EXRLoader.js 52 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289
  1. /**
  2. * @author Richard M. / https://github.com/richardmonette
  3. * @author ScieCode / http://github.com/sciecode
  4. *
  5. * OpenEXR loader currently supports uncompressed, ZIP(S), RLE, PIZ and DWA/B compression.
  6. * Supports reading as UnsignedByte, HalfFloat and Float type data texture.
  7. *
  8. * Referred to the original Industrial Light & Magic OpenEXR implementation and the TinyEXR / Syoyo Fujita
  9. * implementation, so I have preserved their copyright notices.
  10. */
  11. // /*
  12. // Copyright (c) 2014 - 2017, Syoyo Fujita
  13. // All rights reserved.
  14. // Redistribution and use in source and binary forms, with or without
  15. // modification, are permitted provided that the following conditions are met:
  16. // * Redistributions of source code must retain the above copyright
  17. // notice, this list of conditions and the following disclaimer.
  18. // * Redistributions in binary form must reproduce the above copyright
  19. // notice, this list of conditions and the following disclaimer in the
  20. // documentation and/or other materials provided with the distribution.
  21. // * Neither the name of the Syoyo Fujita nor the
  22. // names of its contributors may be used to endorse or promote products
  23. // derived from this software without specific prior written permission.
  24. // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
  25. // ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
  26. // WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
  27. // DISCLAIMED. IN NO EVENT SHALL <COPYRIGHT HOLDER> BE LIABLE FOR ANY
  28. // DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
  29. // (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
  30. // LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
  31. // ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  32. // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
  33. // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  34. // */
  35. // // TinyEXR contains some OpenEXR code, which is licensed under ------------
  36. // ///////////////////////////////////////////////////////////////////////////
  37. // //
  38. // // Copyright (c) 2002, Industrial Light & Magic, a division of Lucas
  39. // // Digital Ltd. LLC
  40. // //
  41. // // All rights reserved.
  42. // //
  43. // // Redistribution and use in source and binary forms, with or without
  44. // // modification, are permitted provided that the following conditions are
  45. // // met:
  46. // // * Redistributions of source code must retain the above copyright
  47. // // notice, this list of conditions and the following disclaimer.
  48. // // * Redistributions in binary form must reproduce the above
  49. // // copyright notice, this list of conditions and the following disclaimer
  50. // // in the documentation and/or other materials provided with the
  51. // // distribution.
  52. // // * Neither the name of Industrial Light & Magic nor the names of
  53. // // its contributors may be used to endorse or promote products derived
  54. // // from this software without specific prior written permission.
  55. // //
  56. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  57. // // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  58. // // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  59. // // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  60. // // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  61. // // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  62. // // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  63. // // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  64. // // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  65. // // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  66. // // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  67. // //
  68. // ///////////////////////////////////////////////////////////////////////////
  69. // // End of OpenEXR license -------------------------------------------------
  70. THREE.EXRLoader = function ( manager ) {
  71. THREE.DataTextureLoader.call( this, manager );
  72. this.type = THREE.FloatType;
  73. };
  74. THREE.EXRLoader.prototype = Object.assign( Object.create( THREE.DataTextureLoader.prototype ), {
  75. constructor: THREE.EXRLoader,
  76. parse: function ( buffer ) {
  77. const USHORT_RANGE = ( 1 << 16 );
  78. const BITMAP_SIZE = ( USHORT_RANGE >> 3 );
  79. const HUF_ENCBITS = 16; // literal (value) bit length
  80. const HUF_DECBITS = 14; // decoding bit size (>= 8)
  81. const HUF_ENCSIZE = ( 1 << HUF_ENCBITS ) + 1; // encoding table size
  82. const HUF_DECSIZE = 1 << HUF_DECBITS; // decoding table size
  83. const HUF_DECMASK = HUF_DECSIZE - 1;
  84. const SHORT_ZEROCODE_RUN = 59;
  85. const LONG_ZEROCODE_RUN = 63;
  86. const SHORTEST_LONG_RUN = 2 + LONG_ZEROCODE_RUN - SHORT_ZEROCODE_RUN;
  87. const ULONG_SIZE = 8;
  88. const FLOAT32_SIZE = 4;
  89. const INT32_SIZE = 4;
  90. const INT16_SIZE = 2;
  91. const INT8_SIZE = 1;
  92. const STATIC_HUFFMAN = 0;
  93. const DEFLATE = 1;
  94. const UNKNOWN = 0;
  95. const LOSSY_DCT = 1;
  96. const RLE = 2;
  97. const logBase = Math.pow( 2.7182818, 2.2 );
  98. var tmpDataView = new DataView( new ArrayBuffer( 8 ) );
  99. function frexp( value ) {
  100. if ( value === 0 ) return [ value, 0 ];
  101. tmpDataView.setFloat64( 0, value );
  102. var bits = ( tmpDataView.getUint32( 0 ) >>> 20 ) & 0x7FF;
  103. if ( bits === 0 ) { // denormal
  104. tmpDataView.setFloat64( 0, value * Math.pow( 2, 64 ) ); // exp + 64
  105. bits = ( ( tmpDataView.getUint32( 0 ) >>> 20 ) & 0x7FF ) - 64;
  106. }
  107. var exponent = bits - 1022;
  108. var mantissa = ldexp( value, - exponent );
  109. return [ mantissa, exponent ];
  110. }
  111. function ldexp( mantissa, exponent ) {
  112. var steps = Math.min( 3, Math.ceil( Math.abs( exponent ) / 1023 ) );
  113. var result = mantissa;
  114. for ( var i = 0; i < steps; i ++ )
  115. result *= Math.pow( 2, Math.floor( ( exponent + i ) / steps ) );
  116. return result;
  117. }
  118. function reverseLutFromBitmap( bitmap, lut ) {
  119. var k = 0;
  120. for ( var i = 0; i < USHORT_RANGE; ++ i ) {
  121. if ( ( i == 0 ) || ( bitmap[ i >> 3 ] & ( 1 << ( i & 7 ) ) ) ) {
  122. lut[ k ++ ] = i;
  123. }
  124. }
  125. var n = k - 1;
  126. while ( k < USHORT_RANGE ) lut[ k ++ ] = 0;
  127. return n;
  128. }
  129. function hufClearDecTable( hdec ) {
  130. for ( var i = 0; i < HUF_DECSIZE; i ++ ) {
  131. hdec[ i ] = {};
  132. hdec[ i ].len = 0;
  133. hdec[ i ].lit = 0;
  134. hdec[ i ].p = null;
  135. }
  136. }
  137. const getBitsReturn = { l: 0, c: 0, lc: 0 };
  138. function getBits( nBits, c, lc, uInt8Array, inOffset ) {
