Sfoglia il codice sorgente

More math doc updates

Greg Tatum 11 anni fa
parent
commit
9ab7aa3a8a

+ 19 - 19
docs/api/math/Color.html

@@ -47,7 +47,7 @@
 
 		<h2>Methods</h2>
 
-		<h3>.copy( [page:Color color] ) [page:this]</h3>
+		<h3>.copy( [page:Color color] ) [page:Color this]</h3>
 		<div>
 		color — Color to copy.
 		</div>
@@ -55,7 +55,7 @@
 		Copies given color.
 		</div>
 
-		<h3>.copyGammaToLinear( [page:Color color] ) [page:this]</h3>
+		<h3>.copyGammaToLinear( [page:Color color] ) [page:Color this]</h3>
 		<div>
 		color — Color to copy.
 		</div>
@@ -63,7 +63,7 @@
 		Copies given color making conversion from gamma to linear space.
 		</div>
 
-		<h3>.copyLinearToGamma( [page:Color color] ) [page:this]</h3>
+		<h3>.copyLinearToGamma( [page:Color color] ) [page:Color this]</h3>
 		<div>
 		color — Color to copy.
 		</div>
@@ -71,17 +71,17 @@
 		Copies given color making conversion from linear to gamma space.
 		</div>
 
-		<h3>.convertGammaToLinear() [page:this]</h3>
+		<h3>.convertGammaToLinear() [page:Color this]</h3>
 		<div>
 		Converts this color from gamma to linear space.
 		</div>
 
-		<h3>.convertLinearToGamma() [page:this]</h3>
+		<h3>.convertLinearToGamma() [page:Color this]</h3>
 		<div>
 		Converts this color from linear to gamma space.
 		</div>
 
-		<h3>.setRGB( [page:Float r], [page:Float g], [page:Float b] ) [page:this]</h3>
+		<h3>.setRGB( [page:Float r], [page:Float g], [page:Float b] ) [page:Color this]</h3>
 		<div>
 		r — Red channel value between 0 and 1.<br />
 		g — Green channel value between 0 and 1.<br />
@@ -101,7 +101,7 @@
 		Returns the string formated hexadecimal value of this color.
 		</div>
 
-		<h3>.setHex( [page:Integer hex] ) [page:this]</h3>
+		<h3>.setHex( [page:Integer hex] ) [page:Color this]</h3>
 		<div>
 		hex — Color in hexadecimal.<br />
 		</div>
@@ -109,7 +109,7 @@
 		Sets this color from a hexadecimal value.
 		</div>
 
-		<h3>.setStyle( [page:String style] ) [page:this]</h3>
+		<h3>.setStyle( [page:String style] ) [page:Color this]</h3>
 		<div>
 		style — color as a CSS-style string, for example, "rgb(250, 0,0)", "rgb(100%,0%,0%)", "#ff0000", "#f00", or "red"
 		</div>
@@ -122,7 +122,7 @@
 		Returns the value of this color as a CSS-style string. Example: rgb(255,0,0)
 		</div>
 
-		<h3>.setHSL( [page:Float h], [page:Float s], [page:Float l] ) [page:this]</h3>
+		<h3>.setHSL( [page:Float h], [page:Float s], [page:Float l] ) [page:Color this]</h3>
 		<div>
 		h — hue value between 0.0 and 1.0 <br />
 		s — saturation value between 0.0 and 1.0 <br />
@@ -137,37 +137,37 @@
 		Returns an object with properties h, s, and l.
 		</div>
 
-		<h3>.offsetHSL( [page:Float h], [page:Float s], [page:Float l] ) [page:this]</h3>
+		<h3>.offsetHSL( [page:Float h], [page:Float s], [page:Float l] ) [page:Color this]</h3>
 		<div>
 		Adds given h, s, and l to this color's existing h, s, and l values.
 		</div>
 
-		<h3>.add ( [page:Color color] ) [page:this]</h3>
+		<h3>.add ( [page:Color color] ) [page:Color this]</h3>
 		<div>
 		Adds rgb values of given color to rgb values of this color
 		</div>
 
-		<h3>.addColors( [page:Color color1], [page:Color color2] ) [page:this]</h3>
+		<h3>.addColors( [page:Color color1], [page:Color color2] ) [page:Color this]</h3>
 		<div>
 		Sets this color to the sum of color1 and color2
 		</div>
 
