VTKLoader.js 27 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163
  1. import {
  2. BufferAttribute,
  3. BufferGeometry,
  4. Color,
  5. FileLoader,
  6. Float32BufferAttribute,
  7. Loader
  8. } from 'three';
  9. import * as fflate from '../libs/fflate.module.js';
  10. class VTKLoader extends Loader {
  11. constructor( manager ) {
  12. super( manager );
  13. }
  14. load( url, onLoad, onProgress, onError ) {
  15. const scope = this;
  16. const loader = new FileLoader( scope.manager );
  17. loader.setPath( scope.path );
  18. loader.setResponseType( 'arraybuffer' );
  19. loader.setRequestHeader( scope.requestHeader );
  20. loader.setWithCredentials( scope.withCredentials );
  21. loader.load( url, function ( text ) {
  22. try {
  23. onLoad( scope.parse( text ) );
  24. } catch ( e ) {
  25. if ( onError ) {
  26. onError( e );
  27. } else {
  28. console.error( e );
  29. }
  30. scope.manager.itemError( url );
  31. }
  32. }, onProgress, onError );
  33. }
  34. parse( data ) {
  35. function parseASCII( data ) {
  36. // connectivity of the triangles
  37. const indices = [];
  38. // triangles vertices
  39. const positions = [];
  40. // red, green, blue colors in the range 0 to 1
  41. const colors = [];
  42. // normal vector, one per vertex
  43. const normals = [];
  44. let result;
  45. // pattern for detecting the end of a number sequence
  46. const patWord = /^[^\d.\s-]+/;
  47. // pattern for reading vertices, 3 floats or integers
  48. const pat3Floats = /(\-?\d+\.?[\d\-\+e]*)\s+(\-?\d+\.?[\d\-\+e]*)\s+(\-?\d+\.?[\d\-\+e]*)/g;
  49. // pattern for connectivity, an integer followed by any number of ints
  50. // the first integer is the number of polygon nodes
  51. const patConnectivity = /^(\d+)\s+([\s\d]*)/;
  52. // indicates start of vertex data section
  53. const patPOINTS = /^POINTS /;
  54. // indicates start of polygon connectivity section
  55. const patPOLYGONS = /^POLYGONS /;
  56. // indicates start of triangle strips section
  57. const patTRIANGLE_STRIPS = /^TRIANGLE_STRIPS /;
  58. // POINT_DATA number_of_values
  59. const patPOINT_DATA = /^POINT_DATA[ ]+(\d+)/;
  60. // CELL_DATA number_of_polys
  61. const patCELL_DATA = /^CELL_DATA[ ]+(\d+)/;
  62. // Start of color section
  63. const patCOLOR_SCALARS = /^COLOR_SCALARS[ ]+(\w+)[ ]+3/;
  64. // NORMALS Normals float
  65. const patNORMALS = /^NORMALS[ ]+(\w+)[ ]+(\w+)/;
  66. let inPointsSection = false;
  67. let inPolygonsSection = false;
  68. let inTriangleStripSection = false;
  69. let inPointDataSection = false;
  70. let inCellDataSection = false;
  71. let inColorSection = false;
  72. let inNormalsSection = false;
  73. const color = new Color();
  74. const lines = data.split( '\n' );
  75. for ( const i in lines ) {
  76. const line = lines[ i ].trim();
  77. if ( line.indexOf( 'DATASET' ) === 0 ) {
  78. const dataset = line.split( ' ' )[ 1 ];
  79. if ( dataset !== 'POLYDATA' ) throw new Error( 'Unsupported DATASET type: ' + dataset );
  80. } else if ( inPointsSection ) {
  81. // get the vertices
  82. while ( ( result = pat3Floats.exec( line ) ) !== null ) {
  83. if ( patWord.exec( line ) !== null ) break;
  84. const x = parseFloat( result[ 1 ] );
  85. const y = parseFloat( result[ 2 ] );
  86. const z = parseFloat( result[ 3 ] );
  87. positions.push( x, y, z );
  88. }
  89. } else if ( inPolygonsSection ) {
  90. if ( ( result = patConnectivity.exec( line ) ) !== null ) {
  91. // numVertices i0 i1 i2 ...
