|
@@ -16,309 +16,309 @@ THREE.VolumeRenderShader1 = {
|
|
|
"u_cmdata": { value: null }
|
|
|
},
|
|
|
vertexShader: [
|
|
|
- ' varying vec4 v_nearpos;',
|
|
|
- ' varying vec4 v_farpos;',
|
|
|
- ' varying vec3 v_position;',
|
|
|
-
|
|
|
- ' mat4 inversemat(mat4 m) {',
|
|
|
- // Taken from https://github.com/stackgl/glsl-inverse/blob/master/index.glsl
|
|
|
- // This function is licenced by the MIT license to Mikola Lysenko
|
|
|
- ' float',
|
|
|
- ' a00 = m[0][0], a01 = m[0][1], a02 = m[0][2], a03 = m[0][3],',
|
|
|
- ' a10 = m[1][0], a11 = m[1][1], a12 = m[1][2], a13 = m[1][3],',
|
|
|
- ' a20 = m[2][0], a21 = m[2][1], a22 = m[2][2], a23 = m[2][3],',
|
|
|
- ' a30 = m[3][0], a31 = m[3][1], a32 = m[3][2], a33 = m[3][3],',
|
|
|
-
|
|
|
- ' b00 = a00 * a11 - a01 * a10,',
|
|
|
- ' b01 = a00 * a12 - a02 * a10,',
|
|
|
- ' b02 = a00 * a13 - a03 * a10,',
|
|
|
- ' b03 = a01 * a12 - a02 * a11,',
|
|
|
- ' b04 = a01 * a13 - a03 * a11,',
|
|
|
- ' b05 = a02 * a13 - a03 * a12,',
|
|
|
- ' b06 = a20 * a31 - a21 * a30,',
|
|
|
- ' b07 = a20 * a32 - a22 * a30,',
|
|
|
- ' b08 = a20 * a33 - a23 * a30,',
|
|
|
- ' b09 = a21 * a32 - a22 * a31,',
|
|
|
- ' b10 = a21 * a33 - a23 * a31,',
|
|
|
- ' b11 = a22 * a33 - a23 * a32,',
|
|
|
-
|
|
|
- ' det = b00 * b11 - b01 * b10 + b02 * b09 + b03 * b08 - b04 * b07 + b05 * b06;',
|
|
|
-
|
|
|
- ' return mat4(',
|
|
|
- ' a11 * b11 - a12 * b10 + a13 * b09,',
|
|
|
- ' a02 * b10 - a01 * b11 - a03 * b09,',
|
|
|
- ' a31 * b05 - a32 * b04 + a33 * b03,',
|
|
|
- ' a22 * b04 - a21 * b05 - a23 * b03,',
|
|
|
- ' a12 * b08 - a10 * b11 - a13 * b07,',
|
|
|
- ' a00 * b11 - a02 * b08 + a03 * b07,',
|
|
|
- ' a32 * b02 - a30 * b05 - a33 * b01,',
|
|
|
- ' a20 * b05 - a22 * b02 + a23 * b01,',
|
|
|
- ' a10 * b10 - a11 * b08 + a13 * b06,',
|
|
|
- ' a01 * b08 - a00 * b10 - a03 * b06,',
|
|
|
- ' a30 * b04 - a31 * b02 + a33 * b00,',
|
|
|
- ' a21 * b02 - a20 * b04 - a23 * b00,',
|
|
|
- ' a11 * b07 - a10 * b09 - a12 * b06,',
|
|
|
- ' a00 * b09 - a01 * b07 + a02 * b06,',
|
|
|
- ' a31 * b01 - a30 * b03 - a32 * b00,',
|
|
|
- ' a20 * b03 - a21 * b01 + a22 * b00) / det;',
|
|
|
- ' }',
|
|
|
-
|
|
|
-
|
|
|
- ' void main() {',
|
|
|
- // Prepare transforms to map to "camera view". See also:
|
|
|
- // https://threejs.org/docs/#api/renderers/webgl/WebGLProgram
|
|
|
- ' mat4 viewtransformf = viewMatrix;',
|
|
|
- ' mat4 viewtransformi = inversemat(viewMatrix);',
|
|
|
-
|
|
|
- // Project local vertex coordinate to camera position. Then do a step
|
|
|
- // backward (in cam coords) to the near clipping plane, and project back. Do
|
|
|
- // the same for the far clipping plane. This gives us all the information we
|
|
|
- // need to calculate the ray and truncate it to the viewing cone.