-		<h3>.addScalar( [page:Number s] ) [page:this]</h3>
+		<h3>.addScalar( [page:Number s] ) [page:Color this]</h3>
 		<div>
 		Adds s to the rgb values of this color
 		</div>
 
-		<h3>.multiply( [page:Color color] ) [page:this]</h3>
+		<h3>.multiply( [page:Color color] ) [page:Color this]</h3>
 		<div>
 		Multiplies this color's rgb values by given color's rgb values
 		</div>
 
-		<h3>.multiplyScalar( [page:Number s] ) [page:this]</h3>
+		<h3>.multiplyScalar( [page:Number s] ) [page:Color this]</h3>
 		<div>
 		Multiplies this color's rgb values by s
 		</div>
 
-		<h3>.lerp( [page:Color color], alpha ) [page:this]</h3>
+		<h3>.lerp( [page:Color color], alpha ) [page:Color this]</h3>
 		<div>
 		alpha -- a number between 0 and 1.
 		</div>
@@ -175,7 +175,7 @@
 		Linear interpolation of this colors rgb values and the rgb values of the first argument. The alpha argument can be thought of as the percent between the two colors, where 0 is this color and 1 is the first argument.
 		</div>
 
-		<h3>.equals( [page:Color c] ) [page:this]</h3>
+		<h3>.equals( [page:Color c] ) [page:Color this]</h3>
 		<div>
 		Compares this color and c and returns true if they are the same, false otherwise.
 		</div>
@@ -185,9 +185,9 @@
 		Clones this color.
 		</div>
 
-		<h3>.set([page:todo value]) [page:this]</h3>
+		<h3>.set( value ) [page:Color this]</h3>
 		<div>
-		value -- either an instance of Color, a hexadecimal value, or a css style string
+		value -- either an instance of [page:Color], a [page:Integer hexadecimal] value, or a css style [page:String string]
 		</div>
 		<div>
 		Delegates to .copy, .setStyle, or .setHex depending on input type.

+ 17 - 14
docs/api/math/Euler.html

@@ -9,7 +9,10 @@
   <body>
     <h1>[name]</h1>
 
-    <div class="desc">Euler Angles.</div>
+    <div class="desc">Euler Angles. <br/><br/>
+    
+    Euler angles describe a rotation transformation by rotating an object on its various axes in specified amounts per axis, and a specified axis order.
+    (More information on <a href='http://en.wikipedia.org/wiki/Euler_angles' target='blank'>Wikipedia</a>)</div>
 
     <h2>Example</h2>
 
@@ -22,11 +25,11 @@
     <h2>Constructor</h2>
 
 
-    <h3>[name]( [page:Float x], [page:Float y], [page:Float z], [page:String Order] )</h3>
+    <h3>[name]( [page:Float x], [page:Float y], [page:Float z], [page:String order] )</h3>
     <div>
-    x -- [page:Float] the angle of the x axis<br />
-    y -- [page:Float] the angle of the y axis<br />
-    z -- [page:Float] the angle of the z axis<br />
+    x -- [page:Float] the angle of the x axis in radians<br />
+    y -- [page:Float] the angle of the y axis in radians<br />
+    z -- [page:Float] the angle of the z axis in radians<br />
     order -- [page:String] A string representing the order that the rotations are applied, defaults to 'XYZ' (must be upper case).
     </div>
     <div>
@@ -48,23 +51,23 @@
 
     <h2>Methods</h2>
 
-    <h3>.set( [page:Float x], [page:Float y], [page:Float z], [page:String order] ) [page:this]</h3>
+    <h3>.set( [page:Float x], [page:Float y], [page:Float z], [page:String order] ) [page:Euler this]</h3>
     <div>
-    x -- [page:Float] Angle in x axis<br />
-    x -- [page:Float] Angle in x axis<br />
-    x -- [page:Float] Angle in x axis<br />
+    x -- [page:Float] Angle in x axis in radians<br />
+    x -- [page:Float] Angle in x axis in radians<br />
+    x -- [page:Float] Angle in x axis in radians<br />
     order -- [page:string] Order of axes, defaults to 'XYZ' (must be upper case)
     </div>
     <div>
     Sets the angles of this euler transform.
     </div>
 
