Browse Source

added NURBS curve

renej-github 12 years ago
parent
commit
0747c820aa
3 changed files with 891 additions and 0 deletions
  1. 239 0
      examples/canvas_geometry_nurbs.html
  2. 244 0
      examples/webgl_geometry_nurbs.html
  3. 408 0
      src/extras/core/NURBSCurve.js

+ 239 - 0
examples/canvas_geometry_nurbs.html

@@ -0,0 +1,239 @@
+<!DOCTYPE html>
+<html lang="en">
+	<!-- based on canvas_geometry_shapes.html -->
+	<head>
+		<title>three.js canvas - geometry - NURBS</title>
+		<meta charset="utf-8">
+		<meta name="viewport" content="width=device-width, user-scalable=no, minimum-scale=1.0, maximum-scale=1.0">
+		<style>
+			body {
+				font-family: Monospace;
+				background-color: #f0f0f0;
+				margin: 0px;
+				overflow: hidden;
+			}
+			#info {
+				position: absolute;
+				top: 0px;
+				width: 100%;
+				padding: 5px;
+				text-align:center;
+			}
+		</style>
+	</head>
+	<body>
+		<canvas id="debug" style="position:absolute; left:100px"></canvas>
+
+		<div id="info"><a href="http://threejs.org" target="_blank">three.js</a> - NURBS curve example</div>
+
+		<script src="../build/three.min.js"></script>
+		<script src="js/libs/stats.min.js"></script>
+    		<script src="../src/extras/core/NURBSCurve.js"></script>
+
+		<script>
+
+			var container, stats;
+
+			var camera, scene, renderer;
+
+			var text, plane;
+
+			var targetRotation = 0;
+			var targetRotationOnMouseDown = 0;
+
+			var mouseX = 0;
+			var mouseXOnMouseDown = 0;
+
+			var windowHalfX = window.innerWidth / 2;
+			var windowHalfY = window.innerHeight / 2;
+
+			init();
+			animate();
+
+			function init() {
+
+				container = document.createElement( 'div' );
+				document.body.appendChild( container );
+
+				var info = document.createElement( 'div' );
+				info.style.position = 'absolute';
+				info.style.top = '30px';
+				info.style.width = '100%';
+				info.style.textAlign = 'center';
+				info.innerHTML = 'Drag to spin';
+				container.appendChild( info );
+
+				camera = new THREE.PerspectiveCamera( 50, window.innerWidth / window.innerHeight, 1, 1000 );
+				camera.position.set( 0, 150, 500 );
+
+				scene = new THREE.Scene();
+
+				parent = new THREE.Object3D();
+				parent.position.y = 50;
+				scene.add( parent );
+
+				// NURBS curve
+
+				var nurbsControlPoints = [];
+				nurbsControlPoints.push( new THREE.Vector4 ( 200, 100, 100, 1 ) );
+				nurbsControlPoints.push( new THREE.Vector4 ( 100, 300, -200, 1 ) );
+				nurbsControlPoints.push( new THREE.Vector4 ( -100, 200, -40, 5 ) );
+				nurbsControlPoints.push( new THREE.Vector4 ( -200, 350, 250, 1 ) );
+				nurbsControlPoints.push( new THREE.Vector4 ( 0, 0, 0, 1 ) );
+				var nurbsKnots = [0.0, 0.0, 0.0, 0.0, 0.5, 1.0, 1.0, 1.0, 1.0];
+				var nurbsDegree = 3;
+				var nurbsCurve = new THREE.NURBSCurve(nurbsDegree, nurbsKnots, nurbsControlPoints);
+
+				var posX = 0;
+				var posY = -100;
+				var posZ = 0;
+
+				var rotX = 0;
+				var rotY = 0;
+				var rotZ = 0;
+
+				var scaleX = 1;
+				var scaleY = 1;
+				var scaleZ = 1;
+
+				var nurbsGeometry = new THREE.Geometry();
+				nurbsGeometry.vertices = nurbsCurve.getPoints(100);
+				var nurbsMaterial = new THREE.LineBasicMaterial( { linewidth: 10, color: 0x333333, transparent: true } );
+				var nurbsLine = new THREE.Line( nurbsGeometry, nurbsMaterial );
+				nurbsLine.position.set( posX, posY, posZ );
+				nurbsLine.rotation.set( rotX, rotY, rotZ );
+				nurbsLine.scale.set( scaleX, scaleY, scaleZ );
+
+				var nurbsControlPointsGeometry = new THREE.Geometry();