  92. const numVertices = parseInt( result[ 1 ] );
  93. const inds = result[ 2 ].split( /\s+/ );
  94. if ( numVertices >= 3 ) {
  95. const i0 = parseInt( inds[ 0 ] );
  96. let k = 1;
  97. // split the polygon in numVertices - 2 triangles
  98. for ( let j = 0; j < numVertices - 2; ++ j ) {
  99. const i1 = parseInt( inds[ k ] );
  100. const i2 = parseInt( inds[ k + 1 ] );
  101. indices.push( i0, i1, i2 );
  102. k ++;
  103. }
  104. }
  105. }
  106. } else if ( inTriangleStripSection ) {
  107. if ( ( result = patConnectivity.exec( line ) ) !== null ) {
  108. // numVertices i0 i1 i2 ...
  109. const numVertices = parseInt( result[ 1 ] );
  110. const inds = result[ 2 ].split( /\s+/ );
  111. if ( numVertices >= 3 ) {
  112. // split the polygon in numVertices - 2 triangles
  113. for ( let j = 0; j < numVertices - 2; j ++ ) {
  114. if ( j % 2 === 1 ) {
  115. const i0 = parseInt( inds[ j ] );
  116. const i1 = parseInt( inds[ j + 2 ] );
  117. const i2 = parseInt( inds[ j + 1 ] );
  118. indices.push( i0, i1, i2 );
  119. } else {
  120. const i0 = parseInt( inds[ j ] );
  121. const i1 = parseInt( inds[ j + 1 ] );
  122. const i2 = parseInt( inds[ j + 2 ] );
  123. indices.push( i0, i1, i2 );
  124. }
  125. }
  126. }
  127. }
  128. } else if ( inPointDataSection || inCellDataSection ) {
  129. if ( inColorSection ) {
  130. // Get the colors
  131. while ( ( result = pat3Floats.exec( line ) ) !== null ) {
  132. if ( patWord.exec( line ) !== null ) break;
  133. const r = parseFloat( result[ 1 ] );
  134. const g = parseFloat( result[ 2 ] );
  135. const b = parseFloat( result[ 3 ] );
  136. color.set( r, g, b ).convertSRGBToLinear();
  137. colors.push( color.r, color.g, color.b );
  138. }
  139. } else if ( inNormalsSection ) {
  140. // Get the normal vectors
  141. while ( ( result = pat3Floats.exec( line ) ) !== null ) {
  142. if ( patWord.exec( line ) !== null ) break;
  143. const nx = parseFloat( result[ 1 ] );
  144. const ny = parseFloat( result[ 2 ] );
  145. const nz = parseFloat( result[ 3 ] );
  146. normals.push( nx, ny, nz );
  147. }
  148. }
  149. }
  150. if ( patPOLYGONS.exec( line ) !== null ) {
  151. inPolygonsSection = true;
  152. inPointsSection = false;
  153. inTriangleStripSection = false;
  154. } else if ( patPOINTS.exec( line ) !== null ) {
  155. inPolygonsSection = false;
  156. inPointsSection = true;
  157. inTriangleStripSection = false;
  158. } else if ( patTRIANGLE_STRIPS.exec( line ) !== null ) {
  159. inPolygonsSection = false;
  160. inPointsSection = false;
  161. inTriangleStripSection = true;
  162. } else if ( patPOINT_DATA.exec( line ) !== null ) {
  163. inPointDataSection = true;
  164. inPointsSection = false;
  165. inPolygonsSection = false;
  166. inTriangleStripSection = false;
  167. } else if ( patCELL_DATA.exec( line ) !== null ) {
  168. inCellDataSection = true;
  169. inPointsSection = false;
  170. inPolygonsSection = false;
  171. inTriangleStripSection = false;
  172. } else if ( patCOLOR_SCALARS.exec( line ) !== null ) {
  173. inColorSection = true;
  174. inNormalsSection = false;
  175. inPointsSection = false;
  176. inPolygonsSection = false;
  177. inTriangleStripSection = false;
  178. } else if ( patNORMALS.exec( line ) !== null ) {
  179. inNormalsSection = true;
  180. inColorSection = false;
  181. inPointsSection = false;
  182. inPolygonsSection = false;
  183. inTriangleStripSection = false;
  184. }
  185. }
  186. let geometry = new BufferGeometry();
