Browse Source

moved NURBS utility function to NURBSUtils and code clean-up

renej-github 12 years ago
parent
commit
ca803d97c0

+ 1 - 0
examples/canvas_geometry_nurbs.html

@@ -28,6 +28,7 @@
 
 		<script src="../build/three.min.js"></script>
 		<script src="js/libs/stats.min.js"></script>
+    		<script src="../src/extras/core/NURBSUtils.js"></script>
     		<script src="../src/extras/core/NURBSCurve.js"></script>
 
 		<script>

+ 7 - 6
examples/webgl_geometry_nurbs.html

@@ -1,6 +1,6 @@
 <!DOCTYPE html>
 <html lang="en">
-	<!-- based on webgl_geometry_shapes.html -->
+	<!-- based on webgl_geometry_shapes.html and webgl_geometries2.html -->
 	<head>
 		<title>three.js webgl - geometry - NURBS</title>
 		<meta charset="utf-8">
@@ -24,9 +24,10 @@
 	<body>
 		<canvas id="debug" style="position:absolute; left:100px"></canvas>
 
-		<div id="info"><a href="http://threejs.org" target="_blank">three.js</a> - NURBS curve example</div>
+		<div id="info"><a href="http://threejs.org" target="_blank">three.js</a> - NURBS curve and surface example</div>
 
 		<script src="../build/three.min.js"></script>
+		<script src="../src/extras/core/NURBSUtils.js"></script>
 		<script src="../src/extras/core/NURBSCurve.js"></script>
 		<script src="../src/extras/core/NURBSSurface.js"></script>
 
@@ -124,7 +125,7 @@
 				parent.add( nurbsLine );
 				parent.add( nurbsControlPointsLine );
 
-				// NURBS Surface
+				// NURBS surface
 
 				var nsControlPoints = [
 					[
@@ -135,8 +136,8 @@
 					],
 					[
 						new THREE.Vector4 ( 0, -200, 0, 1 ),
-						new THREE.Vector4 ( 0, -100, -100, 1 ),
-						new THREE.Vector4 ( 0, 100, 150, 1 ),
+						new THREE.Vector4 ( 0, -100, -100, 5 ),
+						new THREE.Vector4 ( 0, 100, 150, 5 ),
 						new THREE.Vector4 ( 0, 200, 0, 1 )
 					],
 					[
@@ -165,7 +166,7 @@
 					return nurbsSurface.getPoint(u, v);
 				};
 
-				var geo = new THREE.ParametricGeometry( getSurfacePoint, 50, 50 );
+				var geo = new THREE.ParametricGeometry( getSurfacePoint, 20, 20 );
 				var object = THREE.SceneUtils.createMultiMaterialObject( geo, materials );
 				object.position.set( 0, 100, 0 );
 				object.scale.multiplyScalar( 1 );

+ 2 - 346
src/extras/core/NURBSCurve.js

@@ -34,7 +34,7 @@ THREE.NURBSCurve.prototype.getPoint = function ( t ) {
 	var u = this.knots[0] + t * (this.knots[this.knots.length - 1] - this.knots[0]); // linear mapping t->u
 
 	// following results in (wx, wy, wz, w) homogeneous point
-	var hpoint = THREE.NURBSCurve.Utils.calcBSplinePoint(this.degree, this.knots, this.controlPoints, u);
+	var hpoint = THREE.NURBSUtils.calcBSplinePoint(this.degree, this.knots, this.controlPoints, u);
 
 	if (hpoint.w != 1.0) { // project to 3D space: (wx, wy, wz, w) -> (x, y, z, 1)
 		hpoint.divideScalar(hpoint.w);
@@ -47,354 +47,10 @@ THREE.NURBSCurve.prototype.getPoint = function ( t ) {
 THREE.NURBSCurve.prototype.getTangent = function ( t ) {
 
 	var u = this.knots[0] + t * (this.knots[this.knots.length - 1] - this.knots[0]);
-	var ders = THREE.NURBSCurve.Utils.calcNURBSDerivatives(this.degree, this.knots, this.controlPoints, u, 1);
+	var ders = THREE.NURBSUtils.calcNURBSDerivatives(this.degree, this.knots, this.controlPoints, u, 1);
 	var tangent = ders[1].clone();
 	tangent.normalize();
 
 	return tangent;
 };
 