|
|
|
- ' vec4 position4 = vec4(position, 1.0);',
|
|
|
- ' vec4 pos_in_cam = viewtransformf * position4;',
|
|
|
-
|
|
|
- // Intersection of ray and near clipping plane (z = -1 in clip coords)
|
|
|
- ' pos_in_cam.z = -pos_in_cam.w;',
|
|
|
- ' v_nearpos = viewtransformi * pos_in_cam;',
|
|
|
-
|
|
|
- // Intersection of ray and far clipping plane (z = +1 in clip coords)
|
|
|
- ' pos_in_cam.z = pos_in_cam.w;',
|
|
|
- ' v_farpos = viewtransformi * pos_in_cam;',
|
|
|
-
|
|
|
- // Set varyings and output pos
|
|
|
- ' v_position = position;',
|
|
|
- ' gl_Position = projectionMatrix * viewMatrix * modelMatrix * position4;',
|
|
|
- ' }',
|
|
|
- ].join( '\n' ),
|
|
|
+ " varying vec4 v_nearpos;",
|
|
|
+ " varying vec4 v_farpos;",
|
|
|
+ " varying vec3 v_position;",
|
|
|
+
|
|
|
+ " mat4 inversemat(mat4 m) {",
|
|
|
+ // Taken from https://github.com/stackgl/glsl-inverse/blob/master/index.glsl
|
|
|
+ // This function is licenced by the MIT license to Mikola Lysenko
|
|
|
+ " float",
|
|
|
+ " a00 = m[0][0], a01 = m[0][1], a02 = m[0][2], a03 = m[0][3],",
|
|
|
+ " a10 = m[1][0], a11 = m[1][1], a12 = m[1][2], a13 = m[1][3],",
|
|
|
+ " a20 = m[2][0], a21 = m[2][1], a22 = m[2][2], a23 = m[2][3],",
|
|
|
+ " a30 = m[3][0], a31 = m[3][1], a32 = m[3][2], a33 = m[3][3],",
|
|
|
+
|
|
|
+ " b00 = a00 * a11 - a01 * a10,",
|
|
|
+ " b01 = a00 * a12 - a02 * a10,",
|
|
|
+ " b02 = a00 * a13 - a03 * a10,",
|
|
|
+ " b03 = a01 * a12 - a02 * a11,",
|
|
|
+ " b04 = a01 * a13 - a03 * a11,",
|
|
|
+ " b05 = a02 * a13 - a03 * a12,",
|
|
|
+ " b06 = a20 * a31 - a21 * a30,",
|
|
|
+ " b07 = a20 * a32 - a22 * a30,",
|
|
|
+ " b08 = a20 * a33 - a23 * a30,",
|
|
|
+ " b09 = a21 * a32 - a22 * a31,",
|
|
|
+ " b10 = a21 * a33 - a23 * a31,",
|
|
|
+ " b11 = a22 * a33 - a23 * a32,",
|
|
|
+
|
|
|
+ " det = b00 * b11 - b01 * b10 + b02 * b09 + b03 * b08 - b04 * b07 + b05 * b06;",
|
|
|
+
|
|
|
+ " return mat4(",
|
|
|
+ " a11 * b11 - a12 * b10 + a13 * b09,",
|
|
|
+ " a02 * b10 - a01 * b11 - a03 * b09,",
|
|
|
+ " a31 * b05 - a32 * b04 + a33 * b03,",
|
|
|
+ " a22 * b04 - a21 * b05 - a23 * b03,",
|
|
|
+ " a12 * b08 - a10 * b11 - a13 * b07,",
|
|
|
+ " a00 * b11 - a02 * b08 + a03 * b07,",
|
|
|
+ " a32 * b02 - a30 * b05 - a33 * b01,",
|
|
|
+ " a20 * b05 - a22 * b02 + a23 * b01,",
|
|
|
+ " a10 * b10 - a11 * b08 + a13 * b06,",
|
|
|
+ " a01 * b08 - a00 * b10 - a03 * b06,",
|
|
|
+ " a30 * b04 - a31 * b02 + a33 * b00,",
|
|
|
+ " a21 * b02 - a20 * b04 - a23 * b00,",
|
|
|
+ " a11 * b07 - a10 * b09 - a12 * b06,",
|
|
|
+ " a00 * b09 - a01 * b07 + a02 * b06,",
|
|
|
+ " a31 * b01 - a30 * b03 - a32 * b00,",
|
|
|
+ " a20 * b03 - a21 * b01 + a22 * b00) / det;",
|
|
|
+ " }",
|
|
|
+
|
|
|
+
|
|
|
+ " void main() {",
|
|
|
+ // Prepare transforms to map to "camera view". See also:
|
|
|
+ // https://threejs.org/docs/#api/renderers/webgl/WebGLProgram
|
|
|
+ " mat4 viewtransformf = viewMatrix;",
|
|
|
+ " mat4 viewtransformi = inversemat(viewMatrix);",
|
|
|
+
|
|
|
+ // Project local vertex coordinate to camera position. Then do a step
|
|
|
+ // backward (in cam coords) to the near clipping plane, and project back. Do
|
|
|
+ // the same for the far clipping plane. This gives us all the information we
|
|
|
+ // need to calculate the ray and truncate it to the viewing cone.