  139. while ( lc < nBits ) {
  140. c = ( c << 8 ) | parseUint8Array( uInt8Array, inOffset );
  141. lc += 8;
  142. }
  143. lc -= nBits;
  144. getBitsReturn.l = ( c >> lc ) & ( ( 1 << nBits ) - 1 );
  145. getBitsReturn.c = c;
  146. getBitsReturn.lc = lc;
  147. }
  148. const hufTableBuffer = new Array( 59 );
  149. function hufCanonicalCodeTable( hcode ) {
  150. for ( var i = 0; i <= 58; ++ i ) hufTableBuffer[ i ] = 0;
  151. for ( var i = 0; i < HUF_ENCSIZE; ++ i ) hufTableBuffer[ hcode[ i ] ] += 1;
  152. var c = 0;
  153. for ( var i = 58; i > 0; -- i ) {
  154. var nc = ( ( c + hufTableBuffer[ i ] ) >> 1 );
  155. hufTableBuffer[ i ] = c;
  156. c = nc;
  157. }
  158. for ( var i = 0; i < HUF_ENCSIZE; ++ i ) {
  159. var l = hcode[ i ];
  160. if ( l > 0 ) hcode[ i ] = l | ( hufTableBuffer[ l ] ++ << 6 );
  161. }
  162. }
  163. function hufUnpackEncTable( uInt8Array, inDataView, inOffset, ni, im, iM, hcode ) {
  164. var p = inOffset;
  165. var c = 0;
  166. var lc = 0;
  167. for ( ; im <= iM; im ++ ) {
  168. if ( p.value - inOffset.value > ni ) return false;
  169. getBits( 6, c, lc, uInt8Array, p );
  170. var l = getBitsReturn.l;
  171. c = getBitsReturn.c;
  172. lc = getBitsReturn.lc;
  173. hcode[ im ] = l;
  174. if ( l == LONG_ZEROCODE_RUN ) {
  175. if ( p.value - inOffset.value > ni ) {
  176. throw 'Something wrong with hufUnpackEncTable';
  177. }
  178. getBits( 8, c, lc, uInt8Array, p );
  179. var zerun = getBitsReturn.l + SHORTEST_LONG_RUN;
  180. c = getBitsReturn.c;
  181. lc = getBitsReturn.lc;
  182. if ( im + zerun > iM + 1 ) {
  183. throw 'Something wrong with hufUnpackEncTable';
  184. }
  185. while ( zerun -- ) hcode[ im ++ ] = 0;
  186. im --;
  187. } else if ( l >= SHORT_ZEROCODE_RUN ) {
  188. var zerun = l - SHORT_ZEROCODE_RUN + 2;
  189. if ( im + zerun > iM + 1 ) {
  190. throw 'Something wrong with hufUnpackEncTable';
  191. }
  192. while ( zerun -- ) hcode[ im ++ ] = 0;
  193. im --;
  194. }
  195. }
  196. hufCanonicalCodeTable( hcode );
  197. }
  198. function hufLength( code ) {
  199. return code & 63;
  200. }
  201. function hufCode( code ) {
  202. return code >> 6;
  203. }
  204. function hufBuildDecTable( hcode, im, iM, hdecod ) {
  205. for ( ; im <= iM; im ++ ) {
  206. var c = hufCode( hcode[ im ] );
  207. var l = hufLength( hcode[ im ] );
  208. if ( c >> l ) {
  209. throw 'Invalid table entry';
  210. }
  211. if ( l > HUF_DECBITS ) {
  212. var pl = hdecod[ ( c >> ( l - HUF_DECBITS ) ) ];
  213. if ( pl.len ) {
  214. throw 'Invalid table entry';
  215. }
  216. pl.lit ++;
  217. if ( pl.p ) {
  218. var p = pl.p;
  219. pl.p = new Array( pl.lit );
  220. for ( var i = 0; i < pl.lit - 1; ++ i ) {
  221. pl.p[ i ] = p[ i ];
  222. }
  223. } else {
  224. pl.p = new Array( 1 );
  225. }
  226. pl.p[ pl.lit - 1 ] = im;
  227. } else if ( l ) {
  228. var plOffset = 0;
  229. for ( var i = 1 << ( HUF_DECBITS - l ); i > 0; i -- ) {
  230. var pl = hdecod[ ( c << ( HUF_DECBITS - l ) ) + plOffset ];
  231. if ( pl.len || pl.p ) {
  232. throw 'Invalid table entry';
  233. }
  234. pl.len = l;
  235. pl.lit = im;
  236. plOffset ++;
  237. }
  238. }
  239. }
  240. return true;
  241. }
  242. const getCharReturn = { c: 0, lc: 0 };
  243. function getChar( c, lc, uInt8Array, inOffset ) {
  244. c = ( c << 8 ) | parseUint8Array( uInt8Array, inOffset );
  245. lc += 8;
  246. getCharReturn.c = c;
  247. getCharReturn.lc = lc;
  248. }
  249. const getCodeReturn = { c: 0, lc: 0 };
  250. function getCode( po, rlc, c, lc, uInt8Array, inDataView, inOffset, outBuffer, outBufferOffset, outBufferEndOffset ) {
  251. if ( po == rlc ) {
  252. if ( lc < 8 ) {
  253. getChar( c, lc, uInt8Array, inOffset );
  254. c = getCharReturn.c;
  255. lc = getCharReturn.lc;
  256. }
  257. lc -= 8;
  258. var cs = ( c >> lc );
  259. var cs = new Uint8Array( [ cs ] )[ 0 ];
  260. if ( outBufferOffset.value + cs > outBufferEndOffset ) {
  261. return false;
  262. }
  263. var s = outBuffer[ outBufferOffset.value - 1 ];
  264. while ( cs -- > 0 ) {
  265. outBuffer[ outBufferOffset.value ++ ] = s;
  266. }
  267. } else if ( outBufferOffset.value < outBufferEndOffset ) {
  268. outBuffer[ outBufferOffset.value ++ ] = po;
  269. } else {
  270. return false;
  271. }
  272. getCodeReturn.c = c;
  273. getCodeReturn.lc = lc;
  274. }
  275. function UInt16( value ) {
  276. return ( value & 0xFFFF );
  277. }
  278. function Int16( value ) {
  279. var ref = UInt16( value );
  280. return ( ref > 0x7FFF ) ? ref - 0x10000 : ref;
  281. }
  282. const wdec14Return = { a: 0, b: 0 };
  283. function wdec14( l, h ) {
  284. var ls = Int16( l );
  285. var hs = Int16( h );
  286. var hi = hs;
  287. var ai = ls + ( hi & 1 ) + ( hi >> 1 );
  288. var as = ai;
  289. var bs = ai - hi;
  290. wdec14Return.a = as;
  291. wdec14Return.b = bs;
  292. }
  293. function wav2Decode( buffer, j, nx, ox, ny, oy ) {
  294. var n = ( nx > ny ) ? ny : nx;
  295. var p = 1;
  296. var p2;
  297. while ( p <= n ) p <<= 1;
  298. p >>= 1;
  299. p2 = p;
  300. p >>= 1;
  301. while ( p >= 1 ) {
  302. var py = 0;
  303. var ey = py + oy * ( ny - p2 );
  304. var oy1 = oy * p;
  305. var oy2 = oy * p2;
  306. var ox1 = ox * p;
  307. var ox2 = ox * p2;
  308. var i00, i01, i10, i11;
  309. for ( ; py <= ey; py += oy2 ) {
  310. var px = py;
  311. var ex = py + ox * ( nx - p2 );
  312. for ( ; px <= ex; px += ox2 ) {
  313. var p01 = px + ox1;
  314. var p10 = px + oy1;
  315. var p11 = p10 + ox1;
  316. wdec14( buffer[ px + j ], buffer[ p10 + j ] );
  317. i00 = wdec14Return.a;
  318. i10 = wdec14Return.b;
  319. wdec14( buffer[ p01 + j ], buffer[ p11 + j ] );
  320. i01 = wdec14Return.a;
  321. i11 = wdec14Return.b;
  322. wdec14( i00, i01 );
  323. buffer[ px + j ] = wdec14Return.a;
  324. buffer[ p01 + j ] = wdec14Return.b;
  325. wdec14( i10, i11 );
  326. buffer[ p10 + j ] = wdec14Return.a;
  327. buffer[ p11 + j ] = wdec14Return.b;
  328. }
  329. if ( nx & p ) {
  330. var p10 = px + oy1;
  331. wdec14( buffer[ px + j ], buffer[ p10 + j ] );
  332. i00 = wdec14Return.a;
  333. buffer[ p10 + j ] = wdec14Return.b;
  334. buffer[ px + j ] = i00;
  335. }
  336. }
  337. if ( ny & p ) {
  338. var px = py;
  339. var ex = py + ox * ( nx - p2 );
  340. for ( ; px <= ex; px += ox2 ) {
  341. var p01 = px + ox1;
  342. wdec14( buffer[ px + j ], buffer[ p01 + j ] );
  343. i00 = wdec14Return.a;
  344. buffer[ p01 + j ] = wdec14Return.b;
  345. buffer[ px + j ] = i00;
  346. }
  347. }
  348. p2 = p;
  349. p >>= 1;
  350. }
  351. return py;
  352. }
  353. function hufDecode( encodingTable, decodingTable, uInt8Array, inDataView, inOffset, ni, rlc, no, outBuffer, outOffset ) {
  354. var c = 0;
  355. var lc = 0;