-
-/**************************************************************
- *	Utils
- **************************************************************/
-
-THREE.NURBSCurve.Utils = {
-
-	/*
-	Finds knot vector span.
-
-	p : degree
-	u : parametric value
-	U : knot vector
-	
-	returns the span
-	*/
-	findSpan: function( p,  u,  U ) {
-		var n = U.length - p - 1;
-
-		if (u >= U[n]) {
-			return n - 1;
-		}
-
-		if (u <= U[p]) {
-			return p;
-		}
-
-		var low = p;
-		var high = n;
-		var mid = Math.floor((low + high) / 2);
-
-		while (u < U[mid] || u >= U[mid + 1]) {
-		  
-			if (u < U[mid]) {
-				high = mid;
-			} else {
-				low = mid;
-			}
-
-			mid = Math.floor((low + high) / 2);
-		}
-
-		return mid;
-	},
-    
-		
-	/*
-	Calculate basis functions. See The NURBS Book, page 70, algorithm A2.2
-   
-	span : span in which u lies
-	u    : parametric point
-	p    : degree
-	U    : knot vector
-	
-	returns array[p+1] with basis functions values.
-	*/
-	calcBasisFunctions: function( span, u, p, U ) {
-		var N = [];
-		var left = [];
-		var right = [];
-		N[0] = 1.0;
-
-		for (var j = 1; j <= p; ++j) {
-	   
-			left[j] = u - U[span + 1 - j];
-			right[j] = U[span + j] - u;
-
-			var saved = 0.0;
-
-			for (var r = 0; r < j; ++r) {
-
-				var rv = right[r + 1];
-				var lv = left[j - r];
-				var temp = N[r] / (rv + lv);
-				N[r] = saved + rv * temp;
-				saved = lv * temp;
-			 }
-
-			 N[j] = saved;
-		 }
-
-		 return N;
-	},
-
-	/*
-	Calculate B-Spline curve points. See The NURBS Book, page 82, algorithm A3.1.
- 
-	p : degree of B-Spline
-	U : knot vector
-	P : control points (x, y, z, w)
-	u : parametric point
-
-	returns point for given u
-	*/
-	calcBSplinePoint: function( p, U, P, u ) {
-		var span = this.findSpan(p, u, U);
-		var N = this.calcBasisFunctions(span, u, p, U);
-		var C = new THREE.Vector4(0, 0, 0, 0);
-
-		for (var j = 0; j <= p; ++j) {
-			var point = P[span - p + j];
-			var Nj = N[j];
-			var wNj = point.w * Nj;
-			C.x += point.x * wNj;
-			C.y += point.y * wNj;
-			C.z += point.z * wNj;
-			C.w += point.w * Nj;
-		}
-
-		return C;
-	},
-
-	/*
-	Calculate basis functions derivatives. See The NURBS Book, page 72, algorithm A2.3.
-
-	span : span in which u lies
-	u    : parametric point
-	p    : degree
-	n    : number of derivatives to calculate
-	U    : knot vector
-
-	returns array[n+1][p+1] with basis functions derivatives
-	*/
-	calcBasisFunctionDerivatives: function( span,  u,  p,  n,  U ) {
-
-		var zeroArr = [];
-		for (var i = 0; i <= p; ++i)
-			zeroArr[i] = 0.0;
-
-		var ders = [];
-		for (var i = 0; i <= n; ++i)
-			ders[i] = zeroArr.slice(0);
-
-		var ndu = [];
-		for (var i = 0; i <= p; ++i)
-			ndu[i] = zeroArr.slice(0);
-
-		ndu[0][0] = 1.0;
-
-		var left = zeroArr.slice(0);
-		var right = zeroArr.slice(0);
-
-		for (var j = 1; j <= p; ++j) {
-			left[j] = u - U[span + 1 - j];
-			right[j] = U[span + j] - u;
-
-			var saved = 0.0;
-
-			for (var r = 0; r < j; ++r) {
-				var rv = right[r + 1];
-				var lv = left[j - r];
-				ndu[j][r] = rv + lv;
-
-				var temp = ndu[r][j - 1] / ndu[j][r];
-				ndu[r][j] = saved + rv * temp;
-				saved = lv * temp;
-			}
-
-			ndu[j][j] = saved;
-		}
-
-		for (var j = 0; j <= p; ++j) {
-			ders[0][j] = ndu[j][p];
-		}
-
-		for (var r = 0; r <= p; ++r) {
-			var s1 = 0;
-			var s2 = 1;
-
-			var a = [];
-			for (var i = 0; i <= p; ++i) {
-				a[i] = zeroArr.slice(0);