  187. geometry.setIndex( indices );
  188. geometry.setAttribute( 'position', new Float32BufferAttribute( positions, 3 ) );
  189. if ( normals.length === positions.length ) {
  190. geometry.setAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) );
  191. }
  192. if ( colors.length !== indices.length ) {
  193. // stagger
  194. if ( colors.length === positions.length ) {
  195. geometry.setAttribute( 'color', new Float32BufferAttribute( colors, 3 ) );
  196. }
  197. } else {
  198. // cell
  199. geometry = geometry.toNonIndexed();
  200. const numTriangles = geometry.attributes.position.count / 3;
  201. if ( colors.length === ( numTriangles * 3 ) ) {
  202. const newColors = [];
  203. for ( let i = 0; i < numTriangles; i ++ ) {
  204. const r = colors[ 3 * i + 0 ];
  205. const g = colors[ 3 * i + 1 ];
  206. const b = colors[ 3 * i + 2 ];
  207. color.set( r, g, b ).convertSRGBToLinear();
  208. newColors.push( color.r, color.g, color.b );
  209. newColors.push( color.r, color.g, color.b );
  210. newColors.push( color.r, color.g, color.b );
  211. }
  212. geometry.setAttribute( 'color', new Float32BufferAttribute( newColors, 3 ) );
  213. }
  214. }
  215. return geometry;
  216. }
  217. function parseBinary( data ) {
  218. const buffer = new Uint8Array( data );
  219. const dataView = new DataView( data );
  220. // Points and normals, by default, are empty
  221. let points = [];
  222. let normals = [];
  223. let indices = [];
  224. let index = 0;
  225. function findString( buffer, start ) {
  226. let index = start;
  227. let c = buffer[ index ];
  228. const s = [];
  229. while ( c !== 10 ) {
  230. s.push( String.fromCharCode( c ) );
  231. index ++;
  232. c = buffer[ index ];
  233. }
  234. return { start: start,
  235. end: index,
  236. next: index + 1,
  237. parsedString: s.join( '' ) };
  238. }
  239. let state, line;
  240. while ( true ) {
  241. // Get a string
  242. state = findString( buffer, index );
  243. line = state.parsedString;
  244. if ( line.indexOf( 'DATASET' ) === 0 ) {
  245. const dataset = line.split( ' ' )[ 1 ];
  246. if ( dataset !== 'POLYDATA' ) throw new Error( 'Unsupported DATASET type: ' + dataset );
  247. } else if ( line.indexOf( 'POINTS' ) === 0 ) {
  248. // Add the points
  249. const numberOfPoints = parseInt( line.split( ' ' )[ 1 ], 10 );
  250. // Each point is 3 4-byte floats
  251. const count = numberOfPoints * 4 * 3;
  252. points = new Float32Array( numberOfPoints * 3 );
  253. let pointIndex = state.next;
  254. for ( let i = 0; i < numberOfPoints; i ++ ) {
  255. points[ 3 * i ] = dataView.getFloat32( pointIndex, false );
  256. points[ 3 * i + 1 ] = dataView.getFloat32( pointIndex + 4, false );
  257. points[ 3 * i + 2 ] = dataView.getFloat32( pointIndex + 8, false );
  258. pointIndex = pointIndex + 12;
  259. }
  260. // increment our next pointer
  261. state.next = state.next + count + 1;
  262. } else if ( line.indexOf( 'TRIANGLE_STRIPS' ) === 0 ) {
  263. const numberOfStrips = parseInt( line.split( ' ' )[ 1 ], 10 );
  264. const size = parseInt( line.split( ' ' )[ 2 ], 10 );
  265. // 4 byte integers
  266. const count = size * 4;
  267. indices = new Uint32Array( 3 * size - 9 * numberOfStrips );
  268. let indicesIndex = 0;
  269. let pointIndex = state.next;
  270. for ( let i = 0; i < numberOfStrips; i ++ ) {
  271. // For each strip, read the first value, then record that many more points
  272. const indexCount = dataView.getInt32( pointIndex, false );