  356. var outBufferEndOffset = no;
  357. var inOffsetEnd = Math.trunc( inOffset.value + ( ni + 7 ) / 8 );
  358. while ( inOffset.value < inOffsetEnd ) {
  359. getChar( c, lc, uInt8Array, inOffset );
  360. c = getCharReturn.c;
  361. lc = getCharReturn.lc;
  362. while ( lc >= HUF_DECBITS ) {
  363. var index = ( c >> ( lc - HUF_DECBITS ) ) & HUF_DECMASK;
  364. var pl = decodingTable[ index ];
  365. if ( pl.len ) {
  366. lc -= pl.len;
  367. getCode( pl.lit, rlc, c, lc, uInt8Array, inDataView, inOffset, outBuffer, outOffset, outBufferEndOffset );
  368. c = getCodeReturn.c;
  369. lc = getCodeReturn.lc;
  370. } else {
  371. if ( ! pl.p ) {
  372. throw 'hufDecode issues';
  373. }
  374. var j;
  375. for ( j = 0; j < pl.lit; j ++ ) {
  376. var l = hufLength( encodingTable[ pl.p[ j ] ] );
  377. while ( lc < l && inOffset.value < inOffsetEnd ) {
  378. getChar( c, lc, uInt8Array, inOffset );
  379. c = getCharReturn.c;
  380. lc = getCharReturn.lc;
  381. }
  382. if ( lc >= l ) {
  383. if ( hufCode( encodingTable[ pl.p[ j ] ] ) == ( ( c >> ( lc - l ) ) & ( ( 1 << l ) - 1 ) ) ) {
  384. lc -= l;
  385. getCode( pl.p[ j ], rlc, c, lc, uInt8Array, inDataView, inOffset, outBuffer, outOffset, outBufferEndOffset );
  386. c = getCodeReturn.c;
  387. lc = getCodeReturn.lc;
  388. break;
  389. }
  390. }
  391. }
  392. if ( j == pl.lit ) {
  393. throw 'hufDecode issues';
  394. }
  395. }
  396. }
  397. }
  398. var i = ( 8 - ni ) & 7;
  399. c >>= i;
  400. lc -= i;
  401. while ( lc > 0 ) {
  402. var pl = decodingTable[ ( c << ( HUF_DECBITS - lc ) ) & HUF_DECMASK ];
  403. if ( pl.len ) {
  404. lc -= pl.len;
  405. getCode( pl.lit, rlc, c, lc, uInt8Array, inDataView, inOffset, outBuffer, outOffset, outBufferEndOffset );
  406. c = getCodeReturn.c;
  407. lc = getCodeReturn.lc;
  408. } else {
  409. throw 'hufDecode issues';
  410. }
  411. }
  412. return true;
  413. }
  414. function hufUncompress( uInt8Array, inDataView, inOffset, nCompressed, outBuffer, nRaw ) {
  415. var outOffset = { value: 0 };
  416. var initialInOffset = inOffset.value;
  417. var im = parseUint32( inDataView, inOffset );
  418. var iM = parseUint32( inDataView, inOffset );
  419. inOffset.value += 4;
  420. var nBits = parseUint32( inDataView, inOffset );
  421. inOffset.value += 4;
  422. if ( im < 0 || im >= HUF_ENCSIZE || iM < 0 || iM >= HUF_ENCSIZE ) {
  423. throw 'Something wrong with HUF_ENCSIZE';
  424. }
  425. var freq = new Array( HUF_ENCSIZE );
  426. var hdec = new Array( HUF_DECSIZE );
  427. hufClearDecTable( hdec );
  428. var ni = nCompressed - ( inOffset.value - initialInOffset );
  429. hufUnpackEncTable( uInt8Array, inDataView, inOffset, ni, im, iM, freq );
  430. if ( nBits > 8 * ( nCompressed - ( inOffset.value - initialInOffset ) ) ) {
  431. throw 'Something wrong with hufUncompress';
  432. }
  433. hufBuildDecTable( freq, im, iM, hdec );
  434. hufDecode( freq, hdec, uInt8Array, inDataView, inOffset, nBits, iM, nRaw, outBuffer, outOffset );
  435. }
  436. function applyLut( lut, data, nData ) {
  437. for ( var i = 0; i < nData; ++ i ) {
  438. data[ i ] = lut[ data[ i ] ];
  439. }
  440. }
  441. function predictor( source ) {
  442. for ( var t = 1; t < source.length; t ++ ) {
  443. var d = source[ t - 1 ] + source[ t ] - 128;
  444. source[ t ] = d;
  445. }
  446. }
  447. function interleaveScalar( source, out ) {
  448. var t1 = 0;
  449. var t2 = Math.floor( ( source.length + 1 ) / 2 );
  450. var s = 0;
  451. var stop = source.length - 1;
  452. while ( true ) {
  453. if ( s > stop ) break;
  454. out[ s ++ ] = source[ t1 ++ ];
  455. if ( s > stop ) break;
  456. out[ s ++ ] = source[ t2 ++ ];
  457. }
  458. }
  459. function decodeRunLength( source ) {
  460. var size = source.byteLength;
  461. var out = new Array();
  462. var p = 0;
  463. var reader = new DataView( source );
  464. while ( size > 0 ) {
  465. var l = reader.getInt8( p ++ );
  466. if ( l < 0 ) {
  467. var count = - l;
  468. size -= count + 1;
  469. for ( var i = 0; i < count; i ++ ) {
  470. out.push( reader.getUint8( p ++ ) );
  471. }
  472. } else {
  473. var count = l;
  474. size -= 2;
  475. var value = reader.getUint8( p ++ );
  476. for ( var i = 0; i < count + 1; i ++ ) {
  477. out.push( value );
  478. }
  479. }
  480. }
  481. return out;
  482. }
  483. function lossyDctDecode( cscSet, rowPtrs, channelData, acBuffer, dcBuffer, outBuffer ) {
  484. var dataView = new DataView( outBuffer.buffer );
  485. var width = channelData[ cscSet.idx[ 0 ] ].width;
  486. var height = channelData[ cscSet.idx[ 0 ] ].height;
  487. var numComp = 3;
  488. var numFullBlocksX = Math.floor( width / 8.0 );
  489. var numBlocksX = Math.ceil( width / 8.0 );
  490. var numBlocksY = Math.ceil( height / 8.0 );
  491. var leftoverX = width - ( numBlocksX - 1 ) * 8;
  492. var leftoverY = height - ( numBlocksY - 1 ) * 8;
  493. var currAcComp = { value: 0 };
  494. var currDcComp = new Array( numComp );
  495. var dctData = new Array( numComp );
  496. var halfZigBlock = new Array( numComp );
  497. var rowBlock = new Array( numComp );
  498. var rowOffsets = new Array( numComp );
  499. for ( let comp = 0; comp < numComp; ++ comp ) {
  500. rowOffsets[ comp ] = rowPtrs[ cscSet.idx[ comp ] ];
  501. currDcComp[ comp ] = ( comp < 1 ) ? 0 : currDcComp[ comp - 1 ] + numBlocksX * numBlocksY;
  502. dctData[ comp ] = new Float32Array( 64 );
  503. halfZigBlock[ comp ] = new Uint16Array( 64 );
  504. rowBlock[ comp ] = new Uint16Array( numBlocksX * 64 );
  505. }
  506. for ( let blocky = 0; blocky < numBlocksY; ++ blocky ) {
  507. var maxY = 8;
  508. if ( blocky == numBlocksY - 1 )
  509. maxY = leftoverY;
  510. var maxX = 8;
  511. for ( let blockx = 0; blockx < numBlocksX; ++ blockx ) {
  512. if ( blockx == numBlocksX - 1 )
  513. maxX = leftoverX;
  514. for ( let comp = 0; comp < numComp; ++ comp ) {
  515. halfZigBlock[ comp ].fill( 0 );
  516. // set block DC component
  517. halfZigBlock[ comp ][ 0 ] = dcBuffer[ currDcComp[ comp ] ++ ];
  518. // set block AC components
  519. unRleAC( currAcComp, acBuffer, halfZigBlock[ comp ] );
  520. // UnZigZag block to float
  521. unZigZag( halfZigBlock[ comp ], dctData[ comp ] );
  522. // decode float dct
  523. dctInverse( dctData[ comp ] );
  524. }
  525. if ( numComp == 3 ) {
  526. csc709Inverse( dctData );
  527. }
  528. for ( let comp = 0; comp < numComp; ++ comp ) {
  529. convertToHalf( dctData[ comp ], rowBlock[ comp ], blockx * 64 );
  530. }
  531. } // blockx
  532. let offset = 0;
  533. for ( let comp = 0; comp < numComp; ++ comp ) {
  534. let type = channelData[ cscSet.idx[ comp ] ].type;
  535. for ( let y = 8 * blocky; y < 8 * blocky + maxY; ++ y ) {
  536. offset = rowOffsets[ comp ][ y ];
  537. for ( let blockx = 0; blockx < numFullBlocksX; ++ blockx ) {