-			}
-			a[0][0] = 1.0;
-
-			for (var k = 1; k <= n; ++k) {
-				var d = 0.0;
-				var rk = r - k;
-				var pk = p - k;
-
-				if (r >= k) {
-					a[s2][0] = a[s1][0] / ndu[pk + 1][rk];
-					d = a[s2][0] * ndu[rk][pk];
-				}
-
-				var j1 = (rk >= -1) ? 1 : -rk;
-				var j2 = (r - 1 <= pk) ? k - 1 :  p - r;
-
-				for (var j = j1; j <= j2; ++j) {
-					a[s2][j] = (a[s1][j] - a[s1][j - 1]) / ndu[pk + 1][rk + j];
-					d += a[s2][j] * ndu[rk + j][pk];
-				}
-
-				if (r <= pk) {
-					a[s2][k] = -a[s1][k - 1] / ndu[pk + 1][r];
-					d += a[s2][k] * ndu[r][pk];
-				}
-
-				ders[k][r] = d;
-
-				var j = s1;
-				s1 = s2;
-				s2 = j;
-			}
-		}
-
-		var r = p;
-
-		for (var k = 1; k <= n; ++k) {
-			for (var j = 0; j <= p; ++j) {
-				ders[k][j] *= r;
-			}
-			r *= p - k;
-		}
-
-		return ders;
-	},
-
- 	/*
-	Calculate derivatives of a B-Spline. See The NURBS Book, page 93, algorithm A3.2.
-
-	p  : degree
-	U  : knot vector
-	P  : control points
-	u  : Parametric points
-	nd : number of derivatives
-
-	returns array[d+1] with derivatives
-	*/
-	calcBSplineDerivatives: function( p,  U,  P,  u,  nd ) {
-		var du = nd < p ? nd : p;
-		var CK = [];
-		var span = this.findSpan(p, u, U);
-		var nders = this.calcBasisFunctionDerivatives(span, u, p, du, U);
-		var Pw = [];
-
-		for (var i = 0; i < P.length; ++i) {
-			var point = P[i].clone();
-			var w = point.w;
-
-			point.x *= w;
-			point.y *= w;
-			point.z *= w;
-
-			Pw[i] = point;
-		}
-		for (var k = 0; k <= du; ++k) {
-			var point = Pw[span - p].clone().multiplyScalar(nders[k][0]);
-
-			for (var j = 1; j <= p; ++j) {
-				point.add(Pw[span - p + j].clone().multiplyScalar(nders[k][j]));
-			}
-
-			CK[k] = point;
-		}
-
-		for (var k = du + 1; k <= nd + 1; ++k) {
-			CK[k] = new THREE.Vector4(0, 0, 0);
-		}
-
-		return CK;
-	},
-
-
-	/*
-	Calculate "K over I"
-
-	returns k!/(i!(k-i)!)
-	*/
-	calcKoverI: function( k, i ) {
-		var nom = 1;
-
-		for (var j = 2; j <= k; ++j) {
-			nom *= j;
-		}
-
-		var denom = 1;
-
-		for (var j = 2; j <= i; ++j) {
-			denom *= j;
-		}
-
-		for (var j = 2; j <= k - i; ++j) {
-			denom *= j;
-		}
-
-		return nom / denom;
-	},
-
-
-	/*
-	Calculate derivatives (0-nd) of rational curve. See The NURBS Book, page 127, algorithm A4.2.
-
-	Pders : result of function calcBSplineDerivatives
-
-	returns array with derivatives for rational curve.
-	*/
-	calcRationalCurveDerivatives: function ( Pders ) {
-		var nd = Pders.length;
-		var Aders = [];
-		var wders = [];
-
-		for (var i = 0; i < nd; ++i) {
-			var point = Pders[i];
-			Aders[i] = new THREE.Vector3(point.x, point.y, point.z);
-			wders[i] = point.w;
-		}
-
-		var CK = [];
-
-		for (var k = 0; k < nd; ++k) {
-			var v = Aders[k].clone();
-
-			for (var i = 1; i <= k; ++i) {
-				v.sub(CK[k - i].clone().multiplyScalar(this.calcKoverI(k,i) * wders[i]));
-			}
-
-			CK[k] = v.divideScalar(wders[0]);
-		}
-
-		return CK;
-	},
-
-
-	/*
-	Calculate NURBS curve derivatives. See The NURBS Book, page 127, algorithm A4.2.
-
-	p  : degree
-	U  : knot vector
-	P  : control points in homogeneous space
-	u  : parametric points
-	nd : number of derivatives
-
-	returns array with derivatives.
-	*/
-	calcNURBSDerivatives: function( p,  U,  P,  u,  nd ) {
-		var Pders = this.calcBSplineDerivatives(p, U, P, u, nd);
-		return this.calcRationalCurveDerivatives(Pders);
-	}
-
-};
-
-
-