-    <h3>.copy( [page:Euler euler] ) [page:this]</h3>
+    <h3>.copy( [page:Euler euler] ) [page:Euler this]</h3>
     <div>
     Copies value of *euler* to this euler.
     </div>
 
-    <h3>.setFromRotationMatrix( [page:Matrix4 m], [page:String order] ) [page:this]</h3>
+    <h3>.setFromRotationMatrix( [page:Matrix4 m], [page:String order] ) [page:Euler this]</h3>
     <div>
     m -- [page:Matrix4] assumes upper 3x3 of matrix is a pure rotation matrix (i.e. unscaled)<br />
     order -- [page:string] Order of axes, defaults to 'XYZ' (must be upper case)
@@ -73,7 +76,7 @@
     Sets the angles of this euler transform from a pure rotation matrix based on the orientation specified by order.
     </div>
 
-    <h3>.setFromQuaternion( [page:Quaternion q], [page:String order] ) [page:this]</h3>
+    <h3>.setFromQuaternion( [page:Quaternion q], [page:String order] ) [page:Euler this]</h3>
     <div>
     q -- [page:Quaternion] quaternion must be normalized<br />
     order -- [page:string] Order of axes, defaults to 'XYZ' (must be upper case)
@@ -82,13 +85,13 @@
     Sets the angles of this euler transform from a normalized quaternion based on the orientation specified by order.
     </div>
 
-    <h3>.reorder( [page:String newOrder] ) [page:this]</h3>
+    <h3>.reorder( [page:String newOrder] ) [page:Euler this]</h3>
     <div>
     Resets the euler angle with a new order by creating a quaternion from this euler angle and then setting this euler angle with the quaternion and the new order. <br />
     WARNING: this discards revolution information.
     </div>
 
-    <h3>.fromArray([page:Array array]) [page:this]</h3>
+    <h3>.fromArray([page:Array array]) [page:Euler this]</h3>
     <div>
     array -- [page:Array] of length 3 or 4. array[3] is an optional order argument.
     </div>

+ 26 - 26
docs/api/math/Frustum.html

@@ -15,17 +15,17 @@
 		<h2>Constructor</h2>
 
 
-		<h3>[name]([page:todo p0], [page:todo p1], [page:todo p2], [page:todo p3], [page:todo p4], [page:todo p5])</h3>
+		<h3>[name]([page:Plane p0], [page:Plane p1], [page:Plane p2], [page:Plane p3], [page:Plane p4], [page:Plane p5])</h3>
 		<div>
-		p0 -- todo <br />
-		p1 -- todo <br />
-		p2 -- todo <br />
-		p3 -- todo <br />
-		p4 -- todo <br />
-		p5 -- todo
+		p0 -- [page:Plane] <br />
+		p1 -- [page:Plane] <br />
+		p2 -- [page:Plane] <br />
+		p3 -- [page:Plane] <br />
+		p4 -- [page:Plane] <br />
+		p5 -- [page:Plane]
 		</div>
 		<div>
-		todo
+		Creates a frustum from the designated planes.
 		</div>
 
 
@@ -33,7 +33,7 @@
 
 		<h3>.[page:Array planes]</h3>
 		<div>
-		Array of 6 [page:Vector4 vectors].
+		Array of 6 [page:Plane planes].
 		</div>
 
 
@@ -46,46 +46,46 @@
 		Checks whether the object is inside the Frustum.
 		</div>
 
-		<h3>.clone() [page:todo]</h3>
+		<h3>.clone() [page:Frustum]</h3>
 		<div>
-		todo
+		Return a copy of this Frustum
 		</div>
 
-		<h3>.set([page:todo p0], [page:todo p1], [page:todo p2], [page:todo p3], [page:todo p4], [page:todo p5]) [page:todo]</h3>
+		<h3>.set([page:Plane p0], [page:Plane p1], [page:Plane p2], [page:Plane p3], [page:Plane p4], [page:Plane p5]) [page:Boolean]</h3>
 		<div>
-		p0 -- todo <br />
-		p1 -- todo <br />
-		p2 -- todo <br />
-		p3 -- todo <br />
-		p4 -- todo <br />
-		p5 -- todo
+		p0 -- [page:Plane] <br />
+		p1 -- [page:Plane] <br />
+		p2 -- [page:Plane] <br />
+		p3 -- [page:Plane] <br />
+		p4 -- [page:Plane] <br />
+		p5 -- [page:Plane]
 		</div>
 		<div>
 		todo
 		</div>
 