  273. const strip = [];
  274. pointIndex += 4;
  275. for ( let s = 0; s < indexCount; s ++ ) {
  276. strip.push( dataView.getInt32( pointIndex, false ) );
  277. pointIndex += 4;
  278. }
  279. // retrieves the n-2 triangles from the triangle strip
  280. for ( let j = 0; j < indexCount - 2; j ++ ) {
  281. if ( j % 2 ) {
  282. indices[ indicesIndex ++ ] = strip[ j ];
  283. indices[ indicesIndex ++ ] = strip[ j + 2 ];
  284. indices[ indicesIndex ++ ] = strip[ j + 1 ];
  285. } else {
  286. indices[ indicesIndex ++ ] = strip[ j ];
  287. indices[ indicesIndex ++ ] = strip[ j + 1 ];
  288. indices[ indicesIndex ++ ] = strip[ j + 2 ];
  289. }
  290. }
  291. }
  292. // increment our next pointer
  293. state.next = state.next + count + 1;
  294. } else if ( line.indexOf( 'POLYGONS' ) === 0 ) {
  295. const numberOfStrips = parseInt( line.split( ' ' )[ 1 ], 10 );
  296. const size = parseInt( line.split( ' ' )[ 2 ], 10 );
  297. // 4 byte integers
  298. const count = size * 4;
  299. indices = new Uint32Array( 3 * size - 9 * numberOfStrips );
  300. let indicesIndex = 0;
  301. let pointIndex = state.next;
  302. for ( let i = 0; i < numberOfStrips; i ++ ) {
  303. // For each strip, read the first value, then record that many more points
  304. const indexCount = dataView.getInt32( pointIndex, false );
  305. const strip = [];
  306. pointIndex += 4;
  307. for ( let s = 0; s < indexCount; s ++ ) {
  308. strip.push( dataView.getInt32( pointIndex, false ) );
  309. pointIndex += 4;
  310. }
  311. // divide the polygon in n-2 triangle
  312. for ( let j = 1; j < indexCount - 1; j ++ ) {
  313. indices[ indicesIndex ++ ] = strip[ 0 ];
  314. indices[ indicesIndex ++ ] = strip[ j ];
  315. indices[ indicesIndex ++ ] = strip[ j + 1 ];
  316. }
  317. }
  318. // increment our next pointer
  319. state.next = state.next + count + 1;
  320. } else if ( line.indexOf( 'POINT_DATA' ) === 0 ) {
  321. const numberOfPoints = parseInt( line.split( ' ' )[ 1 ], 10 );
  322. // Grab the next line
  323. state = findString( buffer, state.next );
  324. // Now grab the binary data
  325. const count = numberOfPoints * 4 * 3;
  326. normals = new Float32Array( numberOfPoints * 3 );
  327. let pointIndex = state.next;
  328. for ( let i = 0; i < numberOfPoints; i ++ ) {
  329. normals[ 3 * i ] = dataView.getFloat32( pointIndex, false );
  330. normals[ 3 * i + 1 ] = dataView.getFloat32( pointIndex + 4, false );
  331. normals[ 3 * i + 2 ] = dataView.getFloat32( pointIndex + 8, false );
  332. pointIndex += 12;
  333. }
  334. // Increment past our data
  335. state.next = state.next + count;
  336. }
  337. // Increment index
  338. index = state.next;
  339. if ( index >= buffer.byteLength ) {
  340. break;
  341. }
  342. }
  343. const geometry = new BufferGeometry();
  344. geometry.setIndex( new BufferAttribute( indices, 1 ) );
  345. geometry.setAttribute( 'position', new BufferAttribute( points, 3 ) );
  346. if ( normals.length === points.length ) {
  347. geometry.setAttribute( 'normal', new BufferAttribute( normals, 3 ) );
  348. }
  349. return geometry;
  350. }
  351. function Float32Concat( first, second ) {
  352. const firstLength = first.length, result = new Float32Array( firstLength + second.length );
  353. result.set( first );
  354. result.set( second, firstLength );
  355. return result;
  356. }
  357. function Int32Concat( first, second ) {
  358. const firstLength = first.length, result = new Int32Array( firstLength + second.length );
