HalftoneShader.js 8.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312
  1. /**
  2. * RGB Halftone shader for three.js.
  3. * NOTE:
  4. * Shape (1 = Dot, 2 = Ellipse, 3 = Line, 4 = Square)
  5. * Blending Mode (1 = Linear, 2 = Multiply, 3 = Add, 4 = Lighter, 5 = Darker)
  6. */
  7. const HalftoneShader = {
  8. name: 'HalftoneShader',
  9. uniforms: {
  10. 'tDiffuse': { value: null },
  11. 'shape': { value: 1 },
  12. 'radius': { value: 4 },
  13. 'rotateR': { value: Math.PI / 12 * 1 },
  14. 'rotateG': { value: Math.PI / 12 * 2 },
  15. 'rotateB': { value: Math.PI / 12 * 3 },
  16. 'scatter': { value: 0 },
  17. 'width': { value: 1 },
  18. 'height': { value: 1 },
  19. 'blending': { value: 1 },
  20. 'blendingMode': { value: 1 },
  21. 'greyscale': { value: false },
  22. 'disable': { value: false }
  23. },
  24. vertexShader: /* glsl */`
  25. varying vec2 vUV;
  26. void main() {
  27. vUV = uv;
  28. gl_Position = projectionMatrix * modelViewMatrix * vec4(position, 1.0);
  29. }`,
  30. fragmentShader: /* glsl */`
  31. #define SQRT2_MINUS_ONE 0.41421356
  32. #define SQRT2_HALF_MINUS_ONE 0.20710678
  33. #define PI2 6.28318531
  34. #define SHAPE_DOT 1
  35. #define SHAPE_ELLIPSE 2
  36. #define SHAPE_LINE 3
  37. #define SHAPE_SQUARE 4
  38. #define BLENDING_LINEAR 1
  39. #define BLENDING_MULTIPLY 2
  40. #define BLENDING_ADD 3
  41. #define BLENDING_LIGHTER 4
  42. #define BLENDING_DARKER 5
  43. uniform sampler2D tDiffuse;
  44. uniform float radius;
  45. uniform float rotateR;
  46. uniform float rotateG;
  47. uniform float rotateB;
  48. uniform float scatter;
  49. uniform float width;
  50. uniform float height;
  51. uniform int shape;
  52. uniform bool disable;
  53. uniform float blending;
  54. uniform int blendingMode;
  55. varying vec2 vUV;
  56. uniform bool greyscale;
  57. const int samples = 8;
  58. float blend( float a, float b, float t ) {
  59. // linear blend
  60. return a * ( 1.0 - t ) + b * t;
  61. }
  62. float hypot( float x, float y ) {
  63. // vector magnitude
  64. return sqrt( x * x + y * y );
  65. }
  66. float rand( vec2 seed ){
  67. // get pseudo-random number
  68. return fract( sin( dot( seed.xy, vec2( 12.9898, 78.233 ) ) ) * 43758.5453 );
  69. }
  70. float distanceToDotRadius( float channel, vec2 coord, vec2 normal, vec2 p, float angle, float rad_max ) {
  71. // apply shape-specific transforms
  72. float dist = hypot( coord.x - p.x, coord.y - p.y );
  73. float rad = channel;
  74. if ( shape == SHAPE_DOT ) {
  75. rad = pow( abs( rad ), 1.125 ) * rad_max;
  76. } else if ( shape == SHAPE_ELLIPSE ) {
  77. rad = pow( abs( rad ), 1.125 ) * rad_max;
  78. if ( dist != 0.0 ) {
  79. float dot_p = abs( ( p.x - coord.x ) / dist * normal.x + ( p.y - coord.y ) / dist * normal.y );
  80. dist = ( dist * ( 1.0 - SQRT2_HALF_MINUS_ONE ) ) + dot_p * dist * SQRT2_MINUS_ONE;
  81. }
  82. } else if ( shape == SHAPE_LINE ) {
  83. rad = pow( abs( rad ), 1.5) * rad_max;
  84. float dot_p = ( p.x - coord.x ) * normal.x + ( p.y - coord.y ) * normal.y;
  85. dist = hypot( normal.x * dot_p, normal.y * dot_p );
  86. } else if ( shape == SHAPE_SQUARE ) {