  538. let src = blockx * 64 + ( ( y & 0x7 ) * 8 );
  539. dataView.setUint16( offset + 0 * INT16_SIZE * type, rowBlock[ comp ][ src + 0 ], true );
  540. dataView.setUint16( offset + 1 * INT16_SIZE * type, rowBlock[ comp ][ src + 1 ], true );
  541. dataView.setUint16( offset + 2 * INT16_SIZE * type, rowBlock[ comp ][ src + 2 ], true );
  542. dataView.setUint16( offset + 3 * INT16_SIZE * type, rowBlock[ comp ][ src + 3 ], true );
  543. dataView.setUint16( offset + 4 * INT16_SIZE * type, rowBlock[ comp ][ src + 4 ], true );
  544. dataView.setUint16( offset + 5 * INT16_SIZE * type, rowBlock[ comp ][ src + 5 ], true );
  545. dataView.setUint16( offset + 6 * INT16_SIZE * type, rowBlock[ comp ][ src + 6 ], true );
  546. dataView.setUint16( offset + 7 * INT16_SIZE * type, rowBlock[ comp ][ src + 7 ], true );
  547. offset += 8 * INT16_SIZE * type;
  548. }
  549. }
  550. // handle partial X blocks
  551. if ( numFullBlocksX != numBlocksX ) {
  552. for ( let y = 8 * blocky; y < 8 * blocky + maxY; ++ y ) {
  553. let offset = rowOffsets[ comp ][ y ] + 8 * numFullBlocksX * INT16_SIZE * type;
  554. let src = numFullBlocksX * 64 + ( ( y & 0x7 ) * 8 );
  555. for ( let x = 0; x < maxX; ++ x ) {
  556. dataView.setUint16( offset + x * INT16_SIZE * type, rowBlock[ comp ][ src + x ], true );
  557. }
  558. }
  559. }
  560. } // comp
  561. } // blocky
  562. var halfRow = new Uint16Array( width );
  563. var dataView = new DataView( outBuffer.buffer );
  564. // convert channels back to float, if needed
  565. for ( var comp = 0; comp < numComp; ++ comp ) {
  566. channelData[ cscSet.idx[ comp ] ].decoded = true;
  567. var type = channelData[ cscSet.idx[ comp ] ].type;
  568. if ( channelData[ comp ].type != 2 ) continue;
  569. for ( var y = 0; y < height; ++ y ) {
  570. let offset = rowOffsets[ comp ][ y ];
  571. for ( var x = 0; x < width; ++ x ) {
  572. halfRow[ x ] = dataView.getUint16( offset + x * INT16_SIZE * type, true );
  573. }
  574. for ( var x = 0; x < width; ++ x ) {
  575. dataView.setFloat32( offset + x * INT16_SIZE * type, decodeFloat16( halfRow[ x ] ), true );
  576. }
  577. }
  578. }
  579. }
  580. function unRleAC( currAcComp, acBuffer, halfZigBlock ) {
  581. var acValue;
  582. var dctComp = 1;
  583. while ( dctComp < 64 ) {
  584. acValue = acBuffer[ currAcComp.value ];
  585. if ( acValue == 0xff00 ) {
  586. dctComp = 64;
  587. } else if ( acValue >> 8 == 0xff ) {
  588. dctComp += acValue & 0xff;
  589. } else {
  590. halfZigBlock[ dctComp ] = acValue;
  591. dctComp ++;
  592. }
  593. currAcComp.value ++;
  594. }
  595. }
  596. function unZigZag( src, dst ) {
  597. dst[ 0 ] = decodeFloat16( src[ 0 ] );
  598. dst[ 1 ] = decodeFloat16( src[ 1 ] );
  599. dst[ 2 ] = decodeFloat16( src[ 5 ] );
  600. dst[ 3 ] = decodeFloat16( src[ 6 ] );
  601. dst[ 4 ] = decodeFloat16( src[ 14 ] );
  602. dst[ 5 ] = decodeFloat16( src[ 15 ] );
  603. dst[ 6 ] = decodeFloat16( src[ 27 ] );
  604. dst[ 7 ] = decodeFloat16( src[ 28 ] );
  605. dst[ 8 ] = decodeFloat16( src[ 2 ] );
  606. dst[ 9 ] = decodeFloat16( src[ 4 ] );
  607. dst[ 10 ] = decodeFloat16( src[ 7 ] );
  608. dst[ 11 ] = decodeFloat16( src[ 13 ] );
  609. dst[ 12 ] = decodeFloat16( src[ 16 ] );
  610. dst[ 13 ] = decodeFloat16( src[ 26 ] );
  611. dst[ 14 ] = decodeFloat16( src[ 29 ] );
  612. dst[ 15 ] = decodeFloat16( src[ 42 ] );
  613. dst[ 16 ] = decodeFloat16( src[ 3 ] );
  614. dst[ 17 ] = decodeFloat16( src[ 8 ] );
  615. dst[ 18 ] = decodeFloat16( src[ 12 ] );
  616. dst[ 19 ] = decodeFloat16( src[ 17 ] );
  617. dst[ 20 ] = decodeFloat16( src[ 25 ] );
  618. dst[ 21 ] = decodeFloat16( src[ 30 ] );
  619. dst[ 22 ] = decodeFloat16( src[ 41 ] );
  620. dst[ 23 ] = decodeFloat16( src[ 43 ] );
  621. dst[ 24 ] = decodeFloat16( src[ 9 ] );
  622. dst[ 25 ] = decodeFloat16( src[ 11 ] );
  623. dst[ 26 ] = decodeFloat16( src[ 18 ] );
  624. dst[ 27 ] = decodeFloat16( src[ 24 ] );
  625. dst[ 28 ] = decodeFloat16( src[ 31 ] );
  626. dst[ 29 ] = decodeFloat16( src[ 40 ] );
  627. dst[ 30 ] = decodeFloat16( src[ 44 ] );
  628. dst[ 31 ] = decodeFloat16( src[ 53 ] );
  629. dst[ 32 ] = decodeFloat16( src[ 10 ] );
  630. dst[ 33 ] = decodeFloat16( src[ 19 ] );
  631. dst[ 34 ] = decodeFloat16( src[ 23 ] );
  632. dst[ 35 ] = decodeFloat16( src[ 32 ] );
  633. dst[ 36 ] = decodeFloat16( src[ 39 ] );
  634. dst[ 37 ] = decodeFloat16( src[ 45 ] );
  635. dst[ 38 ] = decodeFloat16( src[ 52 ] );
  636. dst[ 39 ] = decodeFloat16( src[ 54 ] );
  637. dst[ 40 ] = decodeFloat16( src[ 20 ] );
  638. dst[ 41 ] = decodeFloat16( src[ 22 ] );
  639. dst[ 42 ] = decodeFloat16( src[ 33 ] );
  640. dst[ 43 ] = decodeFloat16( src[ 38 ] );
  641. dst[ 44 ] = decodeFloat16( src[ 46 ] );
  642. dst[ 45 ] = decodeFloat16( src[ 51 ] );
  643. dst[ 46 ] = decodeFloat16( src[ 55 ] );
  644. dst[ 47 ] = decodeFloat16( src[ 60 ] );
  645. dst[ 48 ] = decodeFloat16( src[ 21 ] );
  646. dst[ 49 ] = decodeFloat16( src[ 34 ] );
  647. dst[ 50 ] = decodeFloat16( src[ 37 ] );
  648. dst[ 51 ] = decodeFloat16( src[ 47 ] );
  649. dst[ 52 ] = decodeFloat16( src[ 50 ] );
  650. dst[ 53 ] = decodeFloat16( src[ 56 ] );
  651. dst[ 54 ] = decodeFloat16( src[ 59 ] );
  652. dst[ 55 ] = decodeFloat16( src[ 61 ] );
  653. dst[ 56 ] = decodeFloat16( src[ 35 ] );
  654. dst[ 57 ] = decodeFloat16( src[ 36 ] );
  655. dst[ 58 ] = decodeFloat16( src[ 48 ] );
  656. dst[ 59 ] = decodeFloat16( src[ 49 ] );
  657. dst[ 60 ] = decodeFloat16( src[ 57 ] );
  658. dst[ 61 ] = decodeFloat16( src[ 58 ] );
  659. dst[ 62 ] = decodeFloat16( src[ 62 ] );
  660. dst[ 63 ] = decodeFloat16( src[ 63 ] );
  661. }
  662. function dctInverse( data ) {
  663. const a = 0.5 * Math.cos( 3.14159 / 4.0 );
  664. const b = 0.5 * Math.cos( 3.14159 / 16.0 );
  665. const c = 0.5 * Math.cos( 3.14159 / 8.0 );
  666. const d = 0.5 * Math.cos( 3.0 * 3.14159 / 16.0 );
  667. const e = 0.5 * Math.cos( 5.0 * 3.14159 / 16.0 );
  668. const f = 0.5 * Math.cos( 3.0 * 3.14159 / 8.0 );
  669. const g = 0.5 * Math.cos( 7.0 * 3.14159 / 16.0 );
  670. var alpha = new Array( 4 );
  671. var beta = new Array( 4 );
  672. var theta = new Array( 4 );
  673. var gamma = new Array( 4 );
  674. for ( var row = 0; row < 8; ++ row ) {
  675. var rowPtr = row * 8;
  676. alpha[ 0 ] = c * data[ rowPtr + 2 ];
  677. alpha[ 1 ] = f * data[ rowPtr + 2 ];
  678. alpha[ 2 ] = c * data[ rowPtr + 6 ];
  679. alpha[ 3 ] = f * data[ rowPtr + 6 ];
  680. beta[ 0 ] = b * data[ rowPtr + 1 ] + d * data[ rowPtr + 3 ] + e * data[ rowPtr + 5 ] + g * data[ rowPtr + 7 ];
  681. beta[ 1 ] = d * data[ rowPtr + 1 ] - g * data[ rowPtr + 3 ] - b * data[ rowPtr + 5 ] - e * data[ rowPtr + 7 ];
  682. beta[ 2 ] = e * data[ rowPtr + 1 ] - b * data[ rowPtr + 3 ] + g * data[ rowPtr + 5 ] + d * data[ rowPtr + 7 ];
