SSAOShader.js 6.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300
  1. import {
  2. Matrix4,
  3. Vector2
  4. } from 'three';
  5. /**
  6. * References:
  7. * http://john-chapman-graphics.blogspot.com/2013/01/ssao-tutorial.html
  8. * https://learnopengl.com/Advanced-Lighting/SSAO
  9. * https://github.com/McNopper/OpenGL/blob/master/Example28/shader/ssao.frag.glsl
  10. */
  11. const SSAOShader = {
  12. name: 'SSAOShader',
  13. defines: {
  14. 'PERSPECTIVE_CAMERA': 1,
  15. 'KERNEL_SIZE': 32
  16. },
  17. uniforms: {
  18. 'tNormal': { value: null },
  19. 'tDepth': { value: null },
  20. 'tNoise': { value: null },
  21. 'kernel': { value: null },
  22. 'cameraNear': { value: null },
  23. 'cameraFar': { value: null },
  24. 'resolution': { value: new Vector2() },
  25. 'cameraProjectionMatrix': { value: new Matrix4() },
  26. 'cameraInverseProjectionMatrix': { value: new Matrix4() },
  27. 'kernelRadius': { value: 8 },
  28. 'minDistance': { value: 0.005 },
  29. 'maxDistance': { value: 0.05 },
  30. },
  31. vertexShader: /* glsl */`
  32. varying vec2 vUv;
  33. void main() {
  34. vUv = uv;
  35. gl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );
  36. }`,
  37. fragmentShader: /* glsl */`
  38. uniform highp sampler2D tNormal;
  39. uniform highp sampler2D tDepth;
  40. uniform sampler2D tNoise;
  41. uniform vec3 kernel[ KERNEL_SIZE ];
  42. uniform vec2 resolution;
  43. uniform float cameraNear;
  44. uniform float cameraFar;
  45. uniform mat4 cameraProjectionMatrix;
  46. uniform mat4 cameraInverseProjectionMatrix;
  47. uniform float kernelRadius;
  48. uniform float minDistance; // avoid artifacts caused by neighbour fragments with minimal depth difference
  49. uniform float maxDistance; // avoid the influence of fragments which are too far away
  50. varying vec2 vUv;
  51. #include <packing>
  52. float getDepth( const in vec2 screenPosition ) {
  53. return texture2D( tDepth, screenPosition ).x;
  54. }
  55. float getLinearDepth( const in vec2 screenPosition ) {
  56. #if PERSPECTIVE_CAMERA == 1
  57. float fragCoordZ = texture2D( tDepth, screenPosition ).x;
  58. float viewZ = perspectiveDepthToViewZ( fragCoordZ, cameraNear, cameraFar );
  59. return viewZToOrthographicDepth( viewZ, cameraNear, cameraFar );
  60. #else
  61. return texture2D( tDepth, screenPosition ).x;
  62. #endif
  63. }
  64. float getViewZ( const in float depth ) {
  65. #if PERSPECTIVE_CAMERA == 1
  66. return perspectiveDepthToViewZ( depth, cameraNear, cameraFar );
  67. #else
  68. return orthographicDepthToViewZ( depth, cameraNear, cameraFar );
  69. #endif
  70. }
  71. vec3 getViewPosition( const in vec2 screenPosition, const in float depth, const in float viewZ ) {
  72. float clipW = cameraProjectionMatrix[2][3] * viewZ + cameraProjectionMatrix[3][3];
  73. vec4 clipPosition = vec4( ( vec3( screenPosition, depth ) - 0.5 ) * 2.0, 1.0 );
  74. clipPosition *= clipW; // unprojection.