|
|
|
+ " vec4 position4 = vec4(position, 1.0);",
|
|
|
+ " vec4 pos_in_cam = viewtransformf * position4;",
|
|
|
+
|
|
|
+ // Intersection of ray and near clipping plane (z = -1 in clip coords)
|
|
|
+ " pos_in_cam.z = -pos_in_cam.w;",
|
|
|
+ " v_nearpos = viewtransformi * pos_in_cam;",
|
|
|
+
|
|
|
+ // Intersection of ray and far clipping plane (z = +1 in clip coords)
|
|
|
+ " pos_in_cam.z = pos_in_cam.w;",
|
|
|
+ " v_farpos = viewtransformi * pos_in_cam;",
|
|
|
+
|
|
|
+ // Set varyings and output pos
|
|
|
+ " v_position = position;",
|
|
|
+ " gl_Position = projectionMatrix * viewMatrix * modelMatrix * position4;",
|
|
|
+ " }",
|
|
|
+ ].join( "\n" ),
|
|
|
fragmentShader: [
|
|
|
- ' precision highp float;',
|
|
|
- ' precision mediump sampler3D;',
|
|
|
-
|
|
|
- ' uniform vec3 u_size;',
|
|
|
- ' uniform int u_renderstyle;',
|
|
|
- ' uniform float u_renderthreshold;',
|
|
|
- ' uniform vec2 u_clim;',
|
|
|
-
|
|
|
- ' uniform sampler3D u_data;',
|
|
|
- ' uniform sampler2D u_cmdata;',
|
|
|
-
|
|
|
- ' varying vec3 v_position;',
|
|
|
- ' varying vec4 v_nearpos;',
|
|
|
- ' varying vec4 v_farpos;',
|
|
|
-
|
|
|
- // The maximum distance through our rendering volume is sqrt(3).
|
|
|
- ' const int MAX_STEPS = 887; // 887 for 512^3, 1774 for 1024^3',
|
|
|
- ' const int REFINEMENT_STEPS = 4;',
|
|
|
- ' const float relative_step_size = 1.0;',
|
|
|
- ' const vec4 ambient_color = vec4(0.2, 0.4, 0.2, 1.0);',
|
|
|
- ' const vec4 diffuse_color = vec4(0.8, 0.2, 0.2, 1.0);',
|
|
|
- ' const vec4 specular_color = vec4(1.0, 1.0, 1.0, 1.0);',
|
|
|
- ' const float shininess = 40.0;',
|
|
|
-
|
|
|
- ' void cast_mip(vec3 start_loc, vec3 step, int nsteps, vec3 view_ray);',
|
|
|
- ' void cast_iso(vec3 start_loc, vec3 step, int nsteps, vec3 view_ray);',
|
|
|
-
|
|
|
- ' float sample1(vec3 texcoords);',
|
|
|
- ' vec4 apply_colormap(float val);',
|
|
|
- ' vec4 add_lighting(float val, vec3 loc, vec3 step, vec3 view_ray);',
|
|
|
-
|
|
|
-
|
|
|
- ' void main() {',
|
|
|
- // Normalize clipping plane info
|
|
|
- ' vec3 farpos = v_farpos.xyz / v_farpos.w;',
|
|
|
- ' vec3 nearpos = v_nearpos.xyz / v_nearpos.w;',
|
|
|
-
|
|
|
- // Calculate unit vector pointing in the view direction through this fragment.
|
|
|
- ' vec3 view_ray = normalize(nearpos.xyz - farpos.xyz);',
|
|
|
-
|
|
|
- // Compute the (negative) distance to the front surface or near clipping plane.