  683. beta[ 3 ] = g * data[ rowPtr + 1 ] - e * data[ rowPtr + 3 ] + d * data[ rowPtr + 5 ] - b * data[ rowPtr + 7 ];
  684. theta[ 0 ] = a * ( data[ rowPtr + 0 ] + data[ rowPtr + 4 ] );
  685. theta[ 3 ] = a * ( data[ rowPtr + 0 ] - data[ rowPtr + 4 ] );
  686. theta[ 1 ] = alpha[ 0 ] + alpha[ 3 ];
  687. theta[ 2 ] = alpha[ 1 ] - alpha[ 2 ];
  688. gamma[ 0 ] = theta[ 0 ] + theta[ 1 ];
  689. gamma[ 1 ] = theta[ 3 ] + theta[ 2 ];
  690. gamma[ 2 ] = theta[ 3 ] - theta[ 2 ];
  691. gamma[ 3 ] = theta[ 0 ] - theta[ 1 ];
  692. data[ rowPtr + 0 ] = gamma[ 0 ] + beta[ 0 ];
  693. data[ rowPtr + 1 ] = gamma[ 1 ] + beta[ 1 ];
  694. data[ rowPtr + 2 ] = gamma[ 2 ] + beta[ 2 ];
  695. data[ rowPtr + 3 ] = gamma[ 3 ] + beta[ 3 ];
  696. data[ rowPtr + 4 ] = gamma[ 3 ] - beta[ 3 ];
  697. data[ rowPtr + 5 ] = gamma[ 2 ] - beta[ 2 ];
  698. data[ rowPtr + 6 ] = gamma[ 1 ] - beta[ 1 ];
  699. data[ rowPtr + 7 ] = gamma[ 0 ] - beta[ 0 ];
  700. }
  701. for ( var column = 0; column < 8; ++ column ) {
  702. alpha[ 0 ] = c * data[ 16 + column ];
  703. alpha[ 1 ] = f * data[ 16 + column ];
  704. alpha[ 2 ] = c * data[ 48 + column ];
  705. alpha[ 3 ] = f * data[ 48 + column ];
  706. beta[ 0 ] = b * data[ 8 + column ] + d * data[ 24 + column ] + e * data[ 40 + column ] + g * data[ 56 + column ];
  707. beta[ 1 ] = d * data[ 8 + column ] - g * data[ 24 + column ] - b * data[ 40 + column ] - e * data[ 56 + column ];
  708. beta[ 2 ] = e * data[ 8 + column ] - b * data[ 24 + column ] + g * data[ 40 + column ] + d * data[ 56 + column ];
  709. beta[ 3 ] = g * data[ 8 + column ] - e * data[ 24 + column ] + d * data[ 40 + column ] - b * data[ 56 + column ];
  710. theta[ 0 ] = a * ( data[ column ] + data[ 32 + column ] );
  711. theta[ 3 ] = a * ( data[ column ] - data[ 32 + column ] );
  712. theta[ 1 ] = alpha[ 0 ] + alpha[ 3 ];
  713. theta[ 2 ] = alpha[ 1 ] - alpha[ 2 ];
  714. gamma[ 0 ] = theta[ 0 ] + theta[ 1 ];
  715. gamma[ 1 ] = theta[ 3 ] + theta[ 2 ];
  716. gamma[ 2 ] = theta[ 3 ] - theta[ 2 ];
  717. gamma[ 3 ] = theta[ 0 ] - theta[ 1 ];
  718. data[ 0 + column ] = gamma[ 0 ] + beta[ 0 ];
  719. data[ 8 + column ] = gamma[ 1 ] + beta[ 1 ];
  720. data[ 16 + column ] = gamma[ 2 ] + beta[ 2 ];
  721. data[ 24 + column ] = gamma[ 3 ] + beta[ 3 ];
  722. data[ 32 + column ] = gamma[ 3 ] - beta[ 3 ];
  723. data[ 40 + column ] = gamma[ 2 ] - beta[ 2 ];
  724. data[ 48 + column ] = gamma[ 1 ] - beta[ 1 ];
  725. data[ 56 + column ] = gamma[ 0 ] - beta[ 0 ];
  726. }
  727. }
  728. function csc709Inverse( data ) {
  729. for ( var i = 0; i < 64; ++ i ) {
  730. var y = data[ 0 ][ i ];
  731. var cb = data[ 1 ][ i ];
  732. var cr = data[ 2 ][ i ];
  733. data[ 0 ][ i ] = y + 1.5747 * cr;
  734. data[ 1 ][ i ] = y - 0.1873 * cb - 0.4682 * cr;
  735. data[ 2 ][ i ] = y + 1.8556 * cb;
  736. }
  737. }
  738. function convertToHalf( src, dst, idx ) {
  739. for ( var i = 0; i < 64; ++ i ) {
  740. dst[ idx + i ] = encodeFloat16( toLinear( src[ i ] ) );
  741. }
  742. }
  743. function toLinear( float ) {
  744. if ( float <= 1 ) {
  745. return Math.sign( float ) * Math.pow( Math.abs( float ), 2.2 );
  746. } else {
  747. return Math.sign( float ) * Math.pow( logBase, Math.abs( float ) - 1.0 );
  748. }
  749. }
  750. function uncompressRAW( info ) {
  751. return new DataView( info.array.buffer, info.offset.value, info.size );
  752. }
  753. function uncompressRLE( info ) {
  754. var compressed = info.viewer.buffer.slice( info.offset.value, info.offset.value + info.size );
  755. var rawBuffer = new Uint8Array( decodeRunLength( compressed ) );
  756. var tmpBuffer = new Uint8Array( rawBuffer.length );
  757. predictor( rawBuffer ); // revert predictor
  758. interleaveScalar( rawBuffer, tmpBuffer ); // interleave pixels
  759. return new DataView( tmpBuffer.buffer );
  760. }
  761. function uncompressZIP( info ) {
  762. var compressed = info.array.slice( info.offset.value, info.offset.value + info.size );
  763. if ( typeof Zlib === 'undefined' ) {
  764. console.error( 'THREE.EXRLoader: External library Inflate.min.js required, obtain or import from https://github.com/imaya/zlib.js' );
  765. }
  766. var inflate = new Zlib.Inflate( compressed, { resize: true, verify: true } ); // eslint-disable-line no-undef
  767. var rawBuffer = new Uint8Array( inflate.decompress().buffer );
  768. var tmpBuffer = new Uint8Array( rawBuffer.length );
  769. predictor( rawBuffer ); // revert predictor
  770. interleaveScalar( rawBuffer, tmpBuffer ); // interleave pixels
  771. return new DataView( tmpBuffer.buffer );
  772. }
  773. function uncompressPIZ( info ) {
  774. var inDataView = info.viewer;
  775. var inOffset = { value: info.offset.value };
  776. var tmpBufSize = info.width * scanlineBlockSize * ( EXRHeader.channels.length * info.type );
  777. var outBuffer = new Uint16Array( tmpBufSize );
  778. var bitmap = new Uint8Array( BITMAP_SIZE );
  779. // Setup channel info
  780. var outBufferEnd = 0;
  781. var pizChannelData = new Array( info.channels );
  782. for ( var i = 0; i < info.channels; i ++ ) {
  783. pizChannelData[ i ] = {};
  784. pizChannelData[ i ][ 'start' ] = outBufferEnd;
  785. pizChannelData[ i ][ 'end' ] = pizChannelData[ i ][ 'start' ];
  786. pizChannelData[ i ][ 'nx' ] = info.width;
  787. pizChannelData[ i ][ 'ny' ] = info.lines;
  788. pizChannelData[ i ][ 'size' ] = info.type;
  789. outBufferEnd += pizChannelData[ i ].nx * pizChannelData[ i ].ny * pizChannelData[ i ].size;
  790. }
  791. // Read range compression data
  792. var minNonZero = parseUint16( inDataView, inOffset );
  793. var maxNonZero = parseUint16( inDataView, inOffset );
  794. if ( maxNonZero >= BITMAP_SIZE ) {
  795. throw 'Something is wrong with PIZ_COMPRESSION BITMAP_SIZE';
  796. }
  797. if ( minNonZero <= maxNonZero ) {
  798. for ( var i = 0; i < maxNonZero - minNonZero + 1; i ++ ) {
  799. bitmap[ i + minNonZero ] = parseUint8( inDataView, inOffset );
  800. }
  801. }
  802. // Reverse LUT
  803. var lut = new Uint16Array( USHORT_RANGE );
  804. reverseLutFromBitmap( bitmap, lut );
  805. var length = parseUint32( inDataView, inOffset );
  806. // Huffman decoding
  807. hufUncompress( info.array, inDataView, inOffset, length, outBuffer, outBufferEnd );
  808. // Wavelet decoding
  809. for ( var i = 0; i < info.channels; ++ i ) {
  810. var cd = pizChannelData[ i ];
  811. for ( var j = 0; j < pizChannelData[ i ].size; ++ j ) {
  812. wav2Decode(
  813. outBuffer,
  814. cd.start + j,
  815. cd.nx,
  816. cd.size,
  817. cd.ny,
  818. cd.nx * cd.size
  819. );
  820. }
  821. }
  822. // Expand the pixel data to their original range
  823. applyLut( lut, outBuffer, outBufferEnd );
  824. // Rearrange the pixel data into the format expected by the caller.
