123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624 |
- import BRDF_Lambert from './BSDF/BRDF_Lambert.js';
- import BRDF_GGX from './BSDF/BRDF_GGX.js';
- import DFGApprox from './BSDF/DFGApprox.js';
- import EnvironmentBRDF from './BSDF/EnvironmentBRDF.js';
- import F_Schlick from './BSDF/F_Schlick.js';
- import Schlick_to_F0 from './BSDF/Schlick_to_F0.js';
- import BRDF_Sheen from './BSDF/BRDF_Sheen.js';
- import { LTC_Evaluate, LTC_Uv } from './BSDF/LTC.js';
- import LightingModel from '../core/LightingModel.js';
- import { diffuseColor, specularColor, specularF90, roughness, clearcoat, clearcoatRoughness, sheen, sheenRoughness, iridescence, iridescenceIOR, iridescenceThickness, ior, thickness, transmission, attenuationDistance, attenuationColor, dispersion } from '../core/PropertyNode.js';
- import { transformedNormalView, transformedClearcoatNormalView, transformedNormalWorld } from '../accessors/NormalNode.js';
- import { positionViewDirection, positionView, positionWorld } from '../accessors/PositionNode.js';
- import { tslFn, float, vec2, vec3, vec4, mat3, If } from '../shadernode/ShaderNode.js';
- import { cond } from '../math/CondNode.js';
- import { mix, normalize, refract, length, clamp, log2, log, exp, smoothstep } from '../math/MathNode.js';
- import { div } from '../math/OperatorNode.js';
- import { cameraPosition, cameraProjectionMatrix, cameraViewMatrix } from '../accessors/CameraNode.js';
- import { modelWorldMatrix } from '../accessors/ModelNode.js';
- import { viewportResolution } from '../display/ViewportNode.js';
- import { viewportMipTexture } from '../display/ViewportTextureNode.js';
- import { loop } from '../utils/LoopNode.js';
- //
- // Transmission
- //
- const getVolumeTransmissionRay = tslFn( ( [ n, v, thickness, ior, modelMatrix ] ) => {
- // Direction of refracted light.
- const refractionVector = vec3( refract( v.negate(), normalize( n ), div( 1.0, ior ) ) );
- // Compute rotation-independant scaling of the model matrix.
- const modelScale = vec3(
- length( modelMatrix[ 0 ].xyz ),
- length( modelMatrix[ 1 ].xyz ),
- length( modelMatrix[ 2 ].xyz )
- );
- // The thickness is specified in local space.
- return normalize( refractionVector ).mul( thickness.mul( modelScale ) );
- } ).setLayout( {
- name: 'getVolumeTransmissionRay',
- type: 'vec3',
- inputs: [
- { name: 'n', type: 'vec3' },
- { name: 'v', type: 'vec3' },
- { name: 'thickness', type: 'float' },
- { name: 'ior', type: 'float' },
- { name: 'modelMatrix', type: 'mat4' }
- ]
- } );
- const applyIorToRoughness = tslFn( ( [ roughness, ior ] ) => {
- // Scale roughness with IOR so that an IOR of 1.0 results in no microfacet refraction and
- // an IOR of 1.5 results in the default amount of microfacet refraction.
- return roughness.mul( clamp( ior.mul( 2.0 ).sub( 2.0 ), 0.0, 1.0 ) );
- } ).setLayout( {
- name: 'applyIorToRoughness',
- type: 'float',
- inputs: [
- { name: 'roughness', type: 'float' },
- { name: 'ior', type: 'float' }
- ]
- } );
- const singleViewportMipTexture = viewportMipTexture();
- const getTransmissionSample = tslFn( ( [ fragCoord, roughness, ior ] ) => {
- const transmissionSample = singleViewportMipTexture.uv( fragCoord );
- //const transmissionSample = viewportMipTexture( fragCoord );
- const lod = log2( float( viewportResolution.x ) ).mul( applyIorToRoughness( roughness, ior ) );
- return transmissionSample.bicubic( lod );
- } );
- const volumeAttenuation = tslFn( ( [ transmissionDistance, attenuationColor, attenuationDistance ] ) => {
- If( attenuationDistance.notEqual( 0 ), () => {
- // Compute light attenuation using Beer's law.
- const attenuationCoefficient = log( attenuationColor ).negate().div( attenuationDistance );
- const transmittance = exp( attenuationCoefficient.negate().mul( transmissionDistance ) );
- return transmittance;
- } );
- // Attenuation distance is +∞, i.e. the transmitted color is not attenuated at all.