+				nurbsControlPointsGeometry.vertices = nurbsCurve.controlPoints;
+				var nurbsControlPointsMaterial = new THREE.LineBasicMaterial( { linewidth: 2, color: 0x333333, transparent: true } );
+				var nurbsControlPointsLine = new THREE.Line( nurbsControlPointsGeometry, nurbsControlPointsMaterial );
+				nurbsControlPointsLine.position.set( posX, posY, posZ );
+				nurbsControlPointsLine.rotation.set( rotX, rotY, rotZ );
+				nurbsControlPointsLine.scale.set( scaleX, scaleY, scaleZ );
+
+				parent.add( nurbsLine );
+				parent.add( nurbsControlPointsLine );
+
+				//
+
+				renderer = new THREE.CanvasRenderer( { antialias: true } );
+				renderer.setSize( window.innerWidth, window.innerHeight );
+				renderer.sortObjects = false;
+				renderer.sortElements = false;
+				container.appendChild( renderer.domElement );
+
+				stats = new Stats();
+				stats.domElement.style.position = 'absolute';
+				stats.domElement.style.top = '0px';
+				container.appendChild( stats.domElement );
+
+				document.addEventListener( 'mousedown', onDocumentMouseDown, false );
+				document.addEventListener( 'touchstart', onDocumentTouchStart, false );
+				document.addEventListener( 'touchmove', onDocumentTouchMove, false );
+
+				//
+
+				window.addEventListener( 'resize', onWindowResize, false );
+
+			}
+
+			function onWindowResize() {
+
+				windowHalfX = window.innerWidth / 2;
+				windowHalfY = window.innerHeight / 2;
+
+				camera.aspect = window.innerWidth / window.innerHeight;
+				camera.updateProjectionMatrix();
+
+				renderer.setSize( window.innerWidth, window.innerHeight );
+
+			}
+
+			//
+
+			function onDocumentMouseDown( event ) {
+
+				event.preventDefault();
+
+				document.addEventListener( 'mousemove', onDocumentMouseMove, false );
+				document.addEventListener( 'mouseup', onDocumentMouseUp, false );
+				document.addEventListener( 'mouseout', onDocumentMouseOut, false );
+
+				mouseXOnMouseDown = event.clientX - windowHalfX;
+				targetRotationOnMouseDown = targetRotation;
+
+			}
+
+			function onDocumentMouseMove( event ) {
+
+				mouseX = event.clientX - windowHalfX;
+
+				targetRotation = targetRotationOnMouseDown + ( mouseX - mouseXOnMouseDown ) * 0.02;
+
+			}
+
+			function onDocumentMouseUp( event ) {
+
+				document.removeEventListener( 'mousemove', onDocumentMouseMove, false );
+				document.removeEventListener( 'mouseup', onDocumentMouseUp, false );
+				document.removeEventListener( 'mouseout', onDocumentMouseOut, false );
+
+			}
+
+			function onDocumentMouseOut( event ) {
+
+				document.removeEventListener( 'mousemove', onDocumentMouseMove, false );
+				document.removeEventListener( 'mouseup', onDocumentMouseUp, false );
+				document.removeEventListener( 'mouseout', onDocumentMouseOut, false );
+
+			}
+
+			function onDocumentTouchStart( event ) {
+
+				if ( event.touches.length == 1 ) {
+
+					event.preventDefault();
+
+					mouseXOnMouseDown = event.touches[ 0 ].pageX - windowHalfX;
+					targetRotationOnMouseDown = targetRotation;
+
+				}
+
+			}
+
+			function onDocumentTouchMove( event ) {
+
+				if ( event.touches.length == 1 ) {
+
+					event.preventDefault();
+
+					mouseX = event.touches[ 0 ].pageX - windowHalfX;
+					targetRotation = targetRotationOnMouseDown + ( mouseX - mouseXOnMouseDown ) * 0.05;
+
+				}
+
+			}
+
+			//
+
+			function animate() {
+
+				requestAnimationFrame( animate );
+
+				render();
+				stats.update();
+
+			}
+
+			function render() {
+
+				parent.rotation.y += ( targetRotation - parent.rotation.y ) * 0.05;
+				renderer.render( scene, camera );
+
+			}