  359. result.set( first );
  360. result.set( second, firstLength );
  361. return result;
  362. }
  363. function parseXML( stringFile ) {
  364. // Changes XML to JSON, based on https://davidwalsh.name/convert-xml-json
  365. function xmlToJson( xml ) {
  366. // Create the return object
  367. let obj = {};
  368. if ( xml.nodeType === 1 ) { // element
  369. // do attributes
  370. if ( xml.attributes ) {
  371. if ( xml.attributes.length > 0 ) {
  372. obj[ 'attributes' ] = {};
  373. for ( let j = 0; j < xml.attributes.length; j ++ ) {
  374. const attribute = xml.attributes.item( j );
  375. obj[ 'attributes' ][ attribute.nodeName ] = attribute.nodeValue.trim();
  376. }
  377. }
  378. }
  379. } else if ( xml.nodeType === 3 ) { // text
  380. obj = xml.nodeValue.trim();
  381. }
  382. // do children
  383. if ( xml.hasChildNodes() ) {
  384. for ( let i = 0; i < xml.childNodes.length; i ++ ) {
  385. const item = xml.childNodes.item( i );
  386. const nodeName = item.nodeName;
  387. if ( typeof obj[ nodeName ] === 'undefined' ) {
  388. const tmp = xmlToJson( item );
  389. if ( tmp !== '' ) obj[ nodeName ] = tmp;
  390. } else {
  391. if ( typeof obj[ nodeName ].push === 'undefined' ) {
  392. const old = obj[ nodeName ];
  393. obj[ nodeName ] = [ old ];
  394. }
  395. const tmp = xmlToJson( item );
  396. if ( tmp !== '' ) obj[ nodeName ].push( tmp );
  397. }
  398. }
  399. }
  400. return obj;
  401. }
  402. // Taken from Base64-js
  403. function Base64toByteArray( b64 ) {
  404. const Arr = typeof Uint8Array !== 'undefined' ? Uint8Array : Array;
  405. const revLookup = [];
  406. const code = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/';
  407. for ( let i = 0, l = code.length; i < l; ++ i ) {
  408. revLookup[ code.charCodeAt( i ) ] = i;
  409. }
  410. revLookup[ '-'.charCodeAt( 0 ) ] = 62;
  411. revLookup[ '_'.charCodeAt( 0 ) ] = 63;
  412. const len = b64.length;
  413. if ( len % 4 > 0 ) {
  414. throw new Error( 'Invalid string. Length must be a multiple of 4' );
  415. }
  416. const placeHolders = b64[ len - 2 ] === '=' ? 2 : b64[ len - 1 ] === '=' ? 1 : 0;
  417. const arr = new Arr( len * 3 / 4 - placeHolders );
  418. const l = placeHolders > 0 ? len - 4 : len;
  419. let L = 0;
  420. let i, j;
  421. for ( i = 0, j = 0; i < l; i += 4, j += 3 ) {
  422. const tmp = ( revLookup[ b64.charCodeAt( i ) ] << 18 ) | ( revLookup[ b64.charCodeAt( i + 1 ) ] << 12 ) | ( revLookup[ b64.charCodeAt( i + 2 ) ] << 6 ) | revLookup[ b64.charCodeAt( i + 3 ) ];
  423. arr[ L ++ ] = ( tmp & 0xFF0000 ) >> 16;
  424. arr[ L ++ ] = ( tmp & 0xFF00 ) >> 8;
  425. arr[ L ++ ] = tmp & 0xFF;
  426. }
  427. if ( placeHolders === 2 ) {
  428. const tmp = ( revLookup[ b64.charCodeAt( i ) ] << 2 ) | ( revLookup[ b64.charCodeAt( i + 1 ) ] >> 4 );
  429. arr[ L ++ ] = tmp & 0xFF;
  430. } else if ( placeHolders === 1 ) {
  431. const tmp = ( revLookup[ b64.charCodeAt( i ) ] << 10 ) | ( revLookup[ b64.charCodeAt( i + 1 ) ] << 4 ) | ( revLookup[ b64.charCodeAt( i + 2 ) ] >> 2 );
  432. arr[ L ++ ] = ( tmp >> 8 ) & 0xFF;
  433. arr[ L ++ ] = tmp & 0xFF;
  434. }
  435. return arr;
  436. }
  437. function parseDataArray( ele, compressed ) {
  438. let numBytes = 0;
  439. if ( json.attributes.header_type === 'UInt64' ) {
  440. numBytes = 8;
  441. } else if ( json.attributes.header_type === 'UInt32' ) {
  442. numBytes = 4;
  443. }
  444. let txt, content;
  445. // Check the format