- return vec3( 1.0 );
- } ).setLayout( {
- name: 'volumeAttenuation',
- type: 'vec3',
- inputs: [
- { name: 'transmissionDistance', type: 'float' },
- { name: 'attenuationColor', type: 'vec3' },
- { name: 'attenuationDistance', type: 'float' }
- ]
- } );
- const getIBLVolumeRefraction = tslFn( ( [ n, v, roughness, diffuseColor, specularColor, specularF90, position, modelMatrix, viewMatrix, projMatrix, ior, thickness, attenuationColor, attenuationDistance, dispersion ] ) => {
- let transmittedLight, transmittance;
- if ( dispersion ) {
- transmittedLight = vec4().toVar();
- transmittance = vec3().toVar();
- const halfSpread = ior.sub( 1.0 ).mul( dispersion.mul( 0.025 ) );
- const iors = vec3( ior.sub( halfSpread ), ior, ior.add( halfSpread ) );
- loop( { start: 0, end: 3 }, ( { i } ) => {
- const ior = iors.element( i );
- const transmissionRay = getVolumeTransmissionRay( n, v, thickness, ior, modelMatrix );
- const refractedRayExit = position.add( transmissionRay );
- // Project refracted vector on the framebuffer, while mapping to normalized device coordinates.
- const ndcPos = projMatrix.mul( viewMatrix.mul( vec4( refractedRayExit, 1.0 ) ) );
- const refractionCoords = vec2( ndcPos.xy.div( ndcPos.w ) ).toVar();
- refractionCoords.addAssign( 1.0 );
- refractionCoords.divAssign( 2.0 );
- refractionCoords.assign( vec2( refractionCoords.x, refractionCoords.y.oneMinus() ) ); // webgpu
- // Sample framebuffer to get pixel the refracted ray hits.
- const transmissionSample = getTransmissionSample( refractionCoords, roughness, ior );
- transmittedLight.element( i ).assign( transmissionSample.element( i ) );
- transmittedLight.a.addAssign( transmissionSample.a );
- transmittance.element( i ).assign( diffuseColor.element( i ).mul( volumeAttenuation( length( transmissionRay ), attenuationColor, attenuationDistance ).element( i ) ) );
- } );
- transmittedLight.a.divAssign( 3.0 );
- } else {
- const transmissionRay = getVolumeTransmissionRay( n, v, thickness, ior, modelMatrix );
- const refractedRayExit = position.add( transmissionRay );
- // Project refracted vector on the framebuffer, while mapping to normalized device coordinates.
- const ndcPos = projMatrix.mul( viewMatrix.mul( vec4( refractedRayExit, 1.0 ) ) );
- const refractionCoords = vec2( ndcPos.xy.div( ndcPos.w ) ).toVar();
- refractionCoords.addAssign( 1.0 );
- refractionCoords.divAssign( 2.0 );
- refractionCoords.assign( vec2( refractionCoords.x, refractionCoords.y.oneMinus() ) ); // webgpu
- // Sample framebuffer to get pixel the refracted ray hits.
- transmittedLight = getTransmissionSample( refractionCoords, roughness, ior );
- transmittance = diffuseColor.mul( volumeAttenuation( length( transmissionRay ), attenuationColor, attenuationDistance ) );
- }
- const attenuatedColor = transmittance.rgb.mul( transmittedLight.rgb );
- const dotNV = n.dot( v ).clamp();
- // Get the specular component.
- const F = vec3( EnvironmentBRDF( { // n, v, specularColor, specularF90, roughness
- dotNV,
- specularColor,
- specularF90,
- roughness
- } ) );
- // As less light is transmitted, the opacity should be increased. This simple approximation does a decent job
- // of modulating a CSS background, and has no effect when the buffer is opaque, due to a solid object or clear color.