-		<h3>.copy([page:todo frustum]) [page:todo]</h3>
+		<h3>.copy([page:Frustum frustum]) [page:Frustum this]</h3>
 		<div>
-		frustum -- todo
+		frustum -- The frustum to copy
 		</div>
 		<div>
 		todo
 		</div>
 
-		<h3>.containsPoint([page:todo point]) [page:todo]</h3>
+		<h3>.containsPoint([page:Vector3 point]) [page:Boolean]</h3>
 		<div>
-		point -- todo
+		point -- [page:Vector3] to test
 		</div>
 		<div>
-		todo
+		Checks to see if the frustum contains the point.
 		</div>
 
-		<h3>.intersectsSphere([page:todo sphere]) [page:todo]</h3>
+		<h3>.intersectsSphere([page:Sphere sphere]) [page:Boolean]</h3>
 		<div>
-		sphere -- todo
+		sphere -- [page:Sphere]
 		</div>
 		<div>
-		todo
+		Check to see if the sphere intersects with the frustum.
 		</div>
 
 		<h2>Source</h2>

+ 19 - 17
docs/api/math/Math.html

@@ -72,42 +72,44 @@
 		Returns -1 if *x* is less than 0, 1 if *x* is greater than 0, and 0 if *x* is zero.
 		</div>
 
-		<h3>.degToRad([page:todo degrees]) [page:todo]</h3>
+		<h3>.degToRad([page:Float degrees]) [page:Float]</h3>
 		<div>
-		degrees -- todo
+		degrees -- [page:Float]
 		</div>
 		<div>
-		todo
+		Converts degrees to radians.
 		</div>
 
-		<h3>.smoothstep([page:todo x], [page:todo min], [page:todo max]) [page:todo]</h3>
+		<h3>.radToDeg([page:Float radians]) [page:Float]</h3>
 		<div>
-		x -- todo <br />
-		min -- todo <br />
-		max -- todo
+		radians -- [page:Float]
 		</div>
 		<div>
-		todo
+		Converts radians to degrees
 		</div>
 
-		<h3>.smootherstep([page:todo x], [page:todo min], [page:todo max]) [page:todo]</h3>
+		<h3>.smoothstep([page:Float x], [page:Float min], [page:Float max]) [page:Float]</h3>
 		<div>
-		x -- todo <br />
-		min -- todo <br />
-		max -- todo
+		x -- The value to evaluate based on its position between min and max. <br />
+		min -- Any x value below min will be 0 <br />
+		max -- Any x value above max will be 1
 		</div>
 		<div>
-		todo
+		Returns a value between 0-1 that represents the percentage that x has moved between min and max, but smoothed or slowed down the closer X is to the min and max.<br/><br/>
+		
+		[link:http://en.wikipedia.org/wiki/Smoothstep Wikipedia]
 		</div>
 
-		<h3>.radToDeg([page:todo radians]) [page:todo]</h3>
+		<h3>.smootherstep([page:Float x], [page:Float min], [page:Float max]) [page:Float]</h3>
 		<div>
-		radians -- todo
+		x -- The value to evaluate based on its position between min and max. <br />
+		min -- Any x value below min will be 0 <br />
+		max --  Any x value above max will be 1
 		</div>
 		<div>
-		todo
+		Returns a value between 0-1. It works the same as smoothstep, but more smooth.
 		</div>
-
+		
 		<h2>Source</h2>
 
 		[link:https://github.com/mrdoob/three.js/blob/master/src/[path].js src/[path].js]

