123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655 |
- class Vector4 {
- constructor( x = 0, y = 0, z = 0, w = 1 ) {
- this.x = x;
- this.y = y;
- this.z = z;
- this.w = w;
- }
- get width() {
- return this.z;
- }
- set width( value ) {
- this.z = value;
- }
- get height() {
- return this.w;
- }
- set height( value ) {
- this.w = value;
- }
- set( x, y, z, w ) {
- this.x = x;
- this.y = y;
- this.z = z;
- this.w = w;
- return this;
- }
- setScalar( scalar ) {
- this.x = scalar;
- this.y = scalar;
- this.z = scalar;
- this.w = scalar;
- return this;
- }
- setX( x ) {
- this.x = x;
- return this;
- }
- setY( y ) {
- this.y = y;
- return this;
- }
- setZ( z ) {
- this.z = z;
- return this;
- }
- setW( w ) {
- this.w = w;
- return this;
- }
- setComponent( index, value ) {
- switch ( index ) {
- case 0: this.x = value; break;
- case 1: this.y = value; break;
- case 2: this.z = value; break;
- case 3: this.w = value; break;
- default: throw new Error( 'index is out of range: ' + index );
- }
- return this;
- }
- getComponent( index ) {
- switch ( index ) {
- case 0: return this.x;
- case 1: return this.y;
- case 2: return this.z;
- case 3: return this.w;
- default: throw new Error( 'index is out of range: ' + index );
- }
- }
- clone() {
- return new this.constructor( this.x, this.y, this.z, this.w );
- }
- copy( v ) {
- this.x = v.x;
- this.y = v.y;
- this.z = v.z;
- this.w = ( v.w !== undefined ) ? v.w : 1;
- return this;
- }
- add( v, w ) {
- if ( w !== undefined ) {
- console.warn( 'THREE.Vector4: .add() now only accepts one argument. Use .addVectors( a, b ) instead.' );
- return this.addVectors( v, w );
- }
- this.x += v.x;
- this.y += v.y;
- this.z += v.z;
- this.w += v.w;
- return this;
- }
- addScalar( s ) {
- this.x += s;
- this.y += s;
- this.z += s;
- this.w += s;
- return this;
- }
- addVectors( a, b ) {
- this.x = a.x + b.x;
- this.y = a.y + b.y;
- this.z = a.z + b.z;
- this.w = a.w + b.w;
- return this;
- }
- addScaledVector( v, s ) {
- this.x += v.x * s;
- this.y += v.y * s;
- this.z += v.z * s;
- this.w += v.w * s;
- return this;
- }
- sub( v, w ) {
- if ( w !== undefined ) {
- console.warn( 'THREE.Vector4: .sub() now only accepts one argument. Use .subVectors( a, b ) instead.' );
- return this.subVectors( v, w );
- }
- this.x -= v.x;
- this.y -= v.y;
- this.z -= v.z;
- this.w -= v.w;
- return this;
- }
- subScalar( s ) {
- this.x -= s;
- this.y -= s;
- this.z -= s;
- this.w -= s;
- return this;
- }
- subVectors( a, b ) {
- this.x = a.x - b.x;
- this.y = a.y - b.y;
- this.z = a.z - b.z;
- this.w = a.w - b.w;
- return this;
- }
- multiply( v ) {
- this.x *= v.x;
- this.y *= v.y;
- this.z *= v.z;
- this.w *= v.w;
- return this;
- }
- multiplyScalar( scalar ) {
- this.x *= scalar;
- this.y *= scalar;
- this.z *= scalar;
- this.w *= scalar;
- return this;
- }
- applyMatrix4( m ) {
- const x = this.x, y = this.y, z = this.z, w = this.w;
- const e = m.elements;
- this.x = e[ 0 ] * x + e[ 4 ] * y + e[ 8 ] * z + e[ 12 ] * w;
- this.y = e[ 1 ] * x + e[ 5 ] * y + e[ 9 ] * z + e[ 13 ] * w;
- this.z = e[ 2 ] * x + e[ 6 ] * y + e[ 10 ] * z + e[ 14 ] * w;
- this.w = e[ 3 ] * x + e[ 7 ] * y + e[ 11 ] * z + e[ 15 ] * w;
- return this;
- }
- divideScalar( scalar ) {
- return this.multiplyScalar( 1 / scalar );
- }
- setAxisAngleFromQuaternion( q ) {
- // http://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToAngle/index.htm
- // q is assumed to be normalized
- this.w = 2 * Math.acos( q.w );