  75. return ( cameraInverseProjectionMatrix * clipPosition ).xyz;
  76. }
  77. vec3 getViewNormal( const in vec2 screenPosition ) {
  78. return unpackRGBToNormal( texture2D( tNormal, screenPosition ).xyz );
  79. }
  80. void main() {
  81. float depth = getDepth( vUv );
  82. if ( depth == 1.0 ) {
  83. gl_FragColor = vec4( 1.0 ); // don't influence background
  84. } else {
  85. float viewZ = getViewZ( depth );
  86. vec3 viewPosition = getViewPosition( vUv, depth, viewZ );
  87. vec3 viewNormal = getViewNormal( vUv );
  88. vec2 noiseScale = vec2( resolution.x / 4.0, resolution.y / 4.0 );
  89. vec3 random = vec3( texture2D( tNoise, vUv * noiseScale ).r );
  90. // compute matrix used to reorient a kernel vector
  91. vec3 tangent = normalize( random - viewNormal * dot( random, viewNormal ) );
  92. vec3 bitangent = cross( viewNormal, tangent );
  93. mat3 kernelMatrix = mat3( tangent, bitangent, viewNormal );
  94. float occlusion = 0.0;
  95. for ( int i = 0; i < KERNEL_SIZE; i ++ ) {
  96. vec3 sampleVector = kernelMatrix * kernel[ i ]; // reorient sample vector in view space
  97. vec3 samplePoint = viewPosition + ( sampleVector * kernelRadius ); // calculate sample point
  98. vec4 samplePointNDC = cameraProjectionMatrix * vec4( samplePoint, 1.0 ); // project point and calculate NDC
  99. samplePointNDC /= samplePointNDC.w;
  100. vec2 samplePointUv = samplePointNDC.xy * 0.5 + 0.5; // compute uv coordinates
  101. float realDepth = getLinearDepth( samplePointUv ); // get linear depth from depth texture
  102. float sampleDepth = viewZToOrthographicDepth( samplePoint.z, cameraNear, cameraFar ); // compute linear depth of the sample view Z value
  103. float delta = sampleDepth - realDepth;
  104. if ( delta > minDistance && delta < maxDistance ) { // if fragment is before sample point, increase occlusion
  105. occlusion += 1.0;
  106. }
  107. }
  108. occlusion = clamp( occlusion / float( KERNEL_SIZE ), 0.0, 1.0 );
  109. gl_FragColor = vec4( vec3( 1.0 - occlusion ), 1.0 );
  110. }
  111. }`
  112. };
  113. const SSAODepthShader = {
  114. name: 'SSAODepthShader',
  115. defines: {
  116. 'PERSPECTIVE_CAMERA': 1
  117. },
  118. uniforms: {
  119. 'tDepth': { value: null },
  120. 'cameraNear': { value: null },
  121. 'cameraFar': { value: null },
  122. },
  123. vertexShader:
  124. `varying vec2 vUv;
  125. void main() {
  126. vUv = uv;
  127. gl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );
  128. }`,
  129. fragmentShader:
  130. `uniform sampler2D tDepth;
  131. uniform float cameraNear;
  132. uniform float cameraFar;
  133. varying vec2 vUv;
  134. #include <packing>
  135. float getLinearDepth( const in vec2 screenPosition ) {
  136. #if PERSPECTIVE_CAMERA == 1
  137. float fragCoordZ = texture2D( tDepth, screenPosition ).x;
  138. float viewZ = perspectiveDepthToViewZ( fragCoordZ, cameraNear, cameraFar );
  139. return viewZToOrthographicDepth( viewZ, cameraNear, cameraFar );
  140. #else
  141. return texture2D( tDepth, screenPosition ).x;
  142. #endif
  143. }
  144. void main() {
  145. float depth = getLinearDepth( vUv );
  146. gl_FragColor = vec4( vec3( 1.0 - depth ), 1.0 );
  147. }`
  148. };
  149. const SSAOBlurShader = {
  150. name: 'SSAOBlurShader',
  151. uniforms: {
  152. 'tDiffuse': { value: null },
  153. 'resolution': { value: new Vector2() }
  154. },
  155. vertexShader:
  156. `varying vec2 vUv;
  157. void main() {
  158. vUv = uv;
  159. gl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );
  160. }`,
  161. fragmentShader:
  162. `uniform sampler2D tDiffuse;
  163. uniform vec2 resolution;
  164. varying vec2 vUv;
  165. void main() {
  166. vec2 texelSize = ( 1.0 / resolution );
  167. float result = 0.0;
  168. for ( int i = - 2; i <= 2; i ++ ) {
  169. for ( int j = - 2; j <= 2; j ++ ) {
  170. vec2 offset = ( vec2( float( i ), float( j ) ) ) * texelSize;
  171. result += texture2D( tDiffuse, vUv + offset ).r;
  172. }
  173. }
  174. gl_FragColor = vec4( vec3( result / ( 5.0 * 5.0 ) ), 1.0 );
  175. }`
  176. };
  177. export { SSAOShader, SSAODepthShader, SSAOBlurShader };