+ 58 - 45
docs/api/math/Matrix3.html

@@ -15,20 +15,26 @@
 		<h2>Constructor</h2>
 
 
-		<h3>[name]([page:todo n11], [page:todo n12], [page:todo n13], [page:todo n21], [page:todo n22], [page:todo n23], [page:todo n31], [page:todo n32], [page:todo n33])</h3>
+		<h3>[name]([page:Float n11], [page:Float n12], [page:Float n13], [page:Float n21], [page:Float n22], [page:Float n23], [page:Float n31], [page:Float n32], [page:Float n33])</h3>
 		<div>
-		n11 -- todo <br />
-		n12 -- todo <br />
-		n13 -- todo <br />
-		n21 -- todo <br />
-		n22 -- todo <br />
-		n23 -- todo <br />
-		n31 -- todo <br />
-		n32 -- todo <br />
-		n33 -- todo
+		n11 -- [page:Float] <br />
+		n12 -- [page:Float] <br />
+		n13 -- [page:Float] <br />
+		n21 -- [page:Float] <br />
+		n22 -- [page:Float] <br />
+		n23 -- [page:Float] <br />
+		n31 -- [page:Float] <br />
+		n32 -- [page:Float] <br />
+		n33 -- [page:Float]
 		</div>
 		<div>
-		Initialize the 3x3 matrix with a row-major sequence of values.
+		Initialize the 3x3 matrix with a row-major sequence of values.<br/><br/>
+		
+		n11, n12, n13,<br/>
+		n21, n22, n23,<br/>
+		n31, n32, n33<br/><br/>
+		
+		If no values are sent the matrix will be initialized as an identity matrix.
 		</div>
 
 
@@ -48,82 +54,89 @@
 		Transposes this matrix in place.
 		</div>
 
-		<h3>.transposeIntoArray( [page:Array r] ) [page:Matrix3]</h3>
+		<h3>.transposeIntoArray( [page:Array array] ) [page:Matrix3]</h3>
 		<div>
-		Transposes this matrix into the supplied array *r*, and returns itself.
+		array -- [page:Array] <br />
+		</div>
+		<div>
+		Transposes this matrix into the supplied array, and returns itself.
 		</div>
 
 
-		<h3>.determinant() [page:todo]</h3>
+		<h3>.determinant() [page:Float]</h3>
 		<div>
-		todo
+		Returns the matrix's determinant.
 		</div>
 
-		<h3>.set([page:todo n11], [page:todo n12], [page:todo n13], [page:todo n21], [page:todo n22], [page:todo n23], [page:todo n31], [page:todo n32], [page:todo n33]) [page:todo]</h3>
+		<h3>.set([page:Float n11], [page:Float n12], [page:Float n13], [page:Float n21], [page:Float n22], [page:Float n23], [page:Float n31], [page:Float n32], [page:Float n33]) [page:Matrix3 this]</h3>
 		<div>
-		n11 -- todo <br />
-		n12 -- todo <br />
-		n13 -- todo <br />
-		n21 -- todo <br />
-		n22 -- todo <br />
-		n23 -- todo <br />
-		n31 -- todo <br />
-		n32 -- todo <br />
-		n33 -- todo
+		n11 -- [page:Float] <br />
+		n12 -- [page:Float] <br />
+		n13 -- [page:Float] <br />
+		n21 -- [page:Float] <br />
+		n22 -- [page:Float] <br />
+		n23 -- [page:Float] <br />
+		n31 -- [page:Float] <br />
+		n32 -- [page:Float] <br />
+		n33 -- [page:Float]
 		</div>
 		<div>
 		Set the 3x3 matrix values to the given row-major sequence of values.
 		</div>
 
-		<h3>.multiplyScalar([page:todo s]) [page:todo]</h3>
+		<h3>.multiplyScalar([page:Float scalar]) [page:Matrix3 this]</h3>
 		<div>
-		s -- todo
+		scalar -- [page:Float]
 		</div>
 		<div>
-		todo
+		Multiply every component of the matrix by a scalar value.
 		</div>
 
-		<h3>.multiplyVector3Array([page:todo a]) [page:todo]</h3>
+		<h3>.multiplyVector3Array([page:Array array]) [page:Array]</h3>
 		<div>
-		a -- todo
+		array -- An array in the form [vector1x, vector1y, vector1z, vector2x, vector2y, vector2z, ...]
 		</div>
 		<div>
-		todo
+		Multiply (apply) this matrix against every vector3 in the array.
 		</div>
 
-		<h3>.getNormalMatrix([page:todo m]) [page:todo]</h3>
+		<h3>.getNormalMatrix([page:Matrix4 matrix4]) [page:Matrix3 this]</h3>
 		<div>
-		m -- todo
+		matrix4 -- [page:Matrix4]
 		</div>
 		<div>
-		todo
+		Set this matrix as the normal matrix of the passed [page:Matrix4 matrix4]. The normal matrix is the inverse transpose of the matrix.
 		</div>
 
