CCDIKSolver.js 2.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137
  1. /**
  2. * @author takahiro / https://github.com/takahirox
  3. *
  4. * CCD Algorithm
  5. * https://sites.google.com/site/auraliusproject/ccd-algorithm
  6. *
  7. * mesh.geometry needs to have iks array.
  8. *
  9. * ik parameter example
  10. *
  11. * ik = {
  12. * target: 1,
  13. * effector: 2,
  14. * links: [ { index: 5 }, { index: 4, limitation: new THREE.Vector3( 1, 0, 0 ) }, { index : 3 } ],
  15. * iteration: 10,
  16. * minAngle: 0.0,
  17. * maxAngle: 1.0,
  18. * };
  19. */
  20. THREE.CCDIKSolver = function ( mesh ) {
  21. this.mesh = mesh;
  22. };
  23. THREE.CCDIKSolver.prototype = {
  24. constructor: THREE.CCDIKSolver,
  25. update: function () {
  26. var effectorVec = new THREE.Vector3();
  27. var targetVec = new THREE.Vector3();
  28. var axis = new THREE.Vector3();
  29. var q = new THREE.Quaternion();
  30. var bones = this.mesh.skeleton.bones;
  31. var iks = this.mesh.geometry.iks;
  32. // for reference overhead reduction in loop
  33. var math = Math;
  34. for ( var i = 0, il = iks.length; i < il; i++ ) {
  35. var ik = iks[ i ];
  36. var effector = bones[ ik.effector ];
  37. var target = bones[ ik.target ];
  38. var targetPos = target.getWorldPosition();
  39. var links = ik.links;
  40. var iteration = ik.iteration !== undefined ? ik.iteration : 1;
  41. for ( var j = 0; j < iteration; j++ ) {
  42. for ( var k = 0, kl = links.length; k < kl; k++ ) {
  43. var link = bones[ links[ k ].index ];
  44. var limitation = links[ k ].limitation;
  45. var linkPos = link.getWorldPosition();
  46. var invLinkQ = link.getWorldQuaternion().inverse();
  47. var effectorPos = effector.getWorldPosition();
  48. // work in link world
  49. effectorVec.subVectors( effectorPos, linkPos );
  50. effectorVec.applyQuaternion( invLinkQ );
  51. effectorVec.normalize();
  52. targetVec.subVectors( targetPos, linkPos );
  53. targetVec.applyQuaternion( invLinkQ );
  54. targetVec.normalize();
  55. var angle = targetVec.dot( effectorVec );
  56. // TODO: continue (or break) the loop for the performance
  57. // if no longer needs to rotate (angle > 1.0-1e-5 ?)
  58. if ( angle > 1.0 ) {
  59. angle = 1.0;
  60. } else if ( angle < -1.0 ) {
  61. angle = -1.0;
  62. }
  63. angle = math.acos( angle );
  64. if ( ik.minAngle !== undefined && angle < ik.minAngle ) {
  65. angle = ik.minAngle;
  66. }
  67. if ( ik.maxAngle !== undefined && angle > ik.maxAngle ) {
  68. angle = ik.maxAngle;
  69. }
  70. axis.crossVectors( effectorVec, targetVec );
  71. axis.normalize();
  72. q.setFromAxisAngle( axis, angle );
  73. link.quaternion.multiply( q );
  74. // TODO: re-consider the limitation specification
  75. if ( limitation !== undefined ) {
  76. var c = link.quaternion.w;
  77. if ( c > 1.0 ) {
  78. c = 1.0;
  79. }
  80. var c2 = math.sqrt( 1 - c * c );
  81. link.quaternion.set( limitation.x * c2,
  82. limitation.y * c2,
  83. limitation.z * c2,
  84. c );
  85. }
  86. link.updateMatrixWorld( true );
  87. }
  88. }
  89. }
  90. }
  91. };