+
+		</script>
+
+	</body>
+</html>

+ 244 - 0
examples/webgl_geometry_nurbs.html

@@ -0,0 +1,244 @@
+<!DOCTYPE html>
+<html lang="en">
+	<!-- based on webgl_geometry_shapes.html -->
+	<head>
+		<title>three.js webgl - geometry - NURBS</title>
+		<meta charset="utf-8">
+		<meta name="viewport" content="width=device-width, user-scalable=no, minimum-scale=1.0, maximum-scale=1.0">
+		<style>
+			body {
+				font-family: Monospace;
+				background-color: #f0f0f0;
+				margin: 0px;
+				overflow: hidden;
+			}
+			#info {
+				position: absolute;
+				top: 0px;
+				width: 100%;
+				padding: 5px;
+				text-align:center;
+			}
+		</style>
+	</head>
+	<body>
+		<canvas id="debug" style="position:absolute; left:100px"></canvas>
+
+		<div id="info"><a href="http://threejs.org" target="_blank">three.js</a> - NURBS curve example</div>
+
+		<script src="../build/three.min.js"></script>
+		<script src="../src/extras/core/NURBSCurve.js"></script>
+
+		<script src="js/libs/stats.min.js"></script>
+
+
+		<script>
+
+			var container, stats;
+
+			var camera, scene, renderer;
+
+			var text, plane;
+
+			var targetRotation = 0;
+			var targetRotationOnMouseDown = 0;
+
+			var mouseX = 0;
+			var mouseXOnMouseDown = 0;
+
+			var windowHalfX = window.innerWidth / 2;
+			var windowHalfY = window.innerHeight / 2;
+
+			init();
+			animate();
+
+			function init() {
+
+				container = document.createElement( 'div' );
+				document.body.appendChild( container );
+
+				var info = document.createElement( 'div' );
+				info.style.position = 'absolute';
+				info.style.top = '30px';
+				info.style.width = '100%';
+				info.style.textAlign = 'center';
+				info.innerHTML = 'Drag to spin';
+				container.appendChild( info );
+
+				camera = new THREE.PerspectiveCamera( 50, window.innerWidth / window.innerHeight, 1, 1000 );
+				camera.position.set( 0, 150, 500 );
+
+				scene = new THREE.Scene();
+
+				var light = new THREE.DirectionalLight( 0xffffff );
+				light.position.set( 0, 0, 1 );
+				scene.add( light );
+
+				parent = new THREE.Object3D();
+				parent.position.y = 50;
+				scene.add( parent );
+
+				// NURBS curve
+
+				var nurbsControlPoints = [];
+				nurbsControlPoints.push( new THREE.Vector4 ( 200, 100, 100, 1 ) );
+				nurbsControlPoints.push( new THREE.Vector4 ( 100, 300, -200, 1 ) );
+				nurbsControlPoints.push( new THREE.Vector4 ( -100, 200, -40, 1 ) );
+				nurbsControlPoints.push( new THREE.Vector4 ( -200, 350, 250, 1 ) );
+				nurbsControlPoints.push( new THREE.Vector4 ( 0, 0, 0, 1 ) );
+				var nurbsKnots = [0.0, 0.0, 0.0, 0.0, 0.5, 1.0, 1.0, 1.0, 1.0];
+				var nurbsDegree = 3;
+				var nurbsCurve = new THREE.NURBSCurve(nurbsDegree, nurbsKnots, nurbsControlPoints);
+
+				var posX = 0;
+				var posY = -100;
+				var posZ = 0;
+
+				var rotX = 0;
+				var rotY = 0;
+				var rotZ = 0;
+
+				var scaleX = 1;
+				var scaleY = 1;
+				var scaleZ = 1;
+
+				var nurbsGeometry = new THREE.Geometry();
+				nurbsGeometry.vertices = nurbsCurve.getPoints(100);
+				var nurbsMaterial = new THREE.LineBasicMaterial( { linewidth: 10, color: 0x333333, transparent: true } );
+				var nurbsLine = new THREE.Line( nurbsGeometry, nurbsMaterial );
+				nurbsLine.position.set( posX, posY, posZ );
+				nurbsLine.rotation.set( rotX, rotY, rotZ );
+				nurbsLine.scale.set( scaleX, scaleY, scaleZ );
+
+				var nurbsControlPointsGeometry = new THREE.Geometry();
+				nurbsControlPointsGeometry.vertices = nurbsCurve.controlPoints;
+				var nurbsControlPointsMaterial = new THREE.LineBasicMaterial( { linewidth: 2, color: 0x333333, transparent: true } );