-		<h3>.getInverse([page:todo matrix], [page:todo throwOnInvertible]) [page:todo]</h3>
+		<h3>.getInverse([page:Matrix4 matrix4], [page:Boolean throwOnInvertible]) [page:Matrix3 this]</h3>
 		<div>
-		matrix -- todo <br />
-		throwOnInvertible -- todo
+		matrix4 -- [page:Matrix4] <br />
+		throwOnInvertible -- [Page:Boolean] If true, throw an error if the matrix is invertible.
 		</div>
 		<div>
-		todo
+		Set this matrix to the inverse of the passed matrix.
 		</div>
 
-		<h3>.copy([page:todo m]) [page:todo]</h3>
+		<h3>.copy([page:Matrix3 matrix]) [page:Matrix3 this]</h3>
 		<div>
-		m -- todo
+		matrix -- [page:Matrix3]
 		</div>
 		<div>
-		todo
+		Copy the values of the passed matrix.
 		</div>
 
-		<h3>.clone() [page:todo]</h3>
+		<h3>.clone() [page:Matrix3]</h3>
 		<div>
-		todo
+		Create a copy of the matrix.
 		</div>
 
-		<h3>.identity() [page:todo]</h3>
+		<h3>.identity() [page:Matrix3 this]</h3>
 		<div>
-		todo
+		Set as an identity matrix.<br/><br/>
+		
+		1, 0, 0<br/>
+		0, 1, 0<br/>
+		0, 0, 1<br/>
 		</div>
 
 		<h2>Source</h2>

+ 31 - 31
docs/api/math/Matrix4.html

@@ -51,53 +51,53 @@
 
 		<h2>Methods</h2>
 
-		<h3>.set( [page:Float n11], [page:Float n12], [page:Float n13], [page:Float n14], [page:Float n21], [page:Float n22], [page:Float n23], [page:Float n24], [page:Float n31], [page:Float n32], [page:Float n33], [page:Float n34], [page:Float n41], [page:Float n42], [page:Float n43], [page:Float n44] ) [page:Matrix4]</h3>
+		<h3>.set( [page:Float n11], [page:Float n12], [page:Float n13], [page:Float n14], [page:Float n21], [page:Float n22], [page:Float n23], [page:Float n24], [page:Float n31], [page:Float n32], [page:Float n33], [page:Float n34], [page:Float n41], [page:Float n42], [page:Float n43], [page:Float n44] ) [page:Matrix4 this]</h3>
 		<div>
 		Sets all fields of this matrix to the supplied row-major values n11..n44.
 		</div>
 
-		<h3>.identity() [page:Matrix4]</h3>
+		<h3>.identity() [page:Matrix4 this]</h3>
 		<div>
 		Resets this matrix to identity.
 		</div>
 
-		<h3>.copy( [page:Matrix4 m] ) [page:Matrix4]</h3>
+		<h3>.copy( [page:Matrix4 m] ) [page:Matrix4 this]</h3>
 		<div>
 		Copies a matrix *m* into this matrix.
 		</div>
 
-		<h3>.copyPosition( [page:Matrix4 m] ) [page:Matrix4]</h3>
+		<h3>.copyPosition( [page:Matrix4 m] ) [page:Matrix4 this]</h3>
 		<div>
 		Copies the translation component of the supplied matrix *m* into this matrix translation component.
 		</div>
 
-		<h3>.extractRotation( [page:Matrix4 m] ) [page:Matrix4]</h3>
+		<h3>.extractRotation( [page:Matrix4 m] ) [page:Matrix4 this]</h3>
 		<div>
 		Extracts the rotation of the supplied matrix *m* into this matrix rotation component.
 		</div>
 
-		<h3>.lookAt( [page:Vector3 eye], [page:Vector3 center], [page:Vector3 up], ) [page:Matrix4]</h3>
+		<h3>.lookAt( [page:Vector3 eye], [page:Vector3 center], [page:Vector3 up], ) [page:Matrix4 this]</h3>
 		<div>
 		Constructs a rotation matrix, looking from *eye* towards *center* with defined *up* vector.
 		</div>
 
-		<h3>.multiply( [page:Matrix4 m] ) [page:Matrix4]</h3>
+		<h3>.multiply( [page:Matrix4 m] ) [page:Matrix4 this]</h3>
 		<div>
 		Multiplies this matrix by *m*.
 		</div>
 