|
|
|
- // v_position is the back face of the cuboid, so the initial distance calculated in the dot
|
|
|
- // product below is the distance from near clip plane to the back of the cuboid
|
|
|
- ' float distance = dot(nearpos - v_position, view_ray);',
|
|
|
- ' distance = max(distance, min((-0.5 - v_position.x) / view_ray.x,',
|
|
|
- ' (u_size.x - 0.5 - v_position.x) / view_ray.x));',
|
|
|
- ' distance = max(distance, min((-0.5 - v_position.y) / view_ray.y,',
|
|
|
- ' (u_size.y - 0.5 - v_position.y) / view_ray.y));',
|
|
|
- ' distance = max(distance, min((-0.5 - v_position.z) / view_ray.z,',
|
|
|
- ' (u_size.z - 0.5 - v_position.z) / view_ray.z));',
|
|
|
-
|
|
|
- // Now we have the starting position on the front surface
|
|
|
- ' vec3 front = v_position + view_ray * distance;',
|
|
|
-
|
|
|
- // Decide how many steps to take
|
|
|
- ' int nsteps = int(-distance / relative_step_size + 0.5);',
|
|
|
- ' if ( nsteps < 1 )',
|
|
|
- ' discard;',
|
|
|
-
|
|
|
- // Get starting location and step vector in texture coordinates
|
|
|
- ' vec3 step = ((v_position - front) / u_size) / float(nsteps);',
|
|
|
- ' vec3 start_loc = front / u_size;',
|
|
|
-
|
|
|
- // For testing: show the number of steps. This helps to establish
|
|
|
- // whether the rays are correctly oriented
|
|
|
- //'gl_FragColor = vec4(0.0, float(nsteps) / 1.0 / u_size.x, 1.0, 1.0);',
|
|
|
- //'return;',
|
|
|
-
|
|
|
- ' if (u_renderstyle == 0)',
|
|
|
- ' cast_mip(start_loc, step, nsteps, view_ray);',
|
|
|
- ' else if (u_renderstyle == 1)',
|
|
|
- ' cast_iso(start_loc, step, nsteps, view_ray);',
|
|
|
-
|
|
|
- ' if (gl_FragColor.a < 0.05)',
|
|
|
- ' discard;',
|
|
|
- ' }',
|
|
|
-
|
|
|
-
|
|
|
- ' float sample1(vec3 texcoords) {',
|
|
|
- ' /* Sample float value from a 3D texture. Assumes intensity data. */',
|
|
|
- ' return texture(u_data, texcoords.xyz).r;',
|
|
|
- ' }',
|
|
|
-
|
|
|
-
|
|
|
- ' vec4 apply_colormap(float val) {',
|
|
|
- ' val = (val - u_clim[0]) / (u_clim[1] - u_clim[0]);',
|
|
|
- ' return texture2D(u_cmdata, vec2(val, 0.5));',
|
|
|
- ' }',
|
|
|
-
|
|
|
-
|
|
|
- ' void cast_mip(vec3 start_loc, vec3 step, int nsteps, vec3 view_ray) {',
|
|
|
-
|
|
|
- ' float max_val = -1e6;',
|
|
|
- ' int max_i = 100;',
|
|
|
- ' vec3 loc = start_loc;',
|
|
|
-
|
|
|
- // Enter the raycasting loop. In WebGL 1 the loop index cannot be compared with
|
|
|
- // non-constant expression. So we use a hard-coded max, and an additional condition
|
|
|
- // inside the loop.
|
|
|
- ' for (int iter=0; iter<MAX_STEPS; iter++) {',
|
|
|
- ' if (iter >= nsteps)',
|
|
|
- ' break;',
|
|
|
- // Sample from the 3D texture
|
|
|
- ' float val = sample1(loc);',
|
|
|
- // Apply MIP operation
|
|
|
- ' if (val > max_val) {',
|
|
|
- ' max_val = val;',
|
|
|
- ' max_i = iter;',
|
|
|
- ' }',
|
|
|
- // Advance location deeper into the volume
|
|
|
- ' loc += step;',
|
|
|
- ' }',
|
|
|
-
|
|
|
- // Refine location, gives crispier images
|
|
|
- ' vec3 iloc = start_loc + step * (float(max_i) - 0.5);',
|
|
|
- ' vec3 istep = step / float(REFINEMENT_STEPS);',
|
|
|
- ' for (int i=0; i<REFINEMENT_STEPS; i++) {',
|
|
|
- ' max_val = max(max_val, sample1(iloc));',
|
|
|
- ' iloc += istep;',
|
|
|
- ' }',
|
|
|
-
|
|
|
- // Resolve final color
|
|
|
- ' gl_FragColor = apply_colormap(max_val);',
|
|
|
- ' }',
|
|
|
-
|
|
|
-
|
|
|
- ' void cast_iso(vec3 start_loc, vec3 step, int nsteps, vec3 view_ray) {',
|
|
|
-
|
|
|
- ' gl_FragColor = vec4(0.0); // init transparent',
|
|
|
- ' vec4 color3 = vec4(0.0); // final color',
|
|
|
- ' vec3 dstep = 1.5 / u_size; // step to sample derivative',
|
|
|
- ' vec3 loc = start_loc;',
|
|
|
-
|
|
|
- ' float low_threshold = u_renderthreshold - 0.02 * (u_clim[1] - u_clim[0]);',
|
|
|
-
|
|
|
- // Enter the raycasting loop. In WebGL 1 the loop index cannot be compared with
|
|
|
- // non-constant expression. So we use a hard-coded max, and an additional condition
|
|
|
- // inside the loop.