- const transmittanceFactor = transmittance.r.add( transmittance.g, transmittance.b ).div( 3.0 );
- return vec4( F.oneMinus().mul( attenuatedColor ), transmittedLight.a.oneMinus().mul( transmittanceFactor ).oneMinus() );
- } );
- //
- // Iridescence
- //
- // XYZ to linear-sRGB color space
- const XYZ_TO_REC709 = mat3(
- 3.2404542, - 0.9692660, 0.0556434,
- - 1.5371385, 1.8760108, - 0.2040259,
- - 0.4985314, 0.0415560, 1.0572252
- );
- // Assume air interface for top
- // Note: We don't handle the case fresnel0 == 1
- const Fresnel0ToIor = ( fresnel0 ) => {
- const sqrtF0 = fresnel0.sqrt();
- return vec3( 1.0 ).add( sqrtF0 ).div( vec3( 1.0 ).sub( sqrtF0 ) );
- };
- // ior is a value between 1.0 and 3.0. 1.0 is air interface
- const IorToFresnel0 = ( transmittedIor, incidentIor ) => {
- return transmittedIor.sub( incidentIor ).div( transmittedIor.add( incidentIor ) ).pow2();
- };
- // Fresnel equations for dielectric/dielectric interfaces.
- // Ref: https://belcour.github.io/blog/research/2017/05/01/brdf-thin-film.html
- // Evaluation XYZ sensitivity curves in Fourier space
- const evalSensitivity = ( OPD, shift ) => {
- const phase = OPD.mul( 2.0 * Math.PI * 1.0e-9 );
- const val = vec3( 5.4856e-13, 4.4201e-13, 5.2481e-13 );
- const pos = vec3( 1.6810e+06, 1.7953e+06, 2.2084e+06 );
- const VAR = vec3( 4.3278e+09, 9.3046e+09, 6.6121e+09 );
- const x = float( 9.7470e-14 * Math.sqrt( 2.0 * Math.PI * 4.5282e+09 ) ).mul( phase.mul( 2.2399e+06 ).add( shift.x ).cos() ).mul( phase.pow2().mul( - 4.5282e+09 ).exp() );
- let xyz = val.mul( VAR.mul( 2.0 * Math.PI ).sqrt() ).mul( pos.mul( phase ).add( shift ).cos() ).mul( phase.pow2().negate().mul( VAR ).exp() );
- xyz = vec3( xyz.x.add( x ), xyz.y, xyz.z ).div( 1.0685e-7 );
- const rgb = XYZ_TO_REC709.mul( xyz );
- return rgb;
- };
- const evalIridescence = tslFn( ( { outsideIOR, eta2, cosTheta1, thinFilmThickness, baseF0 } ) => {
- // Force iridescenceIOR -> outsideIOR when thinFilmThickness -> 0.0
- const iridescenceIOR = mix( outsideIOR, eta2, smoothstep( 0.0, 0.03, thinFilmThickness ) );
- // Evaluate the cosTheta on the base layer (Snell law)
- const sinTheta2Sq = outsideIOR.div( iridescenceIOR ).pow2().mul( float( 1 ).sub( cosTheta1.pow2() ) );
- // Handle TIR:
- const cosTheta2Sq = float( 1 ).sub( sinTheta2Sq );
- /*if ( cosTheta2Sq < 0.0 ) {
- return vec3( 1.0 );
- }*/
- const cosTheta2 = cosTheta2Sq.sqrt();
- // First interface
- const R0 = IorToFresnel0( iridescenceIOR, outsideIOR );
- const R12 = F_Schlick( { f0: R0, f90: 1.0, dotVH: cosTheta1 } );
- //const R21 = R12;
- const T121 = R12.oneMinus();
- const phi12 = iridescenceIOR.lessThan( outsideIOR ).cond( Math.PI, 0.0 );
- const phi21 = float( Math.PI ).sub( phi12 );
- // Second interface
- const baseIOR = Fresnel0ToIor( baseF0.clamp( 0.0, 0.9999 ) ); // guard against 1.0
- const R1 = IorToFresnel0( baseIOR, iridescenceIOR.toVec3() );
- const R23 = F_Schlick( { f0: R1, f90: 1.0, dotVH: cosTheta2 } );
- const phi23 = vec3(
- baseIOR.x.lessThan( iridescenceIOR ).cond( Math.PI, 0.0 ),
- baseIOR.y.lessThan( iridescenceIOR ).cond( Math.PI, 0.0 ),
- baseIOR.z.lessThan( iridescenceIOR ).cond( Math.PI, 0.0 )
- );
- // Phase shift
- const OPD = iridescenceIOR.mul( thinFilmThickness, cosTheta2, 2.0 );
- const phi = vec3( phi21 ).add( phi23 );
- // Compound terms
- const R123 = R12.mul( R23 ).clamp( 1e-5, 0.9999 );
- const r123 = R123.sqrt();
- const Rs = T121.pow2().mul( R23 ).div( vec3( 1.0 ).sub( R123 ) );
- // Reflectance term for m = 0 (DC term amplitude)
- const C0 = R12.add( Rs );
- let I = C0;
- // Reflectance term for m > 0 (pairs of diracs)
- let Cm = Rs.sub( T121 );
- for ( let m = 1; m <= 2; ++ m ) {
- Cm = Cm.mul( r123 );
- const Sm = evalSensitivity( float( m ).mul( OPD ), float( m ).mul( phi ) ).mul( 2.0 );
- I = I.add( Cm.mul( Sm ) );
- }
- // Since out of gamut colors might be produced, negative color values are clamped to 0.