  446. if ( ele.attributes.format === 'binary' && compressed ) {
  447. if ( ele.attributes.type === 'Float32' ) {
  448. txt = new Float32Array( );
  449. } else if ( ele.attributes.type === 'Int32' || ele.attributes.type === 'Int64' ) {
  450. txt = new Int32Array( );
  451. }
  452. // VTP data with the header has the following structure:
  453. // [#blocks][#u-size][#p-size][#c-size-1][#c-size-2]...[#c-size-#blocks][DATA]
  454. //
  455. // Each token is an integer value whose type is specified by "header_type" at the top of the file (UInt32 if no type specified). The token meanings are:
  456. // [#blocks] = Number of blocks
  457. // [#u-size] = Block size before compression
  458. // [#p-size] = Size of last partial block (zero if it not needed)
  459. // [#c-size-i] = Size in bytes of block i after compression
  460. //
  461. // The [DATA] portion stores contiguously every block appended together. The offset from the beginning of the data section to the beginning of a block is
  462. // computed by summing the compressed block sizes from preceding blocks according to the header.
  463. const textNode = ele[ '#text' ];
  464. const rawData = Array.isArray( textNode ) ? textNode[ 0 ] : textNode;
  465. const byteData = Base64toByteArray( rawData );
  466. // Each data point consists of 8 bits regardless of the header type
  467. const dataPointSize = 8;
  468. let blocks = byteData[ 0 ];
  469. for ( let i = 1; i < numBytes - 1; i ++ ) {
  470. blocks = blocks | ( byteData[ i ] << ( i * dataPointSize ) );
  471. }
  472. let headerSize = ( blocks + 3 ) * numBytes;
  473. const padding = ( ( headerSize % 3 ) > 0 ) ? 3 - ( headerSize % 3 ) : 0;
  474. headerSize = headerSize + padding;
  475. const dataOffsets = [];
  476. let currentOffset = headerSize;
  477. dataOffsets.push( currentOffset );
  478. // Get the blocks sizes after the compression.
  479. // There are three blocks before c-size-i, so we skip 3*numBytes
  480. const cSizeStart = 3 * numBytes;
  481. for ( let i = 0; i < blocks; i ++ ) {
  482. let currentBlockSize = byteData[ i * numBytes + cSizeStart ];
  483. for ( let j = 1; j < numBytes - 1; j ++ ) {
  484. currentBlockSize = currentBlockSize | ( byteData[ i * numBytes + cSizeStart + j ] << ( j * dataPointSize ) );
  485. }
  486. currentOffset = currentOffset + currentBlockSize;
  487. dataOffsets.push( currentOffset );
  488. }
  489. for ( let i = 0; i < dataOffsets.length - 1; i ++ ) {
  490. const data = fflate.unzlibSync( byteData.slice( dataOffsets[ i ], dataOffsets[ i + 1 ] ) );
  491. content = data.buffer;
  492. if ( ele.attributes.type === 'Float32' ) {
  493. content = new Float32Array( content );
  494. txt = Float32Concat( txt, content );
  495. } else if ( ele.attributes.type === 'Int32' || ele.attributes.type === 'Int64' ) {
  496. content = new Int32Array( content );
  497. txt = Int32Concat( txt, content );
  498. }
  499. }
  500. delete ele[ '#text' ];
  501. if ( ele.attributes.type === 'Int64' ) {
  502. if ( ele.attributes.format === 'binary' ) {
  503. txt = txt.filter( function ( el, idx ) {
  504. if ( idx % 2 !== 1 ) return true;
  505. } );
  506. }
  507. }
  508. } else {
  509. if ( ele.attributes.format === 'binary' && ! compressed ) {
  510. content = Base64toByteArray( ele[ '#text' ] );
  511. // VTP data for the uncompressed case has the following structure:
  512. // [#bytes][DATA]
  513. // where "[#bytes]" is an integer value specifying the number of bytes in the block of data following it.