|
|
|
- ' for (int iter=0; iter<MAX_STEPS; iter++) {',
|
|
|
- ' if (iter >= nsteps)',
|
|
|
- ' break;',
|
|
|
-
|
|
|
- // Sample from the 3D texture
|
|
|
- ' float val = sample1(loc);',
|
|
|
-
|
|
|
- ' if (val > low_threshold) {',
|
|
|
- // Take the last interval in smaller steps
|
|
|
- ' vec3 iloc = loc - 0.5 * step;',
|
|
|
- ' vec3 istep = step / float(REFINEMENT_STEPS);',
|
|
|
- ' for (int i=0; i<REFINEMENT_STEPS; i++) {',
|
|
|
- ' val = sample1(iloc);',
|
|
|
- ' if (val > u_renderthreshold) {',
|
|
|
- ' gl_FragColor = add_lighting(val, iloc, dstep, view_ray);',
|
|
|
- ' return;',
|
|
|
- ' }',
|
|
|
- ' iloc += istep;',
|
|
|
- ' }',
|
|
|
- ' }',
|
|
|
-
|
|
|
- // Advance location deeper into the volume
|
|
|
- ' loc += step;',
|
|
|
- ' }',
|
|
|
- ' }',
|
|
|
-
|
|
|
-
|
|
|
- ' vec4 add_lighting(float val, vec3 loc, vec3 step, vec3 view_ray)',
|
|
|
- ' {',
|
|
|
- // Calculate color by incorporating lighting
|
|
|
-
|
|
|
- // View direction
|
|
|
- ' vec3 V = normalize(view_ray);',
|
|
|
-
|
|
|
- // calculate normal vector from gradient
|
|
|
- ' vec3 N;',
|
|
|
- ' float val1, val2;',
|
|
|
- ' val1 = sample1(loc + vec3(-step[0], 0.0, 0.0));',
|
|
|
- ' val2 = sample1(loc + vec3(+step[0], 0.0, 0.0));',
|
|
|
- ' N[0] = val1 - val2;',
|
|
|
- ' val = max(max(val1, val2), val);',
|
|
|
- ' val1 = sample1(loc + vec3(0.0, -step[1], 0.0));',
|
|
|
- ' val2 = sample1(loc + vec3(0.0, +step[1], 0.0));',
|
|
|
- ' N[1] = val1 - val2;',
|
|
|
- ' val = max(max(val1, val2), val);',
|
|
|
- ' val1 = sample1(loc + vec3(0.0, 0.0, -step[2]));',
|
|
|
- ' val2 = sample1(loc + vec3(0.0, 0.0, +step[2]));',
|
|
|
- ' N[2] = val1 - val2;',
|
|
|
- ' val = max(max(val1, val2), val);',
|
|
|
-
|
|
|
- ' float gm = length(N); // gradient magnitude',
|
|
|
- ' N = normalize(N);',
|
|
|
-
|
|
|
- // Flip normal so it points towards viewer
|
|
|
- ' float Nselect = float(dot(N, V) > 0.0);',
|
|
|
- ' N = (2.0 * Nselect - 1.0) * N; // == Nselect * N - (1.0-Nselect)*N;',
|
|
|
-
|
|
|
- // Init colors
|
|
|
- ' vec4 ambient_color = vec4(0.0, 0.0, 0.0, 0.0);',
|
|
|
- ' vec4 diffuse_color = vec4(0.0, 0.0, 0.0, 0.0);',
|
|
|
- ' vec4 specular_color = vec4(0.0, 0.0, 0.0, 0.0);',
|
|
|
-
|
|
|
- // note: could allow multiple lights
|
|
|
- ' for (int i=0; i<1; i++)',
|
|
|
- ' {',
|
|
|
+ " precision highp float;",
|
|
|
+ " precision mediump sampler3D;",
|
|
|
+
|
|
|
+ " uniform vec3 u_size;",
|
|
|
+ " uniform int u_renderstyle;",
|
|
|
+ " uniform float u_renderthreshold;",
|
|
|
+ " uniform vec2 u_clim;",
|
|
|
+
|
|
|
+ " uniform sampler3D u_data;",
|
|
|
+ " uniform sampler2D u_cmdata;",
|
|
|
+
|
|
|
+ " varying vec3 v_position;",
|
|
|
+ " varying vec4 v_nearpos;",
|
|
|
+ " varying vec4 v_farpos;",
|
|
|
+
|
|
|
+ // The maximum distance through our rendering volume is sqrt(3).