+				var nurbsControlPointsLine = new THREE.Line( nurbsControlPointsGeometry, nurbsControlPointsMaterial );
+				nurbsControlPointsLine.position.set( posX, posY, posZ );
+				nurbsControlPointsLine.rotation.set( rotX, rotY, rotZ );
+				nurbsControlPointsLine.scale.set( scaleX, scaleY, scaleZ );
+
+				parent.add( nurbsLine );
+				parent.add( nurbsControlPointsLine );
+
+				//
+
+				renderer = new THREE.WebGLRenderer( { antialias: true } );
+				renderer.setSize( window.innerWidth, window.innerHeight );
+
+				container.appendChild( renderer.domElement );
+
+				stats = new Stats();
+				stats.domElement.style.position = 'absolute';
+				stats.domElement.style.top = '0px';
+				container.appendChild( stats.domElement );
+
+				document.addEventListener( 'mousedown', onDocumentMouseDown, false );
+				document.addEventListener( 'touchstart', onDocumentTouchStart, false );
+				document.addEventListener( 'touchmove', onDocumentTouchMove, false );
+
+				//
+
+				window.addEventListener( 'resize', onWindowResize, false );
+
+			}
+
+			function onWindowResize() {
+
+				windowHalfX = window.innerWidth / 2;
+				windowHalfY = window.innerHeight / 2;
+
+				camera.aspect = window.innerWidth / window.innerHeight;
+				camera.updateProjectionMatrix();
+
+				renderer.setSize( window.innerWidth, window.innerHeight );
+
+			}
+
+			//
+
+			function onDocumentMouseDown( event ) {
+
+				event.preventDefault();
+
+				document.addEventListener( 'mousemove', onDocumentMouseMove, false );
+				document.addEventListener( 'mouseup', onDocumentMouseUp, false );
+				document.addEventListener( 'mouseout', onDocumentMouseOut, false );
+
+				mouseXOnMouseDown = event.clientX - windowHalfX;
+				targetRotationOnMouseDown = targetRotation;
+
+			}
+
+			function onDocumentMouseMove( event ) {
+
+				mouseX = event.clientX - windowHalfX;
+
+				targetRotation = targetRotationOnMouseDown + ( mouseX - mouseXOnMouseDown ) * 0.02;
+
+			}
+
+			function onDocumentMouseUp( event ) {
+
+				document.removeEventListener( 'mousemove', onDocumentMouseMove, false );
+				document.removeEventListener( 'mouseup', onDocumentMouseUp, false );
+				document.removeEventListener( 'mouseout', onDocumentMouseOut, false );
+
+			}
+
+			function onDocumentMouseOut( event ) {
+
+				document.removeEventListener( 'mousemove', onDocumentMouseMove, false );
+				document.removeEventListener( 'mouseup', onDocumentMouseUp, false );
+				document.removeEventListener( 'mouseout', onDocumentMouseOut, false );
+
+			}
+
+			function onDocumentTouchStart( event ) {
+
+				if ( event.touches.length == 1 ) {
+
+					event.preventDefault();
+
+					mouseXOnMouseDown = event.touches[ 0 ].pageX - windowHalfX;
+					targetRotationOnMouseDown = targetRotation;
+
+				}
+
+			}
+
+			function onDocumentTouchMove( event ) {
+
+				if ( event.touches.length == 1 ) {
+
+					event.preventDefault();
+
+					mouseX = event.touches[ 0 ].pageX - windowHalfX;
+					targetRotation = targetRotationOnMouseDown + ( mouseX - mouseXOnMouseDown ) * 0.05;
+
+				}
+
+			}
+
+			//
+
+			function animate() {
+
+				requestAnimationFrame( animate );
+
+				render();
+				stats.update();
+
+			}
+
+			function render() {
+
+				parent.rotation.y += ( targetRotation - parent.rotation.y ) * 0.05;
+				renderer.render( scene, camera );
+
+			}
+
+		</script>
+
+	</body>
+</html>

+ 408 - 0
src/extras/core/NURBSCurve.js

@@ -0,0 +1,408 @@
+/**
+ * @author renej
+ * NURBS curve object
+ *
+ * Derives from Curve, overriding getPoint and getTangent.