  825. var tmpOffset = 0;
  826. var tmpBuffer = new Uint8Array( outBuffer.buffer.byteLength );
  827. for ( var y = 0; y < info.lines; y ++ ) {
  828. for ( var c = 0; c < info.channels; c ++ ) {
  829. var cd = pizChannelData[ c ];
  830. var n = cd.nx * cd.size;
  831. var cp = new Uint8Array( outBuffer.buffer, cd.end * INT16_SIZE, n * INT16_SIZE );
  832. tmpBuffer.set( cp, tmpOffset );
  833. tmpOffset += n * INT16_SIZE;
  834. cd.end += n;
  835. }
  836. }
  837. return new DataView( tmpBuffer.buffer );
  838. }
  839. function uncompressDWA( info ) {
  840. var inDataView = info.viewer;
  841. var inOffset = { value: info.offset.value };
  842. var outBuffer = new Uint8Array( info.width * info.lines * ( EXRHeader.channels.length * info.type * INT16_SIZE ) );
  843. // Read compression header information
  844. var dwaHeader = {
  845. version: parseInt64( inDataView, inOffset ),
  846. unknownUncompressedSize: parseInt64( inDataView, inOffset ),
  847. unknownCompressedSize: parseInt64( inDataView, inOffset ),
  848. acCompressedSize: parseInt64( inDataView, inOffset ),
  849. dcCompressedSize: parseInt64( inDataView, inOffset ),
  850. rleCompressedSize: parseInt64( inDataView, inOffset ),
  851. rleUncompressedSize: parseInt64( inDataView, inOffset ),
  852. rleRawSize: parseInt64( inDataView, inOffset ),
  853. totalAcUncompressedCount: parseInt64( inDataView, inOffset ),
  854. totalDcUncompressedCount: parseInt64( inDataView, inOffset ),
  855. acCompression: parseInt64( inDataView, inOffset )
  856. };
  857. if ( dwaHeader.version < 2 )
  858. throw 'EXRLoader.parse: ' + EXRHeader.compression + ' version ' + dwaHeader.version + ' is unsupported';
  859. // Read channel ruleset information
  860. var channelRules = new Array();
  861. var ruleSize = parseUint16( inDataView, inOffset ) - INT16_SIZE;
  862. while ( ruleSize > 0 ) {
  863. var name = parseNullTerminatedString( inDataView.buffer, inOffset );
  864. var value = parseUint8( inDataView, inOffset );
  865. var compression = ( value >> 2 ) & 3;
  866. var csc = ( value >> 4 ) - 1;
  867. var index = new Int8Array( [ csc ] )[ 0 ];
  868. var type = parseUint8( inDataView, inOffset );
  869. channelRules.push( {
  870. name: name,
  871. index: index,
  872. type: type,
  873. compression: compression,
  874. } );
  875. ruleSize -= name.length + 3;
  876. }
  877. // Classify channels
  878. var channels = EXRHeader.channels;
  879. var channelData = new Array( info.channels );
  880. for ( var i = 0; i < info.channels; ++ i ) {
  881. var cd = channelData[ i ] = {};
  882. var channel = channels[ i ];
  883. cd.name = channel.name;
  884. cd.compression = UNKNOWN;
  885. cd.decoded = false;
  886. cd.type = channel.pixelType;
  887. cd.pLinear = channel.pLinear;
  888. cd.width = info.width;
  889. cd.height = info.lines;
  890. }
  891. var cscSet = {
  892. idx: new Array( 3 )
  893. };
  894. for ( var offset = 0; offset < info.channels; ++ offset ) {
  895. var cd = channelData[ offset ];
  896. for ( var i = 0; i < channelRules.length; ++ i ) {
  897. var rule = channelRules[ i ];
  898. if ( cd.name == rule.name ) {
  899. cd.compression = rule.compression;
  900. if ( rule.index >= 0 ) {
  901. cscSet.idx[ rule.index ] = offset;
  902. }
  903. cd.offset = offset;
  904. }
  905. }
  906. }
  907. // Read DCT - AC component data
  908. if ( dwaHeader.acCompressedSize > 0 ) {
  909. switch ( dwaHeader.acCompression ) {
  910. case STATIC_HUFFMAN:
  911. var acBuffer = new Uint16Array( dwaHeader.totalAcUncompressedCount );
  912. hufUncompress( info.array, inDataView, inOffset, dwaHeader.acCompressedSize, acBuffer, dwaHeader.totalAcUncompressedCount );
  913. break;
  914. case DEFLATE:
  915. var compressed = info.array.slice( inOffset.value, inOffset.value + dwaHeader.totalAcUncompressedCount );
  916. var inflate = new Zlib.Inflate( compressed, { resize: true, verify: true } );
  917. var acBuffer = new Uint16Array( inflate.decompress().buffer );
  918. inOffset.value += dwaHeader.totalAcUncompressedCount;
  919. break;
  920. }
  921. }
  922. // Read DCT - DC component data
  923. if ( dwaHeader.dcCompressedSize > 0 ) {
  924. var zlibInfo = {
  925. array: info.array,
  926. offset: inOffset,
  927. size: dwaHeader.dcCompressedSize
  928. };
  929. var dcBuffer = new Uint16Array( uncompressZIP( zlibInfo ).buffer );
  930. inOffset.value += dwaHeader.dcCompressedSize;
  931. }
  932. // Read RLE compressed data
  933. if ( dwaHeader.rleRawSize > 0 ) {
  934. var compressed = info.array.slice( inOffset.value, inOffset.value + dwaHeader.rleCompressedSize );
  935. var inflate = new Zlib.Inflate( compressed, { resize: true, verify: true } );
  936. var rleBuffer = decodeRunLength( inflate.decompress().buffer );
  937. inOffset.value += dwaHeader.rleCompressedSize;
  938. }
  939. // Prepare outbuffer data offset
  940. var outBufferEnd = 0;
  941. var rowOffsets = new Array( channelData.length );
  942. for ( var i = 0; i < rowOffsets.length; ++ i ) {
  943. rowOffsets[ i ] = new Array();
  944. }
  945. for ( var y = 0; y < info.lines; ++ y ) {
  946. for ( var chan = 0; chan < channelData.length; ++ chan ) {
  947. rowOffsets[ chan ].push( outBufferEnd );
  948. outBufferEnd += channelData[ chan ].width * info.type * INT16_SIZE;
  949. }
  950. }
  951. // Lossy DCT decode RGB channels
  952. lossyDctDecode( cscSet, rowOffsets, channelData, acBuffer, dcBuffer, outBuffer );
  953. // Decode other channels
  954. for ( var i = 0; i < channelData.length; ++ i ) {
  955. var cd = channelData[ i ];
  956. if ( cd.decoded ) continue;
  957. switch ( cd.compression ) {
  958. case RLE:
  959. var row = 0;
  960. var rleOffset = 0;
  961. for ( var y = 0; y < info.lines; ++ y ) {
  962. var rowOffsetBytes = rowOffsets[ i ][ row ];
  963. for ( var x = 0; x < cd.width; ++ x ) {
  964. for ( var byte = 0; byte < INT16_SIZE * cd.type; ++ byte ) {
  965. outBuffer[ rowOffsetBytes ++ ] = rleBuffer[ rleOffset + byte * cd.width * cd.height ];
  966. }
  967. rleOffset ++;
  968. }
  969. row ++;
  970. }
  971. break;
  972. case LOSSY_DCT: // skip
  973. default:
  974. throw 'EXRLoader.parse: unsupported channel compression';
  975. }
  976. }
  977. return new DataView( outBuffer.buffer );
  978. }
  979. function parseNullTerminatedString( buffer, offset ) {
  980. var uintBuffer = new Uint8Array( buffer );
  981. var endOffset = 0;
  982. while ( uintBuffer[ offset.value + endOffset ] != 0 ) {
  983. endOffset += 1;
  984. }
  985. var stringValue = new TextDecoder().decode(
  986. uintBuffer.slice( offset.value, offset.value + endOffset )
  987. );
  988. offset.value = offset.value + endOffset + 1;
  989. return stringValue;
  990. }
  991. function parseFixedLengthString( buffer, offset, size ) {
  992. var stringValue = new TextDecoder().decode(
  993. new Uint8Array( buffer ).slice( offset.value, offset.value + size )
  994. );
  995. offset.value = offset.value + size;
  996. return stringValue;
  997. }
  998. function parseUlong( dataView, offset ) {
  999. var uLong = dataView.getUint32( 0, true );
  1000. offset.value = offset.value + ULONG_SIZE;
  1001. return uLong;
  1002. }
  1003. function parseRational( dataView, offset ) {
  1004. var x = parseInt32( dataView, offset );
  1005. var y = parseUint32( dataView, offset );
  1006. return [ x, y ];
  1007. }
  1008. function parseTimecode( dataView, offset ) {
  1009. var x = parseUint32( dataView, offset );
  1010. var y = parseUint32( dataView, offset );
  1011. return [ x, y ];
  1012. }
  1013. function parseInt32( dataView, offset ) {
  1014. var Int32 = dataView.getInt32( offset.value, true );
  1015. offset.value = offset.value + INT32_SIZE;
  1016. return Int32;
  1017. }
  1018. function parseUint32( dataView, offset ) {
  1019. var Uint32 = dataView.getUint32( offset.value, true );
  1020. offset.value = offset.value + INT32_SIZE;
  1021. return Uint32;
  1022. }
  1023. function parseUint8Array( uInt8Array, offset ) {
  1024. var Uint8 = uInt8Array[ offset.value ];
  1025. offset.value = offset.value + INT8_SIZE;
  1026. return Uint8;
  1027. }
  1028. function parseUint8( dataView, offset ) {
  1029. var Uint8 = dataView.getUint8( offset.value );
  1030. offset.value = offset.value + INT8_SIZE;
  1031. return Uint8;
  1032. }
  1033. function parseInt64( dataView, offset ) {
  1034. var int = Number( dataView.getBigInt64( offset.value, true ) );
  1035. offset.value += ULONG_SIZE;
  1036. return int;
  1037. }
  1038. function parseFloat32( dataView, offset ) {
  1039. var float = dataView.getFloat32( offset.value, true );
  1040. offset.value += FLOAT32_SIZE;
  1041. return float;
  1042. }
  1043. function decodeFloat32( dataView, offset ) {
  1044. return encodeFloat16( parseFloat32( dataView, offset ) );
  1045. }
  1046. // https://stackoverflow.com/questions/5678432/decompressing-half-precision-floats-in-javascript
  1047. function decodeFloat16( binary ) {
  1048. var exponent = ( binary & 0x7C00 ) >> 10,
  1049. fraction = binary & 0x03FF;
  1050. return ( binary >> 15 ? - 1 : 1 ) * (
  1051. exponent ?