- const s = Math.sqrt( 1 - q.w * q.w );
- if ( s < 0.0001 ) {
- this.x = 1;
- this.y = 0;
- this.z = 0;
- } else {
- this.x = q.x / s;
- this.y = q.y / s;
- this.z = q.z / s;
- }
- return this;
- }
- setAxisAngleFromRotationMatrix( m ) {
- // http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToAngle/index.htm
- // assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled)
- let angle, x, y, z; // variables for result
- const epsilon = 0.01, // margin to allow for rounding errors
- epsilon2 = 0.1, // margin to distinguish between 0 and 180 degrees
- te = m.elements,
- m11 = te[ 0 ], m12 = te[ 4 ], m13 = te[ 8 ],
- m21 = te[ 1 ], m22 = te[ 5 ], m23 = te[ 9 ],
- m31 = te[ 2 ], m32 = te[ 6 ], m33 = te[ 10 ];
- if ( ( Math.abs( m12 - m21 ) < epsilon ) &&
- ( Math.abs( m13 - m31 ) < epsilon ) &&
- ( Math.abs( m23 - m32 ) < epsilon ) ) {
- // singularity found
- // first check for identity matrix which must have +1 for all terms
- // in leading diagonal and zero in other terms
- if ( ( Math.abs( m12 + m21 ) < epsilon2 ) &&
- ( Math.abs( m13 + m31 ) < epsilon2 ) &&
- ( Math.abs( m23 + m32 ) < epsilon2 ) &&
- ( Math.abs( m11 + m22 + m33 - 3 ) < epsilon2 ) ) {
- // this singularity is identity matrix so angle = 0
- this.set( 1, 0, 0, 0 );
- return this; // zero angle, arbitrary axis
- }
- // otherwise this singularity is angle = 180
- angle = Math.PI;
- const xx = ( m11 + 1 ) / 2;
- const yy = ( m22 + 1 ) / 2;
- const zz = ( m33 + 1 ) / 2;
- const xy = ( m12 + m21 ) / 4;
- const xz = ( m13 + m31 ) / 4;
- const yz = ( m23 + m32 ) / 4;
- if ( ( xx > yy ) && ( xx > zz ) ) {
- // m11 is the largest diagonal term
- if ( xx < epsilon ) {
- x = 0;
- y = 0.707106781;
- z = 0.707106781;
- } else {
- x = Math.sqrt( xx );
- y = xy / x;
- z = xz / x;
- }
- } else if ( yy > zz ) {
- // m22 is the largest diagonal term
- if ( yy < epsilon ) {
- x = 0.707106781;
- y = 0;
- z = 0.707106781;
- } else {
- y = Math.sqrt( yy );
- x = xy / y;
- z = yz / y;
- }
- } else {
- // m33 is the largest diagonal term so base result on this
- if ( zz < epsilon ) {
- x = 0.707106781;
- y = 0.707106781;
- z = 0;
- } else {
- z = Math.sqrt( zz );
- x = xz / z;
- y = yz / z;
- }
- }
- this.set( x, y, z, angle );
- return this; // return 180 deg rotation
- }
- // as we have reached here there are no singularities so we can handle normally
- let s = Math.sqrt( ( m32 - m23 ) * ( m32 - m23 ) +
- ( m13 - m31 ) * ( m13 - m31 ) +
- ( m21 - m12 ) * ( m21 - m12 ) ); // used to normalize
- if ( Math.abs( s ) < 0.001 ) s = 1;
- // prevent divide by zero, should not happen if matrix is orthogonal and should be
- // caught by singularity test above, but I've left it in just in case
- this.x = ( m32 - m23 ) / s;
- this.y = ( m13 - m31 ) / s;
- this.z = ( m21 - m12 ) / s;
- this.w = Math.acos( ( m11 + m22 + m33 - 1 ) / 2 );
- return this;
- }
- min( v ) {
- this.x = Math.min( this.x, v.x );
- this.y = Math.min( this.y, v.y );
- this.z = Math.min( this.z, v.z );
- this.w = Math.min( this.w, v.w );
- return this;
- }
- max( v ) {
- this.x = Math.max( this.x, v.x );
- this.y = Math.max( this.y, v.y );
- this.z = Math.max( this.z, v.z );
- this.w = Math.max( this.w, v.w );
- return this;
- }
- clamp( min, max ) {
- // assumes min < max, componentwise
- this.x = Math.max( min.x, Math.min( max.x, this.x ) );
- this.y = Math.max( min.y, Math.min( max.y, this.y ) );
- this.z = Math.max( min.z, Math.min( max.z, this.z ) );