  87. float theta = atan( p.y - coord.y, p.x - coord.x ) - angle;
  88. float sin_t = abs( sin( theta ) );
  89. float cos_t = abs( cos( theta ) );
  90. rad = pow( abs( rad ), 1.4 );
  91. rad = rad_max * ( rad + ( ( sin_t > cos_t ) ? rad - sin_t * rad : rad - cos_t * rad ) );
  92. }
  93. return rad - dist;
  94. }
  95. struct Cell {
  96. // grid sample positions
  97. vec2 normal;
  98. vec2 p1;
  99. vec2 p2;
  100. vec2 p3;
  101. vec2 p4;
  102. float samp2;
  103. float samp1;
  104. float samp3;
  105. float samp4;
  106. };
  107. vec4 getSample( vec2 point ) {
  108. // multi-sampled point
  109. vec4 tex = texture2D( tDiffuse, vec2( point.x / width, point.y / height ) );
  110. float base = rand( vec2( floor( point.x ), floor( point.y ) ) ) * PI2;
  111. float step = PI2 / float( samples );
  112. float dist = radius * 0.66;
  113. for ( int i = 0; i < samples; ++i ) {
  114. float r = base + step * float( i );
  115. vec2 coord = point + vec2( cos( r ) * dist, sin( r ) * dist );
  116. tex += texture2D( tDiffuse, vec2( coord.x / width, coord.y / height ) );
  117. }
  118. tex /= float( samples ) + 1.0;
  119. return tex;
  120. }
  121. float getDotColour( Cell c, vec2 p, int channel, float angle, float aa ) {
  122. // get colour for given point
  123. float dist_c_1, dist_c_2, dist_c_3, dist_c_4, res;
  124. if ( channel == 0 ) {
  125. c.samp1 = getSample( c.p1 ).r;
  126. c.samp2 = getSample( c.p2 ).r;
  127. c.samp3 = getSample( c.p3 ).r;
  128. c.samp4 = getSample( c.p4 ).r;
  129. } else if (channel == 1) {
  130. c.samp1 = getSample( c.p1 ).g;
  131. c.samp2 = getSample( c.p2 ).g;
  132. c.samp3 = getSample( c.p3 ).g;
  133. c.samp4 = getSample( c.p4 ).g;
  134. } else {
  135. c.samp1 = getSample( c.p1 ).b;
  136. c.samp3 = getSample( c.p3 ).b;
  137. c.samp2 = getSample( c.p2 ).b;
  138. c.samp4 = getSample( c.p4 ).b;
  139. }
  140. dist_c_1 = distanceToDotRadius( c.samp1, c.p1, c.normal, p, angle, radius );
  141. dist_c_2 = distanceToDotRadius( c.samp2, c.p2, c.normal, p, angle, radius );
  142. dist_c_3 = distanceToDotRadius( c.samp3, c.p3, c.normal, p, angle, radius );
  143. dist_c_4 = distanceToDotRadius( c.samp4, c.p4, c.normal, p, angle, radius );
  144. res = ( dist_c_1 > 0.0 ) ? clamp( dist_c_1 / aa, 0.0, 1.0 ) : 0.0;
  145. res += ( dist_c_2 > 0.0 ) ? clamp( dist_c_2 / aa, 0.0, 1.0 ) : 0.0;
  146. res += ( dist_c_3 > 0.0 ) ? clamp( dist_c_3 / aa, 0.0, 1.0 ) : 0.0;
  147. res += ( dist_c_4 > 0.0 ) ? clamp( dist_c_4 / aa, 0.0, 1.0 ) : 0.0;
  148. res = clamp( res, 0.0, 1.0 );
  149. return res;
  150. }
  151. Cell getReferenceCell( vec2 p, vec2 origin, float grid_angle, float step ) {
  152. // get containing cell
  153. Cell c;
  154. // calc grid
  155. vec2 n = vec2( cos( grid_angle ), sin( grid_angle ) );
  156. float threshold = step * 0.5;
  157. float dot_normal = n.x * ( p.x - origin.x ) + n.y * ( p.y - origin.y );
  158. float dot_line = -n.y * ( p.x - origin.x ) + n.x * ( p.y - origin.y );
  159. vec2 offset = vec2( n.x * dot_normal, n.y * dot_normal );
  160. float offset_normal = mod( hypot( offset.x, offset.y ), step );