+ *
+ * Implementation is based on (x, y [, z=0 [, w=1]]) control points with w=weight.
+ *
+ **/
+
+
+/**************************************************************
+ *	NURBS curve
+ **************************************************************/
+
+THREE.NURBSCurve = function ( degree, knots /* array of reals */, controlPoints /* array of Vector(2|3|4) */) {
+
+	this.degree = degree;
+	this.knots = knots;
+	this.controlPoints = [];
+	for (var i = 0; i < controlPoints.length; ++i) { // ensure Vector4 for control points
+		var point = controlPoints[i];
+		this.controlPoints[i] = new THREE.Vector4(point.x, point.y, point.z, point.w);
+	}
+
+};
+
+
+THREE.NURBSCurve.prototype = Object.create( THREE.Curve.prototype );
+
+
+THREE.NURBSCurve.prototype.getPoint = function ( t ) {
+
+	var u = this.knots[0] + t * (this.knots[this.knots.length - 1] - this.knots[0]); // linear mapping t->u
+
+	// following results in (wx, wy, wz, w) homogeneous point
+	var hpoint = THREE.NURBSCurve.Utils.calcBSplinePoint(this.degree, this.knots, this.controlPoints, u);
+
+	if (hpoint.w != 1.0) { // project to 3D space: (wx, wy, wz, w) -> (x, y, z, 1)
+		hpoint.divideScalar(hpoint.w);
+	}
+
+	return new THREE.Vector3(hpoint.x, hpoint.y, hpoint.z);
+};
+
+
+THREE.NURBSCurve.prototype.getTangent = function ( t ) {
+
+	var u = this.knots[0] + t * (this.knots[this.knots.length - 1] - this.knots[0]);
+	var ders = THREE.NURBSCurve.Utils.calcNURBSDerivatives(this.degree, this.knots, this.controlPoints, u, 1);
+	var tangent = ders[1].clone();
+	tangent.normalize();
+
+	return tangent;
+};
+
+
+/**************************************************************
+ *	Utils
+ **************************************************************/
+
+THREE.NURBSCurve.Utils = {
+
+	/*
+	Finds knot vector span.
+
+	p : degree
+	u : parametric value
+	U : knot vector
+	
+	returns the span
+	*/
+	findSpan: function( p,  u,  U ) {
+		var n = U.length - p - 1;
+
+		if (u >= U[n]) {
+			return n - 1;
+		}
+
+		if (u <= U[p]) {
+			return p;
+		}
+
+		var low = p;
+		var high = n;
+		var mid = Math.floor((low + high) / 2);
+
+		while (u < U[mid] || u >= U[mid + 1]) {
+		  
+			if (u < U[mid]) {
+				high = mid;
+			} else {
+				low = mid;
+			}
+
+			mid = Math.floor((low + high) / 2);
+		}
+
+		return mid;
+	},
+    
+		
+	/*
+	Calculate basis functions. See The NURBS Book, page 70, algorithm A2.2
+   
+	span : span in which u lies
+	u    : parametric point
+	p    : degree
+	U    : knot vector
+	
+	returns array[p+1] with basis functions values.
+	*/
+	calcBasisFunctions: function( span, u, p, U ) {
+		var N = [];
+		var left = [];
+		var right = [];
+		N[0] = 1.0;
+
+		for (var j = 1; j <= p; ++j) {
+	   
+			left[j] = u - U[span + 1 - j];
+			right[j] = U[span + j] - u;
+
+			var saved = 0.0;
+
+			for (var r = 0; r < j; ++r) {
+
+				var rv = right[r + 1];
+				var lv = left[j - r];
+				var temp = N[r] / (rv + lv);
+				N[r] = saved + rv * temp;
+				saved = lv * temp;
+			 }
+
+			 N[j] = saved;
+		 }
+
+		 return N;
+	},
+
+	/*
+	Calculate B-Spline curve points. See The NURBS Book, page 82, algorithm A3.1.