-		<h3>.multiplyMatrices( [page:Matrix4 a], [page:Matrix4 b] ) [page:Matrix4]</h3>
+		<h3>.multiplyMatrices( [page:Matrix4 a], [page:Matrix4 b] ) [page:Matrix4 this]</h3>
 		<div>
 		Sets this matrix to *a x b*.
 		</div>
 
-		<h3>.multiplyToArray( [page:Matrix4 a], [page:Matrix4 b], [page:Array r] ) [page:Matrix4]</h3>
+		<h3>.multiplyToArray( [page:Matrix4 a], [page:Matrix4 b], [page:Array r] ) [page:Matrix4 this]</h3>
 		<div>
 		Sets this matrix to *a x b* and stores the result into the flat array *r*.<br />
 		*r* can be either a regular Array or a TypedArray.
 		</div>
 
-		<h3>.multiplyScalar( [page:Float s] ) [page:Matrix4]</h3>
+		<h3>.multiplyScalar( [page:Float s] ) [page:Matrix4 this]</h3>
 		<div>
 		Multiplies this matrix by *s*.
 		</div>
@@ -108,7 +108,7 @@
 		Based on [link:http://www.euclideanspace.com/maths/algebra/matrix/functions/inverse/fourD/index.htm]
 		</div>
 
-		<h3>.transpose() [page:Matrix4]</h3>
+		<h3>.transpose() [page:Matrix4 this]</h3>
 		<div>
 		Transposes this matrix.
 		</div>
@@ -123,18 +123,18 @@
 		Flattens this matrix into supplied *flat* array starting from *offset* position in the array.
 		</div>
 
-		<h3>.setPosition( [page:Vector3 v] ) [page:Matrix4]</h3>
+		<h3>.setPosition( [page:Vector3 v] ) [page:Matrix4 this]</h3>
 		<div>
 		Sets the position component for this matrix from vector *v*.
 		</div>
 
-		<h3>.getInverse( [page:Matrix4 m] ) [page:Matrix4]</h3>
+		<h3>.getInverse( [page:Matrix4 m] ) [page:Matrix4 this]</h3>
 		<div>
 		Sets this matrix to the inverse of matrix *m*.<br />
 		Based on [link:http://www.euclideanspace.com/maths/algebra/matrix/functions/inverse/fourD/index.htm].
 		</div>
 
-		<h3>.makeRotationFromEuler( [page:Vector3 v], [page:String order] ) [page:Matrix4]</h3>
+		<h3>.makeRotationFromEuler( [page:Vector3 v], [page:String order] ) [page:Matrix4 this]</h3>
 		<div>
 		v — Rotation vector.
 		order — The order of rotations. Eg. "XYZ".
@@ -144,17 +144,17 @@
 		Default order is *"XYZ"*.
 		</div>
 
-		<h3>.makeRotationFromQuaternion( [page:Quaternion q] ) [page:Matrix4]</h3>
+		<h3>.makeRotationFromQuaternion( [page:Quaternion q] ) [page:Matrix4 this]</h3>
 		<div>
 		Sets the rotation submatrix of this matrix to the rotation specified by *q*. The rest of the matrix is identity.
 		</div>
 
-		<h3>.scale( [page:Vector3 v] ) [page:Matrix4]</h3>
+		<h3>.scale( [page:Vector3 v] ) [page:Matrix4 this]</h3>
 		<div>
 		Multiplies the columns of this matrix by vector *v*.
 		</div>
 
-		<h3>.compose( [page:Vector3 translation], [page:Quaternion quaternion], [page:Vector3 scale] ) [page:Matrix4]</h3>
+		<h3>.compose( [page:Vector3 translation], [page:Quaternion quaternion], [page:Vector3 scale] ) [page:Matrix4 this]</h3>
 		<div>
 		Sets this matrix to the transformation composed of *translation*, *quaternion* and *scale*.
 		</div>
@@ -165,12 +165,12 @@
 		If parameters are not passed, new instances will be created.
 		</div>
 
-		<h3>.makeTranslation( [page:Float x], [page:Float y], [page:Float z] ) [page:Matrix4]</h3>
+		<h3>.makeTranslation( [page:Float x], [page:Float y], [page:Float z] ) [page:Matrix4 this]</h3>
 		<div>
 		Sets this matrix as translation transform.
 		</div>
 