- return I.max( vec3( 0.0 ) );
- } ).setLayout( {
- name: 'evalIridescence',
- type: 'vec3',
- inputs: [
- { name: 'outsideIOR', type: 'float' },
- { name: 'eta2', type: 'float' },
- { name: 'cosTheta1', type: 'float' },
- { name: 'thinFilmThickness', type: 'float' },
- { name: 'baseF0', type: 'vec3' }
- ]
- } );
- //
- // Sheen
- //
- // This is a curve-fit approxmation to the "Charlie sheen" BRDF integrated over the hemisphere from
- // Estevez and Kulla 2017, "Production Friendly Microfacet Sheen BRDF". The analysis can be found
- // in the Sheen section of https://drive.google.com/file/d/1T0D1VSyR4AllqIJTQAraEIzjlb5h4FKH/view?usp=sharing
- const IBLSheenBRDF = tslFn( ( { normal, viewDir, roughness } ) => {
- const dotNV = normal.dot( viewDir ).saturate();
- const r2 = roughness.pow2();
- const a = cond(
- roughness.lessThan( 0.25 ),
- float( - 339.2 ).mul( r2 ).add( float( 161.4 ).mul( roughness ) ).sub( 25.9 ),
- float( - 8.48 ).mul( r2 ).add( float( 14.3 ).mul( roughness ) ).sub( 9.95 )
- );
- const b = cond(
- roughness.lessThan( 0.25 ),
- float( 44.0 ).mul( r2 ).sub( float( 23.7 ).mul( roughness ) ).add( 3.26 ),
- float( 1.97 ).mul( r2 ).sub( float( 3.27 ).mul( roughness ) ).add( 0.72 )
- );
- const DG = cond( roughness.lessThan( 0.25 ), 0.0, float( 0.1 ).mul( roughness ).sub( 0.025 ) ).add( a.mul( dotNV ).add( b ).exp() );
- return DG.mul( 1.0 / Math.PI ).saturate();
- } );
- const clearcoatF0 = vec3( 0.04 );
- const clearcoatF90 = float( 1 );
- //
- class PhysicalLightingModel extends LightingModel {
- constructor( clearcoat = false, sheen = false, iridescence = false, anisotropy = false, transmission = false, dispersion = false ) {
- super();
- this.clearcoat = clearcoat;
- this.sheen = sheen;
- this.iridescence = iridescence;
- this.anisotropy = anisotropy;
- this.transmission = transmission;
- this.dispersion = dispersion;
- this.clearcoatRadiance = null;
- this.clearcoatSpecularDirect = null;
- this.clearcoatSpecularIndirect = null;
- this.sheenSpecularDirect = null;
- this.sheenSpecularIndirect = null;
- this.iridescenceFresnel = null;
- this.iridescenceF0 = null;
- }
- start( context ) {
- if ( this.clearcoat === true ) {
- this.clearcoatRadiance = vec3().temp( 'clearcoatRadiance' );
- this.clearcoatSpecularDirect = vec3().temp( 'clearcoatSpecularDirect' );
- this.clearcoatSpecularIndirect = vec3().temp( 'clearcoatSpecularIndirect' );
- }
- if ( this.sheen === true ) {
- this.sheenSpecularDirect = vec3().temp( 'sheenSpecularDirect' );
- this.sheenSpecularIndirect = vec3().temp( 'sheenSpecularIndirect' );
- }
- if ( this.iridescence === true ) {
- const dotNVi = transformedNormalView.dot( positionViewDirection ).clamp();
- this.iridescenceFresnel = evalIridescence( {
- outsideIOR: float( 1.0 ),
- eta2: iridescenceIOR,
- cosTheta1: dotNVi,
- thinFilmThickness: iridescenceThickness,
- baseF0: specularColor
- } );
- this.iridescenceF0 = Schlick_to_F0( { f: this.iridescenceFresnel, f90: 1.0, dotVH: dotNVi } );
- }
- if ( this.transmission === true ) {
- const position = positionWorld;
- const v = cameraPosition.sub( positionWorld ).normalize(); // TODO: Create Node for this, same issue in MaterialX
- const n = transformedNormalWorld;
- context.backdrop = getIBLVolumeRefraction(
- n,
- v,
- roughness,
- diffuseColor,
- specularColor,
- specularF90, // specularF90
- position, // positionWorld
- modelWorldMatrix, // modelMatrix
- cameraViewMatrix, // viewMatrix
- cameraProjectionMatrix, // projMatrix
- ior,
- thickness,
- attenuationColor,
- attenuationDistance,
- this.dispersion ? dispersion : null
- );
- context.backdropAlpha = transmission;
- diffuseColor.a.mulAssign( mix( 1, context.backdrop.a, transmission ) );
- }
- }
- // Fdez-Agüera's "Multiple-Scattering Microfacet Model for Real-Time Image Based Lighting"
- // Approximates multiscattering in order to preserve energy.