|
|
|
+ " const int MAX_STEPS = 887; // 887 for 512^3, 1774 for 1024^3",
|
|
|
+ " const int REFINEMENT_STEPS = 4;",
|
|
|
+ " const float relative_step_size = 1.0;",
|
|
|
+ " const vec4 ambient_color = vec4(0.2, 0.4, 0.2, 1.0);",
|
|
|
+ " const vec4 diffuse_color = vec4(0.8, 0.2, 0.2, 1.0);",
|
|
|
+ " const vec4 specular_color = vec4(1.0, 1.0, 1.0, 1.0);",
|
|
|
+ " const float shininess = 40.0;",
|
|
|
+
|
|
|
+ " void cast_mip(vec3 start_loc, vec3 step, int nsteps, vec3 view_ray);",
|
|
|
+ " void cast_iso(vec3 start_loc, vec3 step, int nsteps, vec3 view_ray);",
|
|
|
+
|
|
|
+ " float sample1(vec3 texcoords);",
|
|
|
+ " vec4 apply_colormap(float val);",
|
|
|
+ " vec4 add_lighting(float val, vec3 loc, vec3 step, vec3 view_ray);",
|
|
|
+
|
|
|
+
|
|
|
+ " void main() {",
|
|
|
+ // Normalize clipping plane info
|
|
|
+ " vec3 farpos = v_farpos.xyz / v_farpos.w;",
|
|
|
+ " vec3 nearpos = v_nearpos.xyz / v_nearpos.w;",
|
|
|
+
|
|
|
+ // Calculate unit vector pointing in the view direction through this fragment.
|
|
|
+ " vec3 view_ray = normalize(nearpos.xyz - farpos.xyz);",
|
|
|
+
|
|
|
+ // Compute the (negative) distance to the front surface or near clipping plane.
|
|
|
+ // v_position is the back face of the cuboid, so the initial distance calculated in the dot
|
|
|
+ // product below is the distance from near clip plane to the back of the cuboid
|
|
|
+ " float distance = dot(nearpos - v_position, view_ray);",
|
|
|
+ " distance = max(distance, min((-0.5 - v_position.x) / view_ray.x,",
|
|
|
+ " (u_size.x - 0.5 - v_position.x) / view_ray.x));",
|
|
|
+ " distance = max(distance, min((-0.5 - v_position.y) / view_ray.y,",
|
|
|
+ " (u_size.y - 0.5 - v_position.y) / view_ray.y));",
|
|
|
+ " distance = max(distance, min((-0.5 - v_position.z) / view_ray.z,",
|
|
|
+ " (u_size.z - 0.5 - v_position.z) / view_ray.z));",
|
|
|
+
|
|
|
+ // Now we have the starting position on the front surface
|
|
|
+ " vec3 front = v_position + view_ray * distance;",
|
|
|
+
|
|
|
+ // Decide how many steps to take
|
|
|
+ " int nsteps = int(-distance / relative_step_size + 0.5);",
|
|
|
+ " if ( nsteps < 1 )",
|
|
|
+ " discard;",
|
|
|
+
|
|
|
+ // Get starting location and step vector in texture coordinates
|
|
|
+ " vec3 step = ((v_position - front) / u_size) / float(nsteps);",
|
|
|
+ " vec3 start_loc = front / u_size;",
|
|
|
+
|
|
|
+ // For testing: show the number of steps. This helps to establish
|
|
|
+ // whether the rays are correctly oriented
|
|
|
+ //'gl_FragColor = vec4(0.0, float(nsteps) / 1.0 / u_size.x, 1.0, 1.0);',
|
|
|
+ //'return;',
|
|
|
+
|
|
|
+ " if (u_renderstyle == 0)",
|
|
|
+ " cast_mip(start_loc, step, nsteps, view_ray);",
|
|
|
+ " else if (u_renderstyle == 1)",
|
|
|
+ " cast_iso(start_loc, step, nsteps, view_ray);",
|
|
|
+
|
|
|
+ " if (gl_FragColor.a < 0.05)",
|
|
|
+ " discard;",
|
|
|
+ " }",
|
|
|
+
|
|
|
+
|
|
|
+ " float sample1(vec3 texcoords) {",
|
|
|
+ " /* Sample float value from a 3D texture. Assumes intensity data. */",
|
|
|
+ " return texture(u_data, texcoords.xyz).r;",
|
|
|
+ " }",
|
|
|
+
|
|
|
+
|
|
|
+ " vec4 apply_colormap(float val) {",
|
|
|
+ " val = (val - u_clim[0]) / (u_clim[1] - u_clim[0]);",
|
|
|
+ " return texture2D(u_cmdata, vec2(val, 0.5));",
|
|
|
+ " }",
|
|
|
+
|
|
|
+
|
|
|
+ " void cast_mip(vec3 start_loc, vec3 step, int nsteps, vec3 view_ray) {",
|
|
|
+
|
|
|
+ " float max_val = -1e6;",
|
|
|
+ " int max_i = 100;",
|
|
|
+ " vec3 loc = start_loc;",
|
|
|
+
|
|
|
+ // Enter the raycasting loop. In WebGL 1 the loop index cannot be compared with
|
|
|
+ // non-constant expression. So we use a hard-coded max, and an additional condition
|
|
|
+ // inside the loop.
