|
@@ -48,6 +48,47 @@
|
|
|
color: #0080ff;
|
|
|
}
|
|
|
|
|
|
+ .math {
|
|
|
+
|
|
|
+ text-align: center;
|
|
|
+
|
|
|
+ }
|
|
|
+
|
|
|
+ .math-frac {
|
|
|
+
|
|
|
+ display: inline-block;
|
|
|
+ vertical-align: middle;
|
|
|
+
|
|
|
+ }
|
|
|
+
|
|
|
+ .math-num {
|
|
|
+
|
|
|
+ display: block;
|
|
|
+
|
|
|
+ }
|
|
|
+
|
|
|
+ .math-denom {
|
|
|
+
|
|
|
+ display: block;
|
|
|
+ border-top: 1px solid;
|
|
|
+
|
|
|
+ }
|
|
|
+
|
|
|
+ .math-sqrt {
|
|
|
+
|
|
|
+ display: inline-block;
|
|
|
+ transform: scale(1, 1.3);
|
|
|
+
|
|
|
+ }
|
|
|
+
|
|
|
+ .math-sqrt-stem {
|
|
|
+
|
|
|
+ display: inline-block;
|
|
|
+ border-top: 1px solid;
|
|
|
+ margin-top: 5px;
|
|
|
+
|
|
|
+ }
|
|
|
+
|
|
|
</style>
|
|
|
</head>
|
|
|
<body>
|
|
@@ -57,11 +98,9 @@
|
|
|
<div id="info"><a href="http://threejs.org" target="_blank">three.js</a> - multiple elements with text - webgl</div>
|
|
|
|
|
|
<script src="../build/three.min.js"></script>
|
|
|
- <script src="../examples/js/controls/OrbitControls.js"></script>
|
|
|
+ <script src="js/controls/OrbitControls.js"></script>
|
|
|
|
|
|
<script src="js/Detector.js"></script>
|
|
|
-
|
|
|
- <script src="http://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS_HTML"></script>
|
|
|
|
|
|
<script>
|
|
|
|
|
@@ -234,13 +273,52 @@
|
|
|
|
|
|
<p>Sound waves whose geometry is determined by a single dimension, plane waves, obey the wave equation</p>
|
|
|
|
|
|
- \[ \frac{ \partial^2 u }{ \partial r^2 } - \frac{ 1 }{ c^2 } \frac{ \partial^2 u }{ \partial t^2 } = 0 \]
|
|
|
+ <!-- css math formatting inspired by http://mathquill.com/mathquill/mathquill.css -->
|
|
|
+
|
|
|
+ <div class="math">
|
|
|
+
|
|
|
+ <span class="math-frac">
|
|
|
+ <span class="math-num">
|
|
|
+ ∂<sup>2</sup><i>u</i>
|
|
|
+ </span>
|
|
|
+ <span class="math-denom">
|
|
|
+ ∂<i>r</i><sup>2</sup>
|
|
|
+ </span>
|
|
|
+ </span>
|
|
|
+
|
|
|
+ −
|
|
|
+
|
|
|
+ <span class="math-frac">
|
|
|
+ <span class="math-num">
|
|
|
+ 1<sup></sup> <!-- sup for vertical alignment -->
|
|
|
+ </span>
|
|
|
+ <span class="math-denom">
|
|
|
+ <i>c</i><sup>2</sup>
|
|
|
+ </span>
|
|
|
+ </span>
|
|
|
+
|
|
|
+ <span class="math-frac">
|
|
|
+ <span class="math-num">
|
|
|
+ ∂<sup>2</sup><i>u</i>
|
|
|
+ </span>
|
|
|
+ <span class="math-denom">
|
|
|
+ ∂<i>t</i><sup>2</sup>
|
|
|
+ </span>
|
|
|
+ </span>
|
|
|
+
|
|
|
+ = 0
|
|
|
+
|
|
|
+ </div>
|
|
|
|
|
|