- // http://www.jcgt.org/published/0008/01/03/
- computeMultiscattering( singleScatter, multiScatter, specularF90 ) {
- const dotNV = transformedNormalView.dot( positionViewDirection ).clamp(); // @ TODO: Move to core dotNV
- const fab = DFGApprox( { roughness, dotNV } );
- const Fr = this.iridescenceF0 ? iridescence.mix( specularColor, this.iridescenceF0 ) : specularColor;
- const FssEss = Fr.mul( fab.x ).add( specularF90.mul( fab.y ) );
- const Ess = fab.x.add( fab.y );
- const Ems = Ess.oneMinus();
- const Favg = specularColor.add( specularColor.oneMinus().mul( 0.047619 ) ); // 1/21
- const Fms = FssEss.mul( Favg ).div( Ems.mul( Favg ).oneMinus() );
- singleScatter.addAssign( FssEss );
- multiScatter.addAssign( Fms.mul( Ems ) );
- }
- direct( { lightDirection, lightColor, reflectedLight } ) {
- const dotNL = transformedNormalView.dot( lightDirection ).clamp();
- const irradiance = dotNL.mul( lightColor );
- if ( this.sheen === true ) {
- this.sheenSpecularDirect.addAssign( irradiance.mul( BRDF_Sheen( { lightDirection } ) ) );
- }
- if ( this.clearcoat === true ) {
- const dotNLcc = transformedClearcoatNormalView.dot( lightDirection ).clamp();
- const ccIrradiance = dotNLcc.mul( lightColor );
- this.clearcoatSpecularDirect.addAssign( ccIrradiance.mul( BRDF_GGX( { lightDirection, f0: clearcoatF0, f90: clearcoatF90, roughness: clearcoatRoughness, normalView: transformedClearcoatNormalView } ) ) );
- }
- reflectedLight.directDiffuse.addAssign( irradiance.mul( BRDF_Lambert( { diffuseColor: diffuseColor.rgb } ) ) );
- reflectedLight.directSpecular.addAssign( irradiance.mul( BRDF_GGX( { lightDirection, f0: specularColor, f90: 1, roughness, iridescence: this.iridescence, f: this.iridescenceFresnel, USE_IRIDESCENCE: this.iridescence, USE_ANISOTROPY: this.anisotropy } ) ) );
- }
- directRectArea( { lightColor, lightPosition, halfWidth, halfHeight, reflectedLight, ltc_1, ltc_2 } ) {
- const p0 = lightPosition.add( halfWidth ).sub( halfHeight ); // counterclockwise; light shines in local neg z direction
- const p1 = lightPosition.sub( halfWidth ).sub( halfHeight );
- const p2 = lightPosition.sub( halfWidth ).add( halfHeight );
- const p3 = lightPosition.add( halfWidth ).add( halfHeight );
- const N = transformedNormalView;
- const V = positionViewDirection;
- const P = positionView.toVar();
- const uv = LTC_Uv( { N, V, roughness } );
- const t1 = ltc_1.uv( uv ).toVar();
- const t2 = ltc_2.uv( uv ).toVar();
- const mInv = mat3(
- vec3( t1.x, 0, t1.y ),
- vec3( 0, 1, 0 ),
- vec3( t1.z, 0, t1.w )
- ).toVar();
- // LTC Fresnel Approximation by Stephen Hill
- // http://blog.selfshadow.com/publications/s2016-advances/s2016_ltc_fresnel.pdf
- const fresnel = specularColor.mul( t2.x ).add( specularColor.oneMinus().mul( t2.y ) ).toVar();
- reflectedLight.directSpecular.addAssign( lightColor.mul( fresnel ).mul( LTC_Evaluate( { N, V, P, mInv, p0, p1, p2, p3 } ) ) );
- reflectedLight.directDiffuse.addAssign( lightColor.mul( diffuseColor ).mul( LTC_Evaluate( { N, V, P, mInv: mat3( 1, 0, 0, 0, 1, 0, 0, 0, 1 ), p0, p1, p2, p3 } ) ) );
- }