+ 1 - 58
src/extras/core/NURBSSurface.js

@@ -2,8 +2,6 @@
  * @author renej
  * NURBS surface object
  *
- * Derives from Curve, overriding getPoint and getTangent.
- *
  * Implementation is based on (x, y [, z=0 [, w=1]]) control points with w=weight.
  *
  **/
@@ -24,14 +22,10 @@ THREE.NURBSSurface = function ( degree1, degree2, knots1, knots2 /* arrays of re
 	var len1 = knots1.length - degree1 - 1;
 	var len2 = knots2.length - degree2 - 1;
 
-	//console.log("controlPoints: " + controlPoints);
-	//console.log("controlPoints[0][0].x: " + controlPoints[0][0].x);
-
 	// ensure Vector4 for control points
 	for (var i = 0; i < len1; ++i) {
 		this.controlPoints[i] = []
 		for (var j = 0; j < len2; ++j) {
-			//console.log("i=" + i + " j=" + j);
 			var point = controlPoints[i][j];
 			this.controlPoints[i][j] = new THREE.Vector4(point.x, point.y, point.z, point.w);
 		}
@@ -45,62 +39,11 @@ THREE.NURBSSurface.prototype = {
 
 	getPoint: function ( t1, t2 ) {
 
-		//console.log("this.knots1=" + this.knots1);
-		//console.log("this.knots2=" + this.knots2);
-		//console.log("this.controlPoints=" + this.controlPoints);
 		var u = this.knots1[0] + t1 * (this.knots1[this.knots1.length - 1] - this.knots1[0]); // linear mapping t1->u
 		var v = this.knots2[0] + t2 * (this.knots2[this.knots2.length - 1] - this.knots2[0]); // linear mapping t2->u
 
-		var point = THREE.NURBSSurface.Utils.calcSurfacePoint(this.degree1, this.degree2, this.knots1, this.knots2, this.controlPoints, u, v);
-		//console.log("u=" + u + " v=" + v + " point=" + point.x + ", " + point.y + ", " + point.z);
-		return point;
+		return THREE.NURBSUtils.calcSurfacePoint(this.degree1, this.degree2, this.knots1, this.knots2, this.controlPoints, u, v);
 	}
 };
 