+ 
+	p : degree of B-Spline
+	U : knot vector
+	P : control points (x, y, z, w)
+	u : parametric point
+
+	returns point for given u
+	*/
+	calcBSplinePoint: function( p, U, P, u ) {
+		var span = this.findSpan(p, u, U);
+		//console.log("u=" + u + " p=" + p + " span=" + span + " U=" + U);
+		var N = this.calcBasisFunctions(span, u, p, U);
+		var C = new THREE.Vector4(0, 0, 0, 0);
+
+		for (var j = 0; j <= p; ++j) {
+			var point = P[span - p + j];
+			var Nj = N[j];
+			var wNj = point.w * Nj;
+			C.x += point.x * wNj;
+			C.y += point.y * wNj;
+			C.z += point.z * wNj;
+			C.w += point.w * Nj;
+			//console.log("C=" + C.toArray());
+		}
+
+		return C;
+	},
+
+	/*
+	Calculate basis functions derivatives. See The NURBS Book, page 72, algorithm A2.3.
+
+	span : span in which u lies
+	u    : parametric point
+	p    : degree
+	n    : number of derivatives to calculate
+	U    : knot vector
+
+	returns array[n+1][p+1] with basis functions derivatives
+	*/
+	calcBasisFunctionDerivatives: function( span,  u,  p,  n,  U ) {
+
+		var zeroArr = [];
+		for (var i = 0; i <= p; ++i)
+			zeroArr[i] = 0.0;
+
+		var ders = [];
+		for (var i = 0; i <= n; ++i)
+			ders[i] = zeroArr.slice(0);
+
+		var ndu = [];
+		for (var i = 0; i <= p; ++i)
+			ndu[i] = zeroArr.slice(0);
+
+		ndu[0][0] = 1.0;
+
+		var left = zeroArr.slice(0);
+		var right = zeroArr.slice(0);
+
+		for (var j = 1; j <= p; ++j) {
+			left[j] = u - U[span + 1 - j];
+			right[j] = U[span + j] - u;
+
+			var saved = 0.0;
+
+			for (var r = 0; r < j; ++r) {
+				var rv = right[r + 1];
+				var lv = left[j - r];
+				ndu[j][r] = rv + lv;
+
+				var temp = ndu[r][j - 1] / ndu[j][r];
+				ndu[r][j] = saved + rv * temp;
+				saved = lv * temp;
+			}
+
+			ndu[j][j] = saved;
+		}
+
+		for (var j = 0; j <= p; ++j) {
+			ders[0][j] = ndu[j][p];
+		}
+
+		for (var r = 0; r <= p; ++r) {
+			var s1 = 0;
+			var s2 = 1;
+
+			var a = [];
+			for (var i = 0; i <= p; ++i) {
+				a[i] = zeroArr.slice(0);
+			}
+			a[0][0] = 1.0;
+
+			for (var k = 1; k <= n; ++k) {
+				var d = 0.0;
+				var rk = r - k;
+				var pk = p - k;
+
+				if (r >= k) {
+					a[s2][0] = a[s1][0] / ndu[pk + 1][rk];
+					d = a[s2][0] * ndu[rk][pk];
+				}
+
+				var j1 = (rk >= -1) ? 1 : -rk;
+				var j2 = (r - 1 <= pk) ? k - 1 :  p - r;
+
+				for (var j = j1; j <= j2; ++j) {
+					a[s2][j] = (a[s1][j] - a[s1][j - 1]) / ndu[pk + 1][rk + j];
+					d += a[s2][j] * ndu[rk + j][pk];
+				}
+
+				if (r <= pk) {
+					a[s2][k] = -a[s1][k - 1] / ndu[pk + 1][r];
+					d += a[s2][k] * ndu[r][pk];
+				}
+
+				ders[k][r] = d;
+
+				var j = s1;
+				s1 = s2;
+				s2 = j;
+			}
+		}
+
+		var r = p;
+
+		for (var k = 1; k <= n; ++k) {
+			for (var j = 0; j <= p; ++j) {
+				ders[k][j] *= r;
+			}
+			r *= p - k;
+		}
+
+		return ders;
+	},
+
+ 	/*
+	Calculate derivatives of a B-Spline. See The NURBS Book, page 93, algorithm A3.2.