-		<h3>.makeRotationX( [page:Float theta] ) [page:Matrix4]</h3>
+		<h3>.makeRotationX( [page:Float theta] ) [page:Matrix4 this]</h3>
 		<div>
 		theta — Rotation angle in radians.
 		</div>
@@ -178,7 +178,7 @@
 		Sets this matrix as rotation transform around x axis by *theta* radians.
 		</div>
 
-		<h3>.makeRotationY( [page:Float theta] ) [page:Matrix4]</h3>
+		<h3>.makeRotationY( [page:Float theta] ) [page:Matrix4 this]</h3>
 		<div>
 		theta — Rotation angle in radians.
 		</div>
@@ -186,7 +186,7 @@
 		Sets this matrix as rotation transform around y axis by *theta* radians.
 		</div>
 
-		<h3>.makeRotationZ( [page:Float theta] ) [page:Matrix4]</h3>
+		<h3>.makeRotationZ( [page:Float theta] ) [page:Matrix4 this]</h3>
 		<div>
 		theta — Rotation angle in radians.
 		</div>
@@ -194,7 +194,7 @@
 		Sets this matrix as rotation transform around z axis by *theta* radians.
 		</div>
 
-		<h3>.makeRotationAxis( [page:Vector3 axis], [page:Float theta] ) [page:Matrix4]</h3>
+		<h3>.makeRotationAxis( [page:Vector3 axis], [page:Float theta] ) [page:Matrix4 this]</h3>
 		<div>
 		axis — Rotation axis, should be normalized.
 		theta — Rotation angle in radians.
@@ -204,22 +204,22 @@
 		Based on [link:http://www.gamedev.net/reference/articles/article1199.asp].
 		</div>
 
-		<h3>.makeScale( [page:Float x], [page:Float y], [page:Float z] ) [page:Matrix4]</h3>
+		<h3>.makeScale( [page:Float x], [page:Float y], [page:Float z] ) [page:Matrix4 this]</h3>
 		<div>
 		Sets this matrix as scale transform.
 		</div>
 
-		<h3>.makeFrustum( [page:Float left], [page:Float right], [page:Float bottom], [page:Float top], [page:Float near], [page:Float far] ) [page:Matrix4]</h3>
+		<h3>.makeFrustum( [page:Float left], [page:Float right], [page:Float bottom], [page:Float top], [page:Float near], [page:Float far] ) [page:Matrix4 this]</h3>
 		<div>
 		Creates a [page:Frustum frustum] matrix.
 		</div>
 
-		<h3>.makePerspective( [page:Float fov], [page:Float aspect], [page:Float near], [page:Float far] ) [page:Matrix4]</h3>
+		<h3>.makePerspective( [page:Float fov], [page:Float aspect], [page:Float near], [page:Float far] ) [page:Matrix4 this]</h3>
 		<div>
 		Creates a perspective projection matrix.
 		</div>
 
-		<h3>.makeOrthographic( [page:Float left], [page:Float right], [page:Float bottom], [page:Float top], [page:Float near], [page:Float far] ) [page:Matrix4]</h3>
+		<h3>.makeOrthographic( [page:Float left], [page:Float right], [page:Float bottom], [page:Float top], [page:Float near], [page:Float far] ) [page:Matrix4 this]</h3>
 		<div>
 		Creates an orthographic projection matrix.
 		</div>
@@ -229,17 +229,17 @@
 		Clones this matrix.
 		</div>
 
-		<h3>.multiplyVector3Array([page:todo a]) [page:todo]</h3>
+		<h3>.multiplyVector3Array([page:Array a]) [page:Array]</h3>
 		<div>
-		a -- todo
+		array -- An array in the form [vector1x, vector1y, vector1z, vector2x, vector2y, vector2z, ...]
 		</div>
 		<div>
-		todo
+		Multiply (apply) this matrix against every vector3 in the array.
 		</div>
 
-		<h3>.getMaxScaleOnAxis() [page:todo]</h3>
+		<h3>.getMaxScaleOnAxis() [page:Float]</h3>
 		<div>
-		todo
+		Gets the max scale value of the 3 axes.
 		</div>
 
 		<h2>Source</h2>