<p>where <i>c</i> designates the speed of sound in the medium. The monochromatic solution for plane waves will be taken to be</p>
|
|
|
|
|
|
- \[ u(r,t) = \sin( k r \pm ω t ) \]
|
|
|
+ <div class="math">
|
|
|
+
|
|
|
+ <i>u</i>(<i>r</i>,<i>t</i>) = sin(<i>k</i><i>r</i> ± ω<i>t</i>)
|
|
|
+
|
|
|
+ </div>
|
|
|
|
|
|
- <p>where ω is the frequency and \( k = ω / c \) is the wave number. The sign chosen in the argument determines the direction of movement of the waves.</p>
|
|
|
+ <p>where ω is the frequency and <i>k</i>=ω/<i>c</i> is the wave number. The sign chosen in the argument determines the direction of movement of the waves.</p>
|
|
|
|
|
|
<p>Here is a plane wave moving on a three-dimensional lattice of atoms:</p>
|
|
|
|
|
@@ -284,11 +362,83 @@
|
|
|
|
|
|
<p>Sound waves whose geometry is determined by two dimensions, cylindrical waves, obey the wave equation</p>
|
|
|
|
|
|
- \[ \frac{ \partial^2 u }{ \partial r^2 } + \frac{ 1 }{ r } \frac{ \partial u }{ \partial r } - \frac{ 1 }{ c^2 } \frac{ \partial^2 u }{ \partial t^2 } = 0 \]
|
|
|
+ <div class="math">
|
|
|
+
|
|
|
+ <span class="math-frac">
|
|
|
+ <span class="math-num">
|
|
|
+ ∂<sup>2</sup><i>u</i>
|
|
|
+ </span>
|
|
|
+ <span class="math-denom">
|
|
|
+ ∂<i>r</i><sup>2</sup>
|
|
|
+ </span>
|
|
|
+ </span>
|
|
|
+
|
|
|
+ +
|
|
|
+
|
|
|
+ <span class="math-frac">
|
|
|
+ <span class="math-num">
|
|
|
+ 1
|
|
|
+ </span>
|
|
|
+ <span class="math-denom">
|
|
|
+ <i>r</i>
|
|
|
+ </span>
|
|
|
+ </span>
|
|
|
+
|
|
|
+ <span class="math-frac">
|
|
|
+ <span class="math-num">
|
|
|
+ ∂<i>u</i>
|
|
|
+ </span>
|
|
|
+ <span class="math-denom">
|
|
|
+ ∂<i>r</i>
|
|
|
+ </span>
|
|
|
+ </span>
|
|
|
+
|
|
|
+ −
|
|
|
+
|
|
|
+ <span class="math-frac">
|
|
|
+ <span class="math-num">
|
|
|
+ 1<sup></sup> <!-- sup for vertical alignment -->
|
|
|
+ </span>
|
|
|
+ <span class="math-denom">
|
|
|
+ <i>c</i><sup>2</sup>
|
|
|
+ </span>
|
|
|
+ </span>
|
|
|
+
|
|
|
+ <span class="math-frac">
|
|
|
+ <span class="math-num">
|
|
|
+ ∂<sup>2</sup><i>u</i>
|
|
|
+ </span>
|
|
|
+ <span class="math-denom">
|
|
|
+ ∂<i>t</i><sup>2</sup>
|
|
|
+ </span>
|
|
|
+ </span>
|
|
|
+
|
|
|
+ = 0
|
|
|
+
|
|
|
+ </div>
|
|
|
|
|
|
<p>The monochromatic solution for cylindrical sound waves will be taken to be</p>
|
|
|
|
|
|
- \[ u(r,t) = \frac{ \sin( k r \pm ω t ) }{ \sqrt{ r } } \]
|
|
|
+ <div class="math">
|
|
|
+
|
|
|
+ <i>u</i>(<i>r</i>,<i>t</i>) =
|
|
|
+
|
|
|
+ <span class="math-frac">
|
|
|
