123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287 |
- import {Vector2} from "./Vector2.js";
- /**
- * 2D 3x2 transformation matrix, used to represent linear geometric transformations over objects.
- *
- * The values of the matrix are stored as numeric array. The matrix can be applied to the canvas or DOM elements using CSS transforms.
- *
- * @class
- * @param {number[]} values Array of matrix values by row, needs to have exactly 6 values. Default is the identity matrix.
- */
- function Matrix(values)
- {
- if(values !== undefined)
- {
- /**
- * Array that contains the matrix data by row. This matrix should have 6 values.
- *
- * Matrix can be directly edited by accessing this attribute.
- *
- * @type {number[]}
- */
- this.m = values;
- }
- else
- {
- this.identity();
- }
- }
- /**
- * Copy the content of another matrix and store in this one.
- *
- * @param {Matrix} mat Matrix to copy values from.
- */
- Matrix.prototype.copy = function(mat)
- {
- this.m = mat.m.slice(0);
- };
- /**
- * Create a new matrix object with a copy of the content of this one.
- *
- * @return {Matrix} Copy of this matrix.
- */
- Matrix.prototype.clone = function()
- {
- return new Matrix(this.m.slice(0))
- };
- /**
- * Reset this matrix to identity.
- */
- Matrix.prototype.identity = function()
- {
- this.m = [1, 0, 0, 1, 0, 0];
- };
- /**
- * Multiply another matrix by this one and store the result.
- *
- * @param {Matrix} mat Matrix to multiply by.
- */
- Matrix.prototype.multiply = function(mat)
- {
- var m0 = this.m[0] * mat.m[0] + this.m[2] * mat.m[1];
- var m1 = this.m[1] * mat.m[0] + this.m[3] * mat.m[1];
- var m2 = this.m[0] * mat.m[2] + this.m[2] * mat.m[3];
- var m3 = this.m[1] * mat.m[2] + this.m[3] * mat.m[3];
- var m4 = this.m[0] * mat.m[4] + this.m[2] * mat.m[5] + this.m[4];
- var m5 = this.m[1] * mat.m[4] + this.m[3] * mat.m[5] + this.m[5];
-
- this.m = [m0, m1, m2, m3, m4, m5];
- };
- /**
- * Premultiply another matrix by this one and store the result.
- *
- * @param {Matrix} mat Matrix to premultiply by.
- */
- Matrix.prototype.premultiply = function(mat)
- {
- var m0 = mat.m[0] * this.m[0] + mat.m[2] * this.m[1];
- var m1 = mat.m[1] * this.m[0] + mat.m[3] * this.m[1];
- var m2 = mat.m[0] * this.m[2] + mat.m[2] * this.m[3];
- var m3 = mat.m[1] * this.m[2] + mat.m[3] * this.m[3];
- var m4 = mat.m[0] * this.m[4] + mat.m[2] * this.m[5] + mat.m[4];
- var m5 = mat.m[1] * this.m[4] + mat.m[3] * this.m[5] + mat.m[5];
-
- this.m = [m0, m1, m2, m3, m4, m5];
- };
- /**
- * Compose this transformation matrix with position scale and rotation and origin point.
- *
- * @param {number} px Position X
- * @param {number} py Position Y
- * @param {number} sx Scale X
- * @param {number} sy Scale Y
- * @param {number} ox Origin X (applied before scale and rotation)
- * @param {number} oy Origin Y (applied before scale and rotation)
- * @param {number} rot Rotation angle (radians).
- */
- Matrix.prototype.compose = function(px, py, sx, sy, ox, oy, rot)
- {
- // Position
- this.m = [1, 0, 0, 1, px, py];
- // Rotation
- if(rot !== 0)
- {
- var c = Math.cos(rot);
- var s = Math.sin(rot);
- this.multiply(new Matrix([c, s, -s, c, 0, 0]));
- }
- // Scale
- if(sx !== 1 || sy !== 1)
- {
- this.scale(sx, sy);
- }
- // Origin
- if(ox !== 0 || oy !== 0)
- {
- this.multiply(new Matrix([1, 0, 0, 1, -ox, -oy]));
- }
- };
- /**
- * Apply translation to this matrix.
- *
- * Adds position over the transformation already stored in the matrix.