- this.w = Math.max( min.w, Math.min( max.w, this.w ) );
- return this;
- }
- clampScalar( minVal, maxVal ) {
- this.x = Math.max( minVal, Math.min( maxVal, this.x ) );
- this.y = Math.max( minVal, Math.min( maxVal, this.y ) );
- this.z = Math.max( minVal, Math.min( maxVal, this.z ) );
- this.w = Math.max( minVal, Math.min( maxVal, this.w ) );
- return this;
- }
- clampLength( min, max ) {
- const length = this.length();
- return this.divideScalar( length || 1 ).multiplyScalar( Math.max( min, Math.min( max, length ) ) );
- }
- floor() {
- this.x = Math.floor( this.x );
- this.y = Math.floor( this.y );
- this.z = Math.floor( this.z );
- this.w = Math.floor( this.w );
- return this;
- }
- ceil() {
- this.x = Math.ceil( this.x );
- this.y = Math.ceil( this.y );
- this.z = Math.ceil( this.z );
- this.w = Math.ceil( this.w );
- return this;
- }
- round() {
- this.x = Math.round( this.x );
- this.y = Math.round( this.y );
- this.z = Math.round( this.z );
- this.w = Math.round( this.w );
- return this;
- }
- roundToZero() {
- this.x = ( this.x < 0 ) ? Math.ceil( this.x ) : Math.floor( this.x );
- this.y = ( this.y < 0 ) ? Math.ceil( this.y ) : Math.floor( this.y );
- this.z = ( this.z < 0 ) ? Math.ceil( this.z ) : Math.floor( this.z );
- this.w = ( this.w < 0 ) ? Math.ceil( this.w ) : Math.floor( this.w );
- return this;
- }
- negate() {
- this.x = - this.x;
- this.y = - this.y;
- this.z = - this.z;
- this.w = - this.w;
- return this;
- }
- dot( v ) {
- return this.x * v.x + this.y * v.y + this.z * v.z + this.w * v.w;
- }
- lengthSq() {
- return this.x * this.x + this.y * this.y + this.z * this.z + this.w * this.w;
- }
- length() {
- return Math.sqrt( this.x * this.x + this.y * this.y + this.z * this.z + this.w * this.w );
- }
- manhattanLength() {
- return Math.abs( this.x ) + Math.abs( this.y ) + Math.abs( this.z ) + Math.abs( this.w );
- }
- normalize() {
- return this.divideScalar( this.length() || 1 );
- }
- setLength( length ) {
- return this.normalize().multiplyScalar( length );
- }
- lerp( v, alpha ) {
- this.x += ( v.x - this.x ) * alpha;
- this.y += ( v.y - this.y ) * alpha;
- this.z += ( v.z - this.z ) * alpha;
- this.w += ( v.w - this.w ) * alpha;
- return this;
- }
- lerpVectors( v1, v2, alpha ) {
- this.x = v1.x + ( v2.x - v1.x ) * alpha;
- this.y = v1.y + ( v2.y - v1.y ) * alpha;
- this.z = v1.z + ( v2.z - v1.z ) * alpha;
- this.w = v1.w + ( v2.w - v1.w ) * alpha;
- return this;
- }
- equals( v ) {
- return ( ( v.x === this.x ) && ( v.y === this.y ) && ( v.z === this.z ) && ( v.w === this.w ) );
- }
- fromArray( array, offset = 0 ) {
- this.x = array[ offset ];
- this.y = array[ offset + 1 ];
- this.z = array[ offset + 2 ];
- this.w = array[ offset + 3 ];
- return this;
- }
- toArray( array = [], offset = 0 ) {
- array[ offset ] = this.x;
- array[ offset + 1 ] = this.y;
- array[ offset + 2 ] = this.z;
- array[ offset + 3 ] = this.w;
- return array;
- }
- fromBufferAttribute( attribute, index, offset ) {
- if ( offset !== undefined ) {
- console.warn( 'THREE.Vector4: offset has been removed from .fromBufferAttribute().' );
- }
- this.x = attribute.getX( index );
- this.y = attribute.getY( index );
- this.z = attribute.getZ( index );
- this.w = attribute.getW( index );
- return this;
- }
- random() {
- this.x = Math.random();
- this.y = Math.random();
- this.z = Math.random();
- this.w = Math.random();
- return this;
- }
- }
- Vector4.prototype.isVector4 = true;
- export { Vector4 };
|