|
|
|
+ " for (int iter=0; iter<MAX_STEPS; iter++) {",
|
|
|
+ " if (iter >= nsteps)",
|
|
|
+ " break;",
|
|
|
+ // Sample from the 3D texture
|
|
|
+ " float val = sample1(loc);",
|
|
|
+ // Apply MIP operation
|
|
|
+ " if (val > max_val) {",
|
|
|
+ " max_val = val;",
|
|
|
+ " max_i = iter;",
|
|
|
+ " }",
|
|
|
+ // Advance location deeper into the volume
|
|
|
+ " loc += step;",
|
|
|
+ " }",
|
|
|
+
|
|
|
+ // Refine location, gives crispier images
|
|
|
+ " vec3 iloc = start_loc + step * (float(max_i) - 0.5);",
|
|
|
+ " vec3 istep = step / float(REFINEMENT_STEPS);",
|
|
|
+ " for (int i=0; i<REFINEMENT_STEPS; i++) {",
|
|
|
+ " max_val = max(max_val, sample1(iloc));",
|
|
|
+ " iloc += istep;",
|
|
|
+ " }",
|
|
|
+
|
|
|
+ // Resolve final color
|
|
|
+ " gl_FragColor = apply_colormap(max_val);",
|
|
|
+ " }",
|
|
|
+
|
|
|
+
|
|
|
+ " void cast_iso(vec3 start_loc, vec3 step, int nsteps, vec3 view_ray) {",
|
|
|
+
|
|
|
+ " gl_FragColor = vec4(0.0); // init transparent",
|
|
|
+ " vec4 color3 = vec4(0.0); // final color",
|
|
|
+ " vec3 dstep = 1.5 / u_size; // step to sample derivative",
|
|
|
+ " vec3 loc = start_loc;",
|
|
|
+
|
|
|
+ " float low_threshold = u_renderthreshold - 0.02 * (u_clim[1] - u_clim[0]);",
|
|
|
+
|
|
|
+ // Enter the raycasting loop. In WebGL 1 the loop index cannot be compared with
|
|
|
+ // non-constant expression. So we use a hard-coded max, and an additional condition
|
|
|
+ // inside the loop.
|
|
|
+ " for (int iter=0; iter<MAX_STEPS; iter++) {",
|
|
|
+ " if (iter >= nsteps)",
|
|
|
+ " break;",
|
|
|
+
|
|
|
+ // Sample from the 3D texture
|
|
|
+ " float val = sample1(loc);",
|
|
|
+
|
|
|
+ " if (val > low_threshold) {",
|
|
|
+ // Take the last interval in smaller steps
|
|
|
+ " vec3 iloc = loc - 0.5 * step;",
|
|
|
+ " vec3 istep = step / float(REFINEMENT_STEPS);",
|
|
|
+ " for (int i=0; i<REFINEMENT_STEPS; i++) {",
|
|
|
+ " val = sample1(iloc);",
|
|
|
+ " if (val > u_renderthreshold) {",
|
|
|
+ " gl_FragColor = add_lighting(val, iloc, dstep, view_ray);",
|
|
|
+ " return;",
|
|
|
+ " }",
|
|
|
+ " iloc += istep;",
|
|
|
+ " }",
|
|
|
+ " }",
|
|
|
+
|
|
|
+ // Advance location deeper into the volume
|
|
|
+ " loc += step;",
|
|
|
+ " }",
|
|
|
+ " }",
|
|
|
+
|
|
|
+
|
|
|
+ " vec4 add_lighting(float val, vec3 loc, vec3 step, vec3 view_ray)",
|
|
|
+ " {",
|
|
|
+ // Calculate color by incorporating lighting
|
|
|
+
|
|
|
+ // View direction
|
|
|
+ " vec3 V = normalize(view_ray);",
|
|
|
+
|
|
|
+ // calculate normal vector from gradient
|
|
|
+ " vec3 N;",
|
|
|
+ " float val1, val2;",
|
|
|
+ " val1 = sample1(loc + vec3(-step[0], 0.0, 0.0));",
|
|
|
+ " val2 = sample1(loc + vec3(+step[0], 0.0, 0.0));",
|
|
|
+ " N[0] = val1 - val2;",
|
|
|
+ " val = max(max(val1, val2), val);",
|
|
|
+ " val1 = sample1(loc + vec3(0.0, -step[1], 0.0));",
|
|
|
+ " val2 = sample1(loc + vec3(0.0, +step[1], 0.0));",
|
|
|
+ " N[1] = val1 - val2;",
|
|
|
+ " val = max(max(val1, val2), val);",
|
|
|