+
+	p  : degree
+	U  : knot vector
+	P  : control points
+	u  : Parametric points
+	nd : number of derivatives
+
+	returns array[d+1] with derivatives
+	*/
+	calcBSplineDerivatives: function( p,  U,  P,  u,  nd ) {
+		var du = nd < p ? nd : p;
+		var CK = [];
+		var span = this.findSpan(p, u, U);
+		var nders = this.calcBasisFunctionDerivatives(span, u, p, du, U);
+		var Pw = [];
+
+		for (var i = 0; i < P.length; ++i) {
+			var point = P[i].clone();
+			var w = point.w;
+
+			point.x *= w;
+			point.y *= w;
+			point.z *= w;
+
+			Pw[i] = point;
+		}
+		for (var k = 0; k <= du; ++k) {
+			var point = Pw[span - p].clone().multiplyScalar(nders[k][0]);
+
+			for (var j = 1; j <= p; ++j) {
+				point.add(Pw[span - p + j].clone().multiplyScalar(nders[k][j]));
+			}
+
+			//point.x /= w;
+			//point.y /= w;
+			//point.z /= w;
+
+			CK[k] = point;
+		}
+
+		for (var k = du + 1; k <= nd + 1; ++k) {
+			CK[k] = new THREE.Vector4(0, 0, 0);
+		}
+
+		return CK;
+	},
+
+
+	/*
+	Calculate "K over I"
+
+	returns k!/(i!(k-i)!)
+	*/
+	calcKoverI: function( k, i ) {
+		var nom = 1;
+
+		for (var j = 2; j <= k; ++j) {
+			nom *= j;
+		}
+
+		var denom = 1;
+
+		for (var j = 2; j <= i; ++j) {
+			denom *= j;
+		}
+
+		for (var j = 2; j <= k - i; ++j) {
+			denom *= j;
+		}
+
+		return nom / denom;
+	},
+
+
+	/*
+	Calculate derivatives (0-nd) of rational curve. See The NURBS Book, page 127, algorithm A4.2.
+
+	Pders : result of function calcBSplineDerivatives
+
+	returns array with derivatives for rational curve.
+	*/
+	calcRationalCurveDerivatives: function ( Pders ) {
+		var nd = Pders.length;
+		var Aders = [];//new Point[nd];
+		var wders = [];//new double[nd];
+		//var n = Pders[0].size() - 1;
+
+		for (var i = 0; i < nd; ++i) {
+			var point = Pders[i];
+			Aders[i] = new THREE.Vector3(point.x, point.y, point.z);//new PointImpl(Arrays.copyOf(Pders[i].getArrayCopy(), n));
+			wders[i] = point.w;//Pders[i].get(n);
+		}
+
+		var CK = [];//new Point[nd];
+
+		for (var k = 0; k < nd; ++k) {
+			var v = Aders[k].clone();
+
+			for (var i = 1; i <= k; ++i) {
+				v.sub(CK[k - i].clone().multiplyScalar(this.calcKoverI(k,i) * wders[i]));
+				//v = v.minus(CK[k - i].times(BSplineUtils.calcKoverI(k, i) * wders[i]));
+			}
+
+			CK[k] = v.divideScalar(wders[0]);
+		}
+
+		return CK;
+	},
+
+
+	/*
+	Calculate NURBS curve derivatives. See The NURBS Book, page 127, algorithm A4.2.
+
+	p  : degree
+	U  : knot vector
+	P  : control points in homogeneous space
+	u  : parametric points
+	nd : number of derivatives
+
+	returns array with derivatives.
+	*/
+	calcNURBSDerivatives: function( p,  U,  P,  u,  nd ) {
+		var Pders = this.calcBSplineDerivatives(p, U, P, u, nd);
+		return this.calcRationalCurveDerivatives(Pders);
+	}
+
+};
+
+
+