  1052. (
  1053. exponent === 0x1F ?
  1054. fraction ? NaN : Infinity :
  1055. Math.pow( 2, exponent - 15 ) * ( 1 + fraction / 0x400 )
  1056. ) :
  1057. 6.103515625e-5 * ( fraction / 0x400 )
  1058. );
  1059. }
  1060. // http://gamedev.stackexchange.com/questions/17326/conversion-of-a-number-from-single-precision-floating-point-representation-to-a/17410#17410
  1061. function encodeFloat16( val ) {
  1062. /* This method is faster than the OpenEXR implementation (very often
  1063. * used, eg. in Ogre), with the additional benefit of rounding, inspired
  1064. * by James Tursa?s half-precision code.
  1065. */
  1066. tmpDataView.setFloat32( 0, val );
  1067. var x = tmpDataView.getInt32( 0 );
  1068. var bits = ( x >> 16 ) & 0x8000; /* Get the sign */
  1069. var m = ( x >> 12 ) & 0x07ff; /* Keep one extra bit for rounding */
  1070. var e = ( x >> 23 ) & 0xff; /* Using int is faster here */
  1071. /* If zero, or denormal, or exponent underflows too much for a denormal
  1072. * half, return signed zero. */
  1073. if ( e < 103 ) return bits;
  1074. /* If NaN, return NaN. If Inf or exponent overflow, return Inf. */
  1075. if ( e > 142 ) {
  1076. bits |= 0x7c00;
  1077. /* If exponent was 0xff and one mantissa bit was set, it means NaN,
  1078. * not Inf, so make sure we set one mantissa bit too. */
  1079. bits |= ( ( e == 255 ) ? 0 : 1 ) && ( x & 0x007fffff );
  1080. return bits;
  1081. }
  1082. /* If exponent underflows but not too much, return a denormal */
  1083. if ( e < 113 ) {
  1084. m |= 0x0800;
  1085. /* Extra rounding may overflow and set mantissa to 0 and exponent
  1086. * to 1, which is OK. */
  1087. bits |= ( m >> ( 114 - e ) ) + ( ( m >> ( 113 - e ) ) & 1 );
  1088. return bits;
  1089. }
  1090. bits |= ( ( e - 112 ) << 10 ) | ( m >> 1 );
  1091. /* Extra rounding. An overflow will set mantissa to 0 and increment
  1092. * the exponent, which is OK. */
  1093. bits += m & 1;
  1094. return bits;
  1095. }
  1096. function parseUint16( dataView, offset ) {
  1097. var Uint16 = dataView.getUint16( offset.value, true );
  1098. offset.value += INT16_SIZE;
  1099. return Uint16;
  1100. }
  1101. function parseFloat16( buffer, offset ) {
  1102. return decodeFloat16( parseUint16( buffer, offset ) );
  1103. }
  1104. function parseChlist( dataView, buffer, offset, size ) {
  1105. var startOffset = offset.value;
  1106. var channels = [];
  1107. while ( offset.value < ( startOffset + size - 1 ) ) {
  1108. var name = parseNullTerminatedString( buffer, offset );
  1109. var pixelType = parseInt32( dataView, offset );
  1110. var pLinear = parseUint8( dataView, offset );
  1111. offset.value += 3; // reserved, three chars
  1112. var xSampling = parseInt32( dataView, offset );
  1113. var ySampling = parseInt32( dataView, offset );
  1114. channels.push( {
  1115. name: name,
  1116. pixelType: pixelType,
  1117. pLinear: pLinear,
  1118. xSampling: xSampling,
  1119. ySampling: ySampling
  1120. } );
  1121. }
  1122. offset.value += 1;
  1123. return channels;
  1124. }
  1125. function parseChromaticities( dataView, offset ) {
  1126. var redX = parseFloat32( dataView, offset );
  1127. var redY = parseFloat32( dataView, offset );
  1128. var greenX = parseFloat32( dataView, offset );
  1129. var greenY = parseFloat32( dataView, offset );
  1130. var blueX = parseFloat32( dataView, offset );
  1131. var blueY = parseFloat32( dataView, offset );
  1132. var whiteX = parseFloat32( dataView, offset );
  1133. var whiteY = parseFloat32( dataView, offset );
  1134. return { redX: redX, redY: redY, greenX: greenX, greenY: greenY, blueX: blueX, blueY: blueY, whiteX: whiteX, whiteY: whiteY };
  1135. }
  1136. function parseCompression( dataView, offset ) {
  1137. var compressionCodes = [
  1138. 'NO_COMPRESSION',
  1139. 'RLE_COMPRESSION',
  1140. 'ZIPS_COMPRESSION',
  1141. 'ZIP_COMPRESSION',
  1142. 'PIZ_COMPRESSION',
  1143. 'PXR24_COMPRESSION',
  1144. 'B44_COMPRESSION',
  1145. 'B44A_COMPRESSION',
  1146. 'DWAA_COMPRESSION',
  1147. 'DWAB_COMPRESSION'
  1148. ];
  1149. var compression = parseUint8( dataView, offset );
  1150. return compressionCodes[ compression ];
  1151. }
  1152. function parseBox2i( dataView, offset ) {
  1153. var xMin = parseUint32( dataView, offset );
  1154. var yMin = parseUint32( dataView, offset );
  1155. var xMax = parseUint32( dataView, offset );
  1156. var yMax = parseUint32( dataView, offset );
  1157. return { xMin: xMin, yMin: yMin, xMax: xMax, yMax: yMax };
  1158. }
  1159. function parseLineOrder( dataView, offset ) {
  1160. var lineOrders = [
  1161. 'INCREASING_Y'
  1162. ];
  1163. var lineOrder = parseUint8( dataView, offset );
  1164. return lineOrders[ lineOrder ];
  1165. }
  1166. function parseV2f( dataView, offset ) {
  1167. var x = parseFloat32( dataView, offset );
  1168. var y = parseFloat32( dataView, offset );
  1169. return [ x, y ];
  1170. }
  1171. function parseValue( dataView, buffer, offset, type, size ) {
  1172. if ( type === 'string' || type === 'stringvector' || type === 'iccProfile' ) {
  1173. return parseFixedLengthString( buffer, offset, size );
  1174. } else if ( type === 'chlist' ) {
  1175. return parseChlist( dataView, buffer, offset, size );
  1176. } else if ( type === 'chromaticities' ) {
  1177. return parseChromaticities( dataView, offset );
  1178. } else if ( type === 'compression' ) {
  1179. return parseCompression( dataView, offset );
  1180. } else if ( type === 'box2i' ) {
  1181. return parseBox2i( dataView, offset );
  1182. } else if ( type === 'lineOrder' ) {
  1183. return parseLineOrder( dataView, offset );
  1184. } else if ( type === 'float' ) {
  1185. return parseFloat32( dataView, offset );
  1186. } else if ( type === 'v2f' ) {
  1187. return parseV2f( dataView, offset );
  1188. } else if ( type === 'int' ) {
  1189. return parseInt32( dataView, offset );
  1190. } else if ( type === 'rational' ) {
  1191. return parseRational( dataView, offset );
  1192. } else if ( type === 'timecode' ) {
  1193. return parseTimecode( dataView, offset );
  1194. } else {
  1195. throw 'Cannot parse value for unsupported type: ' + type;
  1196. }
  1197. }
  1198. var bufferDataView = new DataView( buffer );
  1199. var uInt8Array = new Uint8Array( buffer );
  1200. var EXRHeader = {};
  1201. bufferDataView.getUint32( 0, true ); // magic
  1202. bufferDataView.getUint8( 4, true ); // versionByteZero
  1203. bufferDataView.getUint8( 5, true ); // fullMask
  1204. // start of header
  1205. var offset = { value: 8 }; // start at 8, after magic stuff
  1206. var keepReading = true;
  1207. while ( keepReading ) {
  1208. var attributeName = parseNullTerminatedString( buffer, offset );
  1209. if ( attributeName == 0 ) {
  1210. keepReading = false;
  1211. } else {
  1212. var attributeType = parseNullTerminatedString( buffer, offset );
  1213. var attributeSize = parseUint32( bufferDataView, offset );
  1214. var attributeValue = parseValue( bufferDataView, buffer, offset, attributeType, attributeSize );
  1215. EXRHeader[ attributeName ] = attributeValue;
  1216. }
  1217. }
  1218. // offsets
  1219. var dataWindowHeight = EXRHeader.dataWindow.yMax + 1;
  1220. var uncompress;
  1221. var scanlineBlockSize;