+ " val1 = sample1(loc + vec3(0.0, 0.0, -step[2]));",
|
|
|
+ " val2 = sample1(loc + vec3(0.0, 0.0, +step[2]));",
|
|
|
+ " N[2] = val1 - val2;",
|
|
|
+ " val = max(max(val1, val2), val);",
|
|
|
+
|
|
|
+ " float gm = length(N); // gradient magnitude",
|
|
|
+ " N = normalize(N);",
|
|
|
+
|
|
|
+ // Flip normal so it points towards viewer
|
|
|
+ " float Nselect = float(dot(N, V) > 0.0);",
|
|
|
+ " N = (2.0 * Nselect - 1.0) * N; // == Nselect * N - (1.0-Nselect)*N;",
|
|
|
+
|
|
|
+ // Init colors
|
|
|
+ " vec4 ambient_color = vec4(0.0, 0.0, 0.0, 0.0);",
|
|
|
+ " vec4 diffuse_color = vec4(0.0, 0.0, 0.0, 0.0);",
|
|
|
+ " vec4 specular_color = vec4(0.0, 0.0, 0.0, 0.0);",
|
|
|
+
|
|
|
+ // note: could allow multiple lights
|
|
|
+ " for (int i=0; i<1; i++)",
|
|
|
+ " {",
|
|
|
// Get light direction (make sure to prevent zero devision)
|
|
|
- ' vec3 L = normalize(view_ray); //lightDirs[i];',
|
|
|
- ' float lightEnabled = float( length(L) > 0.0 );',
|
|
|
- ' L = normalize(L + (1.0 - lightEnabled));',
|
|
|
-
|
|
|
- // Calculate lighting properties
|
|
|
- ' float lambertTerm = clamp(dot(N, L), 0.0, 1.0);',
|
|
|
- ' vec3 H = normalize(L+V); // Halfway vector',
|
|
|
- ' float specularTerm = pow(max(dot(H, N), 0.0), shininess);',
|
|
|
-
|
|
|
- // Calculate mask
|
|
|
- ' float mask1 = lightEnabled;',
|
|
|
-
|
|
|
- // Calculate colors
|
|
|
- ' ambient_color += mask1 * ambient_color; // * gl_LightSource[i].ambient;',
|
|
|
- ' diffuse_color += mask1 * lambertTerm;',
|
|
|
- ' specular_color += mask1 * specularTerm * specular_color;',
|
|
|
- ' }',
|
|
|
-
|
|
|
- // Calculate final color by componing different components
|
|
|
- ' vec4 final_color;',
|
|
|
- ' vec4 color = apply_colormap(val);',
|
|
|
- ' final_color = color * (ambient_color + diffuse_color) + specular_color;',
|
|
|
- ' final_color.a = color.a;',
|
|
|
- ' return final_color;',
|
|
|
- ' }',
|
|
|
- ].join( '\n' )
|
|
|
+ " vec3 L = normalize(view_ray); //lightDirs[i];",
|
|
|
+ " float lightEnabled = float( length(L) > 0.0 );",
|
|
|
+ " L = normalize(L + (1.0 - lightEnabled));",
|
|
|
+
|
|
|
+ // Calculate lighting properties
|
|
|
+ " float lambertTerm = clamp(dot(N, L), 0.0, 1.0);",
|
|
|
+ " vec3 H = normalize(L+V); // Halfway vector",
|
|
|
+ " float specularTerm = pow(max(dot(H, N), 0.0), shininess);",
|
|
|
+
|
|
|
+ // Calculate mask
|
|
|
+ " float mask1 = lightEnabled;",
|
|
|
+
|
|
|
+ // Calculate colors
|
|
|
+ " ambient_color += mask1 * ambient_color; // * gl_LightSource[i].ambient;",
|
|
|
+ " diffuse_color += mask1 * lambertTerm;",
|
|
|
+ " specular_color += mask1 * specularTerm * specular_color;",
|
|
|
+ " }",
|
|
|
+
|
|
|
+ // Calculate final color by componing different components
|
|
|
+ " vec4 final_color;",
|
|
|
+ " vec4 color = apply_colormap(val);",
|
|
|
+ " final_color = color * (ambient_color + diffuse_color) + specular_color;",
|
|
|
+ " final_color.a = color.a;",
|
|
|
+ " return final_color;",
|
|
|
+ " }",
|
|
|
+ ].join( "\n" )
|
|
|
};
|