  161. float normal_dir = ( dot_normal < 0.0 ) ? 1.0 : -1.0;
  162. float normal_scale = ( ( offset_normal < threshold ) ? -offset_normal : step - offset_normal ) * normal_dir;
  163. float offset_line = mod( hypot( ( p.x - offset.x ) - origin.x, ( p.y - offset.y ) - origin.y ), step );
  164. float line_dir = ( dot_line < 0.0 ) ? 1.0 : -1.0;
  165. float line_scale = ( ( offset_line < threshold ) ? -offset_line : step - offset_line ) * line_dir;
  166. // get closest corner
  167. c.normal = n;
  168. c.p1.x = p.x - n.x * normal_scale + n.y * line_scale;
  169. c.p1.y = p.y - n.y * normal_scale - n.x * line_scale;
  170. // scatter
  171. if ( scatter != 0.0 ) {
  172. float off_mag = scatter * threshold * 0.5;
  173. float off_angle = rand( vec2( floor( c.p1.x ), floor( c.p1.y ) ) ) * PI2;
  174. c.p1.x += cos( off_angle ) * off_mag;
  175. c.p1.y += sin( off_angle ) * off_mag;
  176. }
  177. // find corners
  178. float normal_step = normal_dir * ( ( offset_normal < threshold ) ? step : -step );
  179. float line_step = line_dir * ( ( offset_line < threshold ) ? step : -step );
  180. c.p2.x = c.p1.x - n.x * normal_step;
  181. c.p2.y = c.p1.y - n.y * normal_step;
  182. c.p3.x = c.p1.x + n.y * line_step;
  183. c.p3.y = c.p1.y - n.x * line_step;
  184. c.p4.x = c.p1.x - n.x * normal_step + n.y * line_step;
  185. c.p4.y = c.p1.y - n.y * normal_step - n.x * line_step;
  186. return c;
  187. }
  188. float blendColour( float a, float b, float t ) {
  189. // blend colours
  190. if ( blendingMode == BLENDING_LINEAR ) {
  191. return blend( a, b, 1.0 - t );
  192. } else if ( blendingMode == BLENDING_ADD ) {
  193. return blend( a, min( 1.0, a + b ), t );
  194. } else if ( blendingMode == BLENDING_MULTIPLY ) {
  195. return blend( a, max( 0.0, a * b ), t );
  196. } else if ( blendingMode == BLENDING_LIGHTER ) {
  197. return blend( a, max( a, b ), t );
  198. } else if ( blendingMode == BLENDING_DARKER ) {
  199. return blend( a, min( a, b ), t );
  200. } else {
  201. return blend( a, b, 1.0 - t );
  202. }
  203. }
  204. void main() {
  205. if ( ! disable ) {
  206. // setup
  207. vec2 p = vec2( vUV.x * width, vUV.y * height );
  208. vec2 origin = vec2( 0, 0 );
  209. float aa = ( radius < 2.5 ) ? radius * 0.5 : 1.25;
  210. // get channel samples
  211. Cell cell_r = getReferenceCell( p, origin, rotateR, radius );
  212. Cell cell_g = getReferenceCell( p, origin, rotateG, radius );
  213. Cell cell_b = getReferenceCell( p, origin, rotateB, radius );
  214. float r = getDotColour( cell_r, p, 0, rotateR, aa );
  215. float g = getDotColour( cell_g, p, 1, rotateG, aa );
  216. float b = getDotColour( cell_b, p, 2, rotateB, aa );
  217. // blend with original
  218. vec4 colour = texture2D( tDiffuse, vUV );
  219. r = blendColour( r, colour.r, blending );
  220. g = blendColour( g, colour.g, blending );
  221. b = blendColour( b, colour.b, blending );
  222. if ( greyscale ) {
  223. r = g = b = (r + b + g) / 3.0;
  224. }
  225. gl_FragColor = vec4( r, g, b, 1.0 );
  226. } else {
  227. gl_FragColor = texture2D( tDiffuse, vUV );
  228. }
  229. }`
  230. };
  231. export { HalftoneShader };