- *
- * @param {number} x
- * @param {number} y
- */
- Matrix.prototype.translate = function(x, y)
- {
- this.m[4] += this.m[0] * x + this.m[2] * y;
- this.m[5] += this.m[1] * x + this.m[3] * y;
- };
- /**
- * Apply rotation to this matrix.
- *
- * @param {number} rad Angle to rotate the matrix in radians.
- */
- Matrix.prototype.rotate = function(rad)
- {
- var c = Math.cos(rad);
- var s = Math.sin(rad);
- var m11 = this.m[0] * c + this.m[2] * s;
- var m12 = this.m[1] * c + this.m[3] * s;
- var m21 = this.m[0] * -s + this.m[2] * c;
- var m22 = this.m[1] * -s + this.m[3] * c;
- this.m[0] = m11;
- this.m[1] = m12;
- this.m[2] = m21;
- this.m[3] = m22;
- };
- /**
- * Apply scale to this matrix.
- *
- * @param {number} sx
- * @param {number} sy
- */
- Matrix.prototype.scale = function(sx, sy)
- {
- this.m[0] *= sx;
- this.m[1] *= sx;
- this.m[2] *= sy;
- this.m[3] *= sy;
- };
- /**
- * Set the position of the transformation matrix.
- *
- * @param {number} x
- * @param {number} y
- */
- Matrix.prototype.setPosition = function(x, y)
- {
- this.m[4] = x;
- this.m[5] = y;
- };
- /**
- * Extract the scale from the transformation matrix.
- *
- * @return {Vector2} Scale of the matrix transformation.
- */
- Matrix.prototype.getScale = function()
- {
- return new Vector2(this.m[0], this.m[3]);
- };
- /**
- * Extract the position from the transformation matrix.
- *
- * @return {Vector2} Position of the matrix transformation.
- */
- Matrix.prototype.getPosition = function()
- {
- return new Vector2(this.m[4], this.m[5]);
- };
- /**
- * Apply skew to this matrix.
- *
- * @param {number} radianX
- * @param {number} radianY
- */
- Matrix.prototype.skew = function(radianX, radianY)
- {
- this.multiply(new Matrix([1, Math.tan(radianY), Math.tan(radianX), 1, 0, 0]));
- };
- /**
- * Get the matrix determinant.
- *
- * @return {number} Determinant of this matrix.
- */
- Matrix.prototype.determinant = function()
- {
- return 1 / (this.m[0] * this.m[3] - this.m[1] * this.m[2]);
- };
- /**
- * Get the inverse matrix.
- *
- * @return {Matrix} New matrix instance containing the inverse matrix.
- */
- Matrix.prototype.getInverse = function()
- {
- var d = this.determinant();
- return new Matrix([this.m[3] * d, -this.m[1] * d, -this.m[2] * d, this.m[0] * d, d * (this.m[2] * this.m[5] - this.m[3] * this.m[4]), d * (this.m[1] * this.m[4] - this.m[0] * this.m[5])]);
- };
- /**
- * Transform a point using this matrix.
- *
- * @param {Vector2} p Point to be transformed.
- * @return {Vector2} Transformed point.
- */
- Matrix.prototype.transformPoint = function(p)
- {
- var px = p.x * this.m[0] + p.y * this.m[2] + this.m[4];
- var py = p.x * this.m[1] + p.y * this.m[3] + this.m[5];
- return new Vector2(px, py);
- };
- /**
- * Set a canvas context to use this transformation.
- *
- * @param {CanvasRenderingContext2D} context Canvas context to apply this matrix transform.
- */
- Matrix.prototype.setContextTransform = function(context)
- {
- context.setTransform(this.m[0], this.m[1], this.m[2], this.m[3], this.m[4], this.m[5]);
- };
- /**
- * Transform on top of the current context transformation.
- *
- * @param {CanvasRenderingContext2D} context Canvas context to apply this matrix transform.
- */
- Matrix.prototype.tranformContext = function(context)
- {
- context.transform(this.m[0], this.m[1], this.m[2], this.m[3], this.m[4], this.m[5]);
- };
- /**
- * Generate a CSS transform string that can be applied to the transform style of any DOM element.
- *
- * @returns {string} CSS transform matrix.
- */
- Matrix.prototype.cssTransform = function()
- {
- return "matrix(" + this.m[0] + "," + this.m[1] + "," + this.m[2] + "," + this.m[3] + "," + this.m[4] + "," + this.m[5] + ")";
- };
- export {Matrix};
|