- indirectDiffuse( { irradiance, reflectedLight } ) {
- reflectedLight.indirectDiffuse.addAssign( irradiance.mul( BRDF_Lambert( { diffuseColor } ) ) );
- }
- indirectSpecular( { radiance, iblIrradiance, reflectedLight } ) {
- if ( this.sheen === true ) {
- this.sheenSpecularIndirect.addAssign( iblIrradiance.mul(
- sheen,
- IBLSheenBRDF( {
- normal: transformedNormalView,
- viewDir: positionViewDirection,
- roughness: sheenRoughness
- } )
- ) );
- }
- if ( this.clearcoat === true ) {
- const dotNVcc = transformedClearcoatNormalView.dot( positionViewDirection ).clamp();
- const clearcoatEnv = EnvironmentBRDF( {
- dotNV: dotNVcc,
- specularColor: clearcoatF0,
- specularF90: clearcoatF90,
- roughness: clearcoatRoughness
- } );
- this.clearcoatSpecularIndirect.addAssign( this.clearcoatRadiance.mul( clearcoatEnv ) );
- }
- // Both indirect specular and indirect diffuse light accumulate here
- const singleScattering = vec3().temp( 'singleScattering' );
- const multiScattering = vec3().temp( 'multiScattering' );
- const cosineWeightedIrradiance = iblIrradiance.mul( 1 / Math.PI );
- this.computeMultiscattering( singleScattering, multiScattering, specularF90 );
- const totalScattering = singleScattering.add( multiScattering );
- const diffuse = diffuseColor.mul( totalScattering.r.max( totalScattering.g ).max( totalScattering.b ).oneMinus() );
- reflectedLight.indirectSpecular.addAssign( radiance.mul( singleScattering ) );
- reflectedLight.indirectSpecular.addAssign( multiScattering.mul( cosineWeightedIrradiance ) );
- reflectedLight.indirectDiffuse.addAssign( diffuse.mul( cosineWeightedIrradiance ) );
- }
- ambientOcclusion( { ambientOcclusion, reflectedLight } ) {
- const dotNV = transformedNormalView.dot( positionViewDirection ).clamp(); // @ TODO: Move to core dotNV
- const aoNV = dotNV.add( ambientOcclusion );
- const aoExp = roughness.mul( - 16.0 ).oneMinus().negate().exp2();
- const aoNode = ambientOcclusion.sub( aoNV.pow( aoExp ).oneMinus() ).clamp();
- if ( this.clearcoat === true ) {
- this.clearcoatSpecularIndirect.mulAssign( ambientOcclusion );
- }
- if ( this.sheen === true ) {
- this.sheenSpecularIndirect.mulAssign( ambientOcclusion );
- }
- reflectedLight.indirectDiffuse.mulAssign( ambientOcclusion );
- reflectedLight.indirectSpecular.mulAssign( aoNode );
- }
- finish( context ) {
- const { outgoingLight } = context;
- if ( this.clearcoat === true ) {
- const dotNVcc = transformedClearcoatNormalView.dot( positionViewDirection ).clamp();
- const Fcc = F_Schlick( {
- dotVH: dotNVcc,
- f0: clearcoatF0,
- f90: clearcoatF90
- } );
- const clearcoatLight = outgoingLight.mul( clearcoat.mul( Fcc ).oneMinus() ).add( this.clearcoatSpecularDirect.add( this.clearcoatSpecularIndirect ).mul( clearcoat ) );
- outgoingLight.assign( clearcoatLight );
- }
- if ( this.sheen === true ) {
- const sheenEnergyComp = sheen.r.max( sheen.g ).max( sheen.b ).mul( 0.157 ).oneMinus();
- const sheenLight = outgoingLight.mul( sheenEnergyComp ).add( this.sheenSpecularDirect, this.sheenSpecularIndirect );
- outgoingLight.assign( sheenLight );
- }
- }
- }
- export default PhysicalLightingModel;
|