 
-/**************************************************************
- *	Utils
- **************************************************************/
-
-THREE.NURBSSurface.Utils = {
-
-	/*
-	Calculate rational B-Spline surface point. See The NURBS Book, page 134, algorithm A4.3.
- 
-	p1, p2 : degrees of B-Spline surface
-	U1, U2 : knot vectors
-	P      : control points (x, y, z, w)
-	u, v   : parametric values
-
-	returns point for given (u, v)
-	*/
-	calcSurfacePoint: function( p, q, U, V, P, u, v ) {
-		var uspan = THREE.NURBSCurve.Utils.findSpan(p, u, U);
-		var vspan = THREE.NURBSCurve.Utils.findSpan(q, v, V);
-		var Nu = THREE.NURBSCurve.Utils.calcBasisFunctions(uspan, u, p, U);
-		var Nv = THREE.NURBSCurve.Utils.calcBasisFunctions(vspan, v, q, V);
-		var temp = [];
-
-		for (var l = 0; l <= q; ++l) {
-			temp[l] = new THREE.Vector4(0, 0, 0, 0);
-			for (var k = 0; k <= p; ++k) {
-				var point = P[uspan - p + k][vspan - q + l].clone();
-				var w = point.w;
-				point.x *= w;
-				point.y *= w;
-				point.z *= w;
-				temp[l].add(point.multiplyScalar(Nu[k]));
-			}
-		}
-
-		var Sw = new THREE.Vector4(0, 0, 0, 0);
-		for (var l = 0; l <= q; ++l) {
-			Sw.add(temp[l].multiplyScalar(Nv[l]));
-		}
-
-		Sw.divideScalar(Sw.w);
-		return new THREE.Vector3(Sw.x, Sw.y, Sw.z);
-	}
-
-};
-