  514. content = content.slice( numBytes ).buffer;
  515. } else {
  516. if ( ele[ '#text' ] ) {
  517. content = ele[ '#text' ].split( /\s+/ ).filter( function ( el ) {
  518. if ( el !== '' ) return el;
  519. } );
  520. } else {
  521. content = new Int32Array( 0 ).buffer;
  522. }
  523. }
  524. delete ele[ '#text' ];
  525. // Get the content and optimize it
  526. if ( ele.attributes.type === 'Float32' ) {
  527. txt = new Float32Array( content );
  528. } else if ( ele.attributes.type === 'Int32' ) {
  529. txt = new Int32Array( content );
  530. } else if ( ele.attributes.type === 'Int64' ) {
  531. txt = new Int32Array( content );
  532. if ( ele.attributes.format === 'binary' ) {
  533. txt = txt.filter( function ( el, idx ) {
  534. if ( idx % 2 !== 1 ) return true;
  535. } );
  536. }
  537. }
  538. } // endif ( ele.attributes.format === 'binary' && compressed )
  539. return txt;
  540. }
  541. // Main part
  542. // Get Dom
  543. const dom = new DOMParser().parseFromString( stringFile, 'application/xml' );
  544. // Get the doc
  545. const doc = dom.documentElement;
  546. // Convert to json
  547. const json = xmlToJson( doc );
  548. let points = [];
  549. let normals = [];
  550. let indices = [];
  551. if ( json.PolyData ) {
  552. const piece = json.PolyData.Piece;
  553. const compressed = json.attributes.hasOwnProperty( 'compressor' );
  554. // Can be optimized
  555. // Loop through the sections
  556. const sections = [ 'PointData', 'Points', 'Strips', 'Polys' ];// +['CellData', 'Verts', 'Lines'];
  557. let sectionIndex = 0;
  558. const numberOfSections = sections.length;
  559. while ( sectionIndex < numberOfSections ) {
  560. const section = piece[ sections[ sectionIndex ] ];
  561. // If it has a DataArray in it
  562. if ( section && section.DataArray ) {
  563. // Depending on the number of DataArrays
  564. let arr;
  565. if ( Array.isArray( section.DataArray ) ) {
  566. arr = section.DataArray;
  567. } else {
  568. arr = [ section.DataArray ];
  569. }
  570. let dataArrayIndex = 0;
  571. const numberOfDataArrays = arr.length;
  572. while ( dataArrayIndex < numberOfDataArrays ) {
  573. // Parse the DataArray
  574. if ( ( '#text' in arr[ dataArrayIndex ] ) && ( arr[ dataArrayIndex ][ '#text' ].length > 0 ) ) {
  575. arr[ dataArrayIndex ].text = parseDataArray( arr[ dataArrayIndex ], compressed );
  576. }
  577. dataArrayIndex ++;
  578. }
  579. switch ( sections[ sectionIndex ] ) {
  580. // if iti is point data
  581. case 'PointData':
  582. {
  583. const numberOfPoints = parseInt( piece.attributes.NumberOfPoints );
  584. const normalsName = section.attributes.Normals;
  585. if ( numberOfPoints > 0 ) {
  586. for ( let i = 0, len = arr.length; i < len; i ++ ) {
  587. if ( normalsName === arr[ i ].attributes.Name ) {
  588. const components = arr[ i ].attributes.NumberOfComponents;
  589. normals = new Float32Array( numberOfPoints * components );
  590. normals.set( arr[ i ].text, 0 );
  591. }
  592. }
  593. }
  594. }
  595. break;
  596. // if it is points
  597. case 'Points':
  598. {
  599. const numberOfPoints = parseInt( piece.attributes.NumberOfPoints );
  600. if ( numberOfPoints > 0 ) {
  601. const components = section.DataArray.attributes.NumberOfComponents;
  602. points = new Float32Array( numberOfPoints * components );
  603. points.set( section.DataArray.text, 0 );
  604. }
  605. }
  606. break;
  607. // if it is strips
  608. case 'Strips':
  609. {
  610. const numberOfStrips = parseInt( piece.attributes.NumberOfStrips );