  1222. switch ( EXRHeader.compression ) {
  1223. case 'NO_COMPRESSION':
  1224. scanlineBlockSize = 1;
  1225. uncompress = uncompressRAW;
  1226. break;
  1227. case 'RLE_COMPRESSION':
  1228. scanlineBlockSize = 1;
  1229. uncompress = uncompressRLE;
  1230. break;
  1231. case 'ZIPS_COMPRESSION':
  1232. scanlineBlockSize = 1;
  1233. uncompress = uncompressZIP;
  1234. break;
  1235. case 'ZIP_COMPRESSION':
  1236. scanlineBlockSize = 16;
  1237. uncompress = uncompressZIP;
  1238. break;
  1239. case 'PIZ_COMPRESSION':
  1240. scanlineBlockSize = 32;
  1241. uncompress = uncompressPIZ;
  1242. break;
  1243. case 'DWAA_COMPRESSION':
  1244. scanlineBlockSize = 32;
  1245. uncompress = uncompressDWA;
  1246. break;
  1247. case 'DWAB_COMPRESSION':
  1248. scanlineBlockSize = 256;
  1249. uncompress = uncompressDWA;
  1250. break;
  1251. default:
  1252. throw 'EXRLoader.parse: ' + EXRHeader.compression + ' is unsupported';
  1253. }
  1254. var size_t;
  1255. var getValue;
  1256. // mixed pixelType not supported
  1257. var pixelType = EXRHeader.channels[ 0 ].pixelType;
  1258. if ( pixelType === 1 ) { // half
  1259. switch ( this.type ) {
  1260. case THREE.UnsignedByteType:
  1261. case THREE.FloatType:
  1262. getValue = parseFloat16;
  1263. size_t = INT16_SIZE;
  1264. break;
  1265. case THREE.HalfFloatType:
  1266. getValue = parseUint16;
  1267. size_t = INT16_SIZE;
  1268. break;
  1269. }
  1270. } else if ( pixelType === 2 ) { // float
  1271. switch ( this.type ) {
  1272. case THREE.UnsignedByteType:
  1273. case THREE.FloatType:
  1274. getValue = parseFloat32;
  1275. size_t = FLOAT32_SIZE;
  1276. break;
  1277. case THREE.HalfFloatType:
  1278. getValue = decodeFloat32;
  1279. size_t = FLOAT32_SIZE;
  1280. }
  1281. } else {
  1282. throw 'EXRLoader.parse: unsupported pixelType ' + pixelType + ' for ' + EXRHeader.compression + '.';
  1283. }
  1284. var numBlocks = dataWindowHeight / scanlineBlockSize;
  1285. for ( var i = 0; i < numBlocks; i ++ ) {
  1286. parseUlong( bufferDataView, offset ); // scanlineOffset
  1287. }
  1288. // we should be passed the scanline offset table, start reading pixel data
  1289. var width = EXRHeader.dataWindow.xMax - EXRHeader.dataWindow.xMin + 1;
  1290. var height = EXRHeader.dataWindow.yMax - EXRHeader.dataWindow.yMin + 1;
  1291. // Firefox only supports RGBA (half) float textures
  1292. // var numChannels = EXRHeader.channels.length;
  1293. var numChannels = 4;
  1294. var size = width * height * numChannels;
  1295. // Fill initially with 1s for the alpha value if the texture is not RGBA, RGB values will be overwritten
  1296. switch ( this.type ) {
  1297. case THREE.UnsignedByteType:
  1298. case THREE.FloatType:
  1299. var byteArray = new Float32Array( size );
  1300. if ( EXRHeader.channels.length < numChannels ) {
  1301. byteArray.fill( 1, 0, size );
  1302. }
  1303. break;
  1304. case THREE.HalfFloatType:
  1305. var byteArray = new Uint16Array( size );
  1306. if ( EXRHeader.channels.length < numChannels ) {
  1307. byteArray.fill( 0x3C00, 0, size ); // Uint16Array holds half float data, 0x3C00 is 1
  1308. }
  1309. break;
  1310. default:
  1311. console.error( 'THREE.EXRLoader: unsupported type: ', this.type );
  1312. break;
  1313. }
  1314. var channelOffsets = {
  1315. R: 0,
  1316. G: 1,
  1317. B: 2,
  1318. A: 3
  1319. };
  1320. var compressionInfo = {
  1321. size: 0,
  1322. width: width,
  1323. lines: scanlineBlockSize,
  1324. offset: offset,
  1325. array: uInt8Array,
  1326. viewer: bufferDataView,
  1327. type: pixelType,
  1328. channels: EXRHeader.channels.length,
  1329. };
  1330. var line;
  1331. var size;
  1332. var viewer;
  1333. var tmpOffset = { value: 0 };
  1334. for ( var scanlineBlockIdx = 0; scanlineBlockIdx < height / scanlineBlockSize; scanlineBlockIdx ++ ) {
  1335. line = parseUint32( bufferDataView, offset ); // line_no
  1336. size = parseUint32( bufferDataView, offset ); // data_len
  1337. compressionInfo.lines = ( line + scanlineBlockSize > height ) ? height - line : scanlineBlockSize;
  1338. compressionInfo.offset = offset;
  1339. compressionInfo.size = size;
  1340. viewer = uncompress( compressionInfo );
  1341. offset.value += size;
  1342. for ( var line_y = 0; line_y < scanlineBlockSize; line_y ++ ) {
  1343. var true_y = line_y + ( scanlineBlockIdx * scanlineBlockSize );
  1344. if ( true_y >= height ) break;
  1345. for ( var channelID = 0; channelID < EXRHeader.channels.length; channelID ++ ) {
  1346. var cOff = channelOffsets[ EXRHeader.channels[ channelID ].name ];
  1347. for ( var x = 0; x < width; x ++ ) {
  1348. var idx = ( line_y * ( EXRHeader.channels.length * width ) ) + ( channelID * width ) + x;
  1349. tmpOffset.value = idx * size_t;
  1350. var val = getValue( viewer, tmpOffset );
  1351. byteArray[ ( ( ( height - 1 - true_y ) * ( width * numChannels ) ) + ( x * numChannels ) ) + cOff ] = val;
  1352. }
  1353. }
  1354. }
  1355. }
  1356. if ( this.type === THREE.UnsignedByteType ) {
  1357. let v, i, j;
  1358. const size = byteArray.length;
  1359. const RGBEArray = new Uint8Array( size );
  1360. for ( let h = 0; h < height; ++ h ) {
  1361. for ( let w = 0; w < width; ++ w ) {
  1362. i = h * width * 4 + w * 4;
  1363. j = ( height - 1 - h ) * width * 4 + w * 4;
  1364. const red = byteArray[ j ];
  1365. const green = byteArray[ j + 1 ];
  1366. const blue = byteArray[ j + 2 ];
  1367. v = ( red > green ) ? red : green;
  1368. v = ( blue > v ) ? blue : v;
  1369. if ( v < 1e-32 ) {
  1370. RGBEArray[ i ] = RGBEArray[ i + 1 ] = RGBEArray[ i + 2 ] = RGBEArray[ i + 3 ] = 0;
  1371. } else {
  1372. const res = frexp( v );
  1373. v = res[ 0 ] * 256 / v;
  1374. RGBEArray[ i ] = red * v;
  1375. RGBEArray[ i + 1 ] = green * v;
  1376. RGBEArray[ i + 2 ] = blue * v;
  1377. RGBEArray[ i + 3 ] = res[ 1 ] + 128;
  1378. }
  1379. }
  1380. }
  1381. byteArray = RGBEArray;
  1382. }
  1383. let format = ( this.type === THREE.UnsignedByteType ) ? THREE.RGBEFormat : ( numChannels === 4 ) ? THREE.RGBAFormat : THREE.RGBFormat;
  1384. return {
  1385. header: EXRHeader,
  1386. width: width,
  1387. height: height,
  1388. data: byteArray,
  1389. format: format,
  1390. type: this.type
  1391. };
  1392. },
  1393. setDataType: function ( value ) {
  1394. this.type = value;
  1395. return this;
  1396. },
  1397. load: function ( url, onLoad, onProgress, onError ) {
  1398. function onLoadCallback( texture, texData ) {
  1399. switch ( texture.type ) {
  1400. case THREE.UnsignedByteType:
  1401. texture.encoding = THREE.RGBEEncoding;
  1402. texture.minFilter = THREE.NearestFilter;
  1403. texture.magFilter = THREE.NearestFilter;
  1404. texture.generateMipmaps = false;
  1405. texture.flipY = true;
  1406. break;
  1407. case THREE.FloatType:
  1408. case THREE.HalfFloatType:
  1409. texture.encoding = THREE.LinearEncoding;
  1410. texture.minFilter = THREE.LinearFilter;
  1411. texture.magFilter = THREE.LinearFilter;
  1412. texture.generateMipmaps = false;
  1413. texture.flipY = false;
  1414. break;
  1415. }
  1416. if ( onLoad ) onLoad( texture, texData );
  1417. }
  1418. return THREE.DataTextureLoader.prototype.load.call( this, url, onLoadCallback, onProgress, onError );
  1419. }
  1420. } );