+ 394 - 0
src/extras/core/NURBSUtils.js

@@ -0,0 +1,394 @@
+/**
+ * @author renej
+ * NURBS utils
+ *
+ * See NURBSCurve and NURBSSurface.
+ *
+ **/
+
+
+/**************************************************************
+ *	NURBS Utils
+ **************************************************************/
+
+THREE.NURBSUtils = {
+
+	/*
+	Finds knot vector span.
+
+	p : degree
+	u : parametric value
+	U : knot vector
+	
+	returns the span
+	*/
+	findSpan: function( p,  u,  U ) {
+		var n = U.length - p - 1;
+
+		if (u >= U[n]) {
+			return n - 1;
+		}
+
+		if (u <= U[p]) {
+			return p;
+		}
+
+		var low = p;
+		var high = n;
+		var mid = Math.floor((low + high) / 2);
+
+		while (u < U[mid] || u >= U[mid + 1]) {
+		  
+			if (u < U[mid]) {
+				high = mid;
+			} else {
+				low = mid;
+			}
+
+			mid = Math.floor((low + high) / 2);
+		}
+
+		return mid;
+	},
+    
+		
+	/*
+	Calculate basis functions. See The NURBS Book, page 70, algorithm A2.2
+   
+	span : span in which u lies
+	u    : parametric point
+	p    : degree
+	U    : knot vector
+	
+	returns array[p+1] with basis functions values.
+	*/
+	calcBasisFunctions: function( span, u, p, U ) {
+		var N = [];
+		var left = [];
+		var right = [];
+		N[0] = 1.0;
+
+		for (var j = 1; j <= p; ++j) {
+	   
+			left[j] = u - U[span + 1 - j];
+			right[j] = U[span + j] - u;
+
+			var saved = 0.0;
+
+			for (var r = 0; r < j; ++r) {
+
+				var rv = right[r + 1];
+				var lv = left[j - r];
+				var temp = N[r] / (rv + lv);
+				N[r] = saved + rv * temp;
+				saved = lv * temp;
+			 }
+
+			 N[j] = saved;
+		 }
+
+		 return N;
+	},
+
+
+	/*
+	Calculate B-Spline curve points. See The NURBS Book, page 82, algorithm A3.1.
+ 
+	p : degree of B-Spline
+	U : knot vector
+	P : control points (x, y, z, w)
+	u : parametric point
+
+	returns point for given u
+	*/
+	calcBSplinePoint: function( p, U, P, u ) {
+		var span = this.findSpan(p, u, U);
+		var N = this.calcBasisFunctions(span, u, p, U);
+		var C = new THREE.Vector4(0, 0, 0, 0);
+
+		for (var j = 0; j <= p; ++j) {
+			var point = P[span - p + j];
+			var Nj = N[j];
+			var wNj = point.w * Nj;
+			C.x += point.x * wNj;
+			C.y += point.y * wNj;
+			C.z += point.z * wNj;
+			C.w += point.w * Nj;
+		}
+
+		return C;
+	},
+
+
+	/*
+	Calculate basis functions derivatives. See The NURBS Book, page 72, algorithm A2.3.
+
+	span : span in which u lies
+	u    : parametric point
+	p    : degree
+	n    : number of derivatives to calculate
+	U    : knot vector
+
+	returns array[n+1][p+1] with basis functions derivatives
+	*/
+	calcBasisFunctionDerivatives: function( span,  u,  p,  n,  U ) {
+
+		var zeroArr = [];
+		for (var i = 0; i <= p; ++i)
+			zeroArr[i] = 0.0;
+
+		var ders = [];
+		for (var i = 0; i <= n; ++i)
+			ders[i] = zeroArr.slice(0);
+
+		var ndu = [];
+		for (var i = 0; i <= p; ++i)
+			ndu[i] = zeroArr.slice(0);
+
+		ndu[0][0] = 1.0;
+
+		var left = zeroArr.slice(0);
+		var right = zeroArr.slice(0);
+
+		for (var j = 1; j <= p; ++j) {
+			left[j] = u - U[span + 1 - j];
+			right[j] = U[span + j] - u;
+
+			var saved = 0.0;
+
+			for (var r = 0; r < j; ++r) {
+				var rv = right[r + 1];
+				var lv = left[j - r];
+				ndu[j][r] = rv + lv;
+
+				var temp = ndu[r][j - 1] / ndu[j][r];
+				ndu[r][j] = saved + rv * temp;
+				saved = lv * temp;
+			}
+
+			ndu[j][j] = saved;
+		}
+
+		for (var j = 0; j <= p; ++j) {
+			ders[0][j] = ndu[j][p];
+		}
+
+		for (var r = 0; r <= p; ++r) {
+			var s1 = 0;
+			var s2 = 1;
+
+			var a = [];
+			for (var i = 0; i <= p; ++i) {
+				a[i] = zeroArr.slice(0);
+			}
+			a[0][0] = 1.0;
+
+			for (var k = 1; k <= n; ++k) {
+				var d = 0.0;
+				var rk = r - k;
+				var pk = p - k;
+
+				if (r >= k) {
+					a[s2][0] = a[s1][0] / ndu[pk + 1][rk];
+					d = a[s2][0] * ndu[rk][pk];
+				}
+
+				var j1 = (rk >= -1) ? 1 : -rk;
+				var j2 = (r - 1 <= pk) ? k - 1 :  p - r;
+
+				for (var j = j1; j <= j2; ++j) {
+					a[s2][j] = (a[s1][j] - a[s1][j - 1]) / ndu[pk + 1][rk + j];