  611. if ( numberOfStrips > 0 ) {
  612. const connectivity = new Int32Array( section.DataArray[ 0 ].text.length );
  613. const offset = new Int32Array( section.DataArray[ 1 ].text.length );
  614. connectivity.set( section.DataArray[ 0 ].text, 0 );
  615. offset.set( section.DataArray[ 1 ].text, 0 );
  616. const size = numberOfStrips + connectivity.length;
  617. indices = new Uint32Array( 3 * size - 9 * numberOfStrips );
  618. let indicesIndex = 0;
  619. for ( let i = 0, len = numberOfStrips; i < len; i ++ ) {
  620. const strip = [];
  621. for ( let s = 0, len1 = offset[ i ], len0 = 0; s < len1 - len0; s ++ ) {
  622. strip.push( connectivity[ s ] );
  623. if ( i > 0 ) len0 = offset[ i - 1 ];
  624. }
  625. for ( let j = 0, len1 = offset[ i ], len0 = 0; j < len1 - len0 - 2; j ++ ) {
  626. if ( j % 2 ) {
  627. indices[ indicesIndex ++ ] = strip[ j ];
  628. indices[ indicesIndex ++ ] = strip[ j + 2 ];
  629. indices[ indicesIndex ++ ] = strip[ j + 1 ];
  630. } else {
  631. indices[ indicesIndex ++ ] = strip[ j ];
  632. indices[ indicesIndex ++ ] = strip[ j + 1 ];
  633. indices[ indicesIndex ++ ] = strip[ j + 2 ];
  634. }
  635. if ( i > 0 ) len0 = offset[ i - 1 ];
  636. }
  637. }
  638. }
  639. }
  640. break;
  641. // if it is polys
  642. case 'Polys':
  643. {
  644. const numberOfPolys = parseInt( piece.attributes.NumberOfPolys );
  645. if ( numberOfPolys > 0 ) {
  646. const connectivity = new Int32Array( section.DataArray[ 0 ].text.length );
  647. const offset = new Int32Array( section.DataArray[ 1 ].text.length );
  648. connectivity.set( section.DataArray[ 0 ].text, 0 );
  649. offset.set( section.DataArray[ 1 ].text, 0 );
  650. const size = numberOfPolys + connectivity.length;
  651. indices = new Uint32Array( 3 * size - 9 * numberOfPolys );
  652. let indicesIndex = 0, connectivityIndex = 0;
  653. let i = 0, len0 = 0;
  654. const len = numberOfPolys;
  655. while ( i < len ) {
  656. const poly = [];
  657. let s = 0;
  658. const len1 = offset[ i ];
  659. while ( s < len1 - len0 ) {
  660. poly.push( connectivity[ connectivityIndex ++ ] );
  661. s ++;
  662. }
  663. let j = 1;
  664. while ( j < len1 - len0 - 1 ) {
  665. indices[ indicesIndex ++ ] = poly[ 0 ];
  666. indices[ indicesIndex ++ ] = poly[ j ];
  667. indices[ indicesIndex ++ ] = poly[ j + 1 ];
  668. j ++;
  669. }
  670. i ++;
  671. len0 = offset[ i - 1 ];
  672. }
  673. }
  674. }
  675. break;
  676. default:
  677. break;
  678. }
  679. }
  680. sectionIndex ++;
  681. }
  682. const geometry = new BufferGeometry();
  683. geometry.setIndex( new BufferAttribute( indices, 1 ) );
  684. geometry.setAttribute( 'position', new BufferAttribute( points, 3 ) );
  685. if ( normals.length === points.length ) {
  686. geometry.setAttribute( 'normal', new BufferAttribute( normals, 3 ) );
  687. }
  688. return geometry;
  689. } else {
  690. throw new Error( 'Unsupported DATASET type' );
  691. }
  692. }
  693. const textDecoder = new TextDecoder();
  694. // get the 5 first lines of the files to check if there is the key word binary
  695. const meta = textDecoder.decode( new Uint8Array( data, 0, 250 ) ).split( '\n' );
  696. if ( meta[ 0 ].indexOf( 'xml' ) !== - 1 ) {
  697. return parseXML( textDecoder.decode( data ) );
  698. } else if ( meta[ 2 ].includes( 'ASCII' ) ) {
  699. return parseASCII( textDecoder.decode( data ) );
  700. } else {
  701. return parseBinary( data );
  702. }
  703. }
  704. }
  705. export { VTKLoader };