-Hellman key exchange, and AES-256-GCM in its default configuration.

Nebula was created to provide a mechanism for groups hosts to communicate securely, even across the internet, while enabling expressive firewall definitions similar in style to cloud security groups.

Getting started (quickly)

To set up a Nebula network, you'll need:

1. The Nebula binaries for your specific platform. Specifically you'll need nebula-cert and the specific nebula binary for each platform you use.

2. (Optional, but you really should..) At least one discovery node with a routable IP address, which we call a lighthouse.

Nebula lighthouses allow nodes to find each other, anywhere in the world. A lighthouse is the only node in a Nebula network whose IP should not change. Running a lighthouse requires very few compute resources, and you can easily use the least expensive option from a cloud hosting provider. If you're not sure which provider to use, a number of us have used $5/mo DigitalOcean droplets as lighthouses.

Once you have launched an instance, ensure that Nebula udp traffic (default port udp/4242) can reach it over the internet.

3. A Nebula certificate authority, which will be the root of trust for a particular Nebula network.

  ./nebula-cert ca -name "Myorganization, Inc"

This will create files named ca.key and ca.cert in the current directory. The ca.key file is the most sensitive file you'll create, because it is the key used to sign the certificates for individual nebula nodes/hosts. Please store this file somewhere safe, preferably with strong encryption.

4. Nebula host keys and certificates generated from that certificate authority

This assumes you have three nodes, named lighthouse1, host1, host3. You can name the nodes any way you'd like, including FQDN. You'll also need to choose IP addresses and the associated subnet. In this example, we are creating a nebula network that will use 192.168.100.x/24 as its network range. This example also demonstrates nebula groups, which can later be used to define traffic rules in a nebula network.

./nebula-cert sign -name "lighthouse1" -ip "192.168.100.1/24"
./nebula-cert sign -name "laptop" -ip "192.168.100.2/24" -groups "laptop,home,ssh"
./nebula-cert sign -name "server1" -ip "192.168.100.9/24" -groups "servers"
./nebula-cert sign -name "host3" -ip "192.168.100.9/24"

5. Configuration files for each host

Download a copy of the nebula example configuration.

  • On the lighthouse node, you'll need to ensure am_lighthouse: true is set.

  • On the individual hosts, ensure the lighthouse is defined properly in the static_host_map section, and is added to the lighthouse hosts section.

6. Copy nebula credentials, configuration, and binaries to each host

For each host, copy the nebula binary to the host, along with config.yaml from step 5, and the files ca.crt, {host}.crt, and {host}.key from step 4.

DO NOT COPY ca.key TO INDIVIDUAL NODES.

7. Run nebula on each host

./nebula -config /path/to/config.yaml

Building Nebula from source

Download go and clone this repo. Change to the nebula directory.

To build nebula for all platforms: make all

To build nebula for a specific platform (ex, Windows): make bin-windows

See the Makefile for more details on build targets

Credits

Nebula was created at Slack Technologies, Inc by Nate Brown and Ryan Huber, with contributions from Oliver Fross, Alan Lam, Wade Simmons, and Lining Wang.