+					d += a[s2][j] * ndu[rk + j][pk];
+				}
+
+				if (r <= pk) {
+					a[s2][k] = -a[s1][k - 1] / ndu[pk + 1][r];
+					d += a[s2][k] * ndu[r][pk];
+				}
+
+				ders[k][r] = d;
+
+				var j = s1;
+				s1 = s2;
+				s2 = j;
+			}
+		}
+
+		var r = p;
+
+		for (var k = 1; k <= n; ++k) {
+			for (var j = 0; j <= p; ++j) {
+				ders[k][j] *= r;
+			}
+			r *= p - k;
+		}
+
+		return ders;
+	},
+
+
+ 	/*
+	Calculate derivatives of a B-Spline. See The NURBS Book, page 93, algorithm A3.2.
+
+	p  : degree
+	U  : knot vector
+	P  : control points
+	u  : Parametric points
+	nd : number of derivatives
+
+	returns array[d+1] with derivatives
+	*/
+	calcBSplineDerivatives: function( p,  U,  P,  u,  nd ) {
+		var du = nd < p ? nd : p;
+		var CK = [];
+		var span = this.findSpan(p, u, U);
+		var nders = this.calcBasisFunctionDerivatives(span, u, p, du, U);
+		var Pw = [];
+
+		for (var i = 0; i < P.length; ++i) {
+			var point = P[i].clone();
+			var w = point.w;
+
+			point.x *= w;
+			point.y *= w;
+			point.z *= w;
+
+			Pw[i] = point;
+		}
+		for (var k = 0; k <= du; ++k) {
+			var point = Pw[span - p].clone().multiplyScalar(nders[k][0]);
+
+			for (var j = 1; j <= p; ++j) {
+				point.add(Pw[span - p + j].clone().multiplyScalar(nders[k][j]));
+			}
+
+			CK[k] = point;
+		}
+
+		for (var k = du + 1; k <= nd + 1; ++k) {
+			CK[k] = new THREE.Vector4(0, 0, 0);
+		}
+
+		return CK;
+	},
+
+
+	/*
+	Calculate "K over I"
+
+	returns k!/(i!(k-i)!)
+	*/
+	calcKoverI: function( k, i ) {
+		var nom = 1;
+
+		for (var j = 2; j <= k; ++j) {
+			nom *= j;
+		}
+
+		var denom = 1;
+
+		for (var j = 2; j <= i; ++j) {
+			denom *= j;
+		}
+
+		for (var j = 2; j <= k - i; ++j) {
+			denom *= j;
+		}
+
+		return nom / denom;
+	},
+
+
+	/*
+	Calculate derivatives (0-nd) of rational curve. See The NURBS Book, page 127, algorithm A4.2.
+
+	Pders : result of function calcBSplineDerivatives
+
+	returns array with derivatives for rational curve.
+	*/
+	calcRationalCurveDerivatives: function ( Pders ) {
+		var nd = Pders.length;
+		var Aders = [];
+		var wders = [];
+
+		for (var i = 0; i < nd; ++i) {
+			var point = Pders[i];
+			Aders[i] = new THREE.Vector3(point.x, point.y, point.z);
+			wders[i] = point.w;
+		}
+
+		var CK = [];
+
+		for (var k = 0; k < nd; ++k) {
+			var v = Aders[k].clone();
+
+			for (var i = 1; i <= k; ++i) {
+				v.sub(CK[k - i].clone().multiplyScalar(this.calcKoverI(k,i) * wders[i]));
+			}
+
+			CK[k] = v.divideScalar(wders[0]);
+		}
+
+		return CK;
+	},
+
+
+	/*
+	Calculate NURBS curve derivatives. See The NURBS Book, page 127, algorithm A4.2.
+
+	p  : degree
+	U  : knot vector
+	P  : control points in homogeneous space
+	u  : parametric points
+	nd : number of derivatives
+
+	returns array with derivatives.
+	*/
+	calcNURBSDerivatives: function( p,  U,  P,  u,  nd ) {
+		var Pders = this.calcBSplineDerivatives(p, U, P, u, nd);
+		return this.calcRationalCurveDerivatives(Pders);
+	},
+
+
+	/*
+	Calculate rational B-Spline surface point. See The NURBS Book, page 134, algorithm A4.3.
+ 
+	p1, p2 : degrees of B-Spline surface
+	U1, U2 : knot vectors
+	P      : control points (x, y, z, w)
+	u, v   : parametric values
+
+	returns point for given (u, v)
+	*/
+	calcSurfacePoint: function( p, q, U, V, P, u, v ) {
+		var uspan = this.findSpan(p, u, U);
+		var vspan = this.findSpan(q, v, V);
+		var Nu = this.calcBasisFunctions(uspan, u, p, U);
+		var Nv = this.calcBasisFunctions(vspan, v, q, V);
+		var temp = [];
+
+		for (var l = 0; l <= q; ++l) {
+			temp[l] = new THREE.Vector4(0, 0, 0, 0);
+			for (var k = 0; k <= p; ++k) {
+				var point = P[uspan - p + k][vspan - q + l].clone();
+				var w = point.w;
+				point.x *= w;
+				point.y *= w;
+				point.z *= w;
+				temp[l].add(point.multiplyScalar(Nu[k]));
+			}
+		}
+
+		var Sw = new THREE.Vector4(0, 0, 0, 0);
+		for (var l = 0; l <= q; ++l) {
+			Sw.add(temp[l].multiplyScalar(Nv[l]));
+		}
+
+		Sw.divideScalar(Sw.w);
+		return new THREE.Vector3(Sw.x, Sw.y, Sw.z);
+	}
+
+};
+
+
+