+ <span class="math-num">
|
|
|
+ sin(<i>k</i><i>r</i> ± ω<i>t</i>)
|
|
|
+ </span>
|
|
|
+ <span class="math-denom">
|
|
|
+ <span class="math-sqrt">√</span><span class="math-sqrt-stem"><i>r</i>
|
|
|
+ </span>
|
|
|
+ </span>
|
|
|
+
|
|
|
+ </div>
|
|
|
+
|
|
|
+ <div class="math">
|
|
|
+
|
|
|
+</span>
|
|
|
+
|
|
|
+ </div>
|
|
|
|
|
|
<p>Here is a cylindrical wave moving on a three-dimensional lattice of atoms:</p>
|
|
|
|
|
@@ -354,11 +504,77 @@
|
|
|
|
|
|
<p>Sound waves whose geometry is determined by three dimensions, spherical waves, obey the wave equation</p>
|
|
|
|
|
|
- \[ \frac{ \partial^2 u }{ \partial r^2 } + \frac{ 2 }{ r } \frac{ \partial u }{ \partial r } - \frac{ 1 }{ c^2 } \frac{ \partial^2 u }{ \partial t^2 } = 0 \]
|
|
|
+ <div class="math">
|
|
|
+
|
|
|
+ <span class="math-frac">
|
|
|
+ <span class="math-num">
|
|
|
+ ∂<sup>2</sup><i>u</i>
|
|
|
+ </span>
|
|
|
+ <span class="math-denom">
|
|
|
+ ∂<i>r</i><sup>2</sup>
|
|
|
+ </span>
|
|
|
+ </span>
|
|
|
+
|
|
|
+ +
|
|
|
+
|
|
|
+ <span class="math-frac">
|
|
|
+ <span class="math-num">
|
|
|
+ 2
|
|
|
+ </span>
|
|
|
+ <span class="math-denom">
|
|
|
+ <i>r</i>
|
|
|
+ </span>
|
|
|
+ </span>
|
|
|
+
|
|
|
+ <span class="math-frac">
|
|
|
+ <span class="math-num">
|
|
|
+ ∂<i>u</i>
|
|
|
+ </span>
|
|
|
+ <span class="math-denom">
|
|
|
+ ∂<i>r</i>
|
|
|
+ </span>
|
|
|
+ </span>
|
|
|
+
|
|
|
+ −
|
|
|
+
|
|
|
+ <span class="math-frac">
|
|
|
+ <span class="math-num">
|
|
|
+ 1<sup></sup> <!-- sup for vertical alignment -->
|
|
|
+ </span>
|
|
|
+ <span class="math-denom">
|
|
|
+ <i>c</i><sup>2</sup>
|
|
|
+ </span>
|
|
|
+ </span>
|
|
|
+
|
|
|
+ <span class="math-frac">
|
|
|
+ <span class="math-num">
|
|
|
+ ∂<sup>2</sup><i>u</i>
|
|
|
+ </span>
|
|
|
+ <span class="math-denom">
|
|
|
+ ∂<i>t</i><sup>2</sup>
|
|
|
+ </span>
|
|
|
+ </span>
|
|
|
+
|
|
|
+ = 0
|
|
|
+
|
|
|
+ </div>
|
|
|
|
|
|
<p>The monochromatic solution for spherical sound waves will be taken to be</p>
|
|
|
|
|
|
- \[ u(r,t) = \frac{ \sin( k r \pm ω t ) }{ r } \]
|
|
|
+ <div class="math">
|
|
|
+
|
|
|
+ <i>u</i>(<i>r</i>,<i>t</i>) =
|
|
|
+
|
|
|
+ <span class="math-frac">
|
|
|
+ <span class="math-num">
|
|
|
+ sin(<i>k</i><i>r</i> ± ω<i>t</i>)
|
|
|
+ </span>
|
|
|
+ <span class="math-denom">
|
|
|
+ <i>r</i>
|
|
|
+ </span>
|
|
|
+ </span>
|
|
|
+
|
|
|
+ </div>
|
|
|
|
|
|
<p>Here is a spherical wave moving on a three-dimensional lattice of atoms:</p>
|
|
|
|