cpuelf.pas 31 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882
  1. {
  2. Copyright (c) 2012 by Sergei Gorelkin
  3. Includes ELF-related code specific to ARM
  4. This program is free software; you can redistribute it and/or modify
  5. it under the terms of the GNU General Public License as published by
  6. the Free Software Foundation; either version 2 of the License, or
  7. (at your option) any later version.
  8. This program is distributed in the hope that it will be useful,
  9. but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  11. GNU General Public License for more details.
  12. You should have received a copy of the GNU General Public License
  13. along with this program; if not, write to the Free Software
  14. Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  15. ****************************************************************************
  16. }
  17. unit cpuelf;
  18. interface
  19. {$i fpcdefs.inc}
  20. implementation
  21. uses
  22. globtype,cutils,cclasses,
  23. verbose, elfbase,
  24. systems,aasmbase,ogbase,ogelf,assemble;
  25. type
  26. TElfExeOutputARM=class(TElfExeOutput)
  27. private
  28. procedure MaybeWriteGOTEntry(reltyp:byte;relocval:aint;objsym:TObjSymbol);
  29. protected
  30. procedure WriteFirstPLTEntry;override;
  31. procedure WritePLTEntry(exesym:TExeSymbol);override;
  32. procedure WriteIndirectPLTEntry(exesym:TExeSymbol);override;
  33. procedure GOTRelocPass1(objsec:TObjSection;var idx:longint);override;
  34. procedure DoRelocationFixup(objsec:TObjSection);override;
  35. end;
  36. const
  37. { Relocation types }
  38. R_ARM_NONE = 0;
  39. R_ARM_PC24 = 1; // deprecated
  40. R_ARM_ABS32 = 2;
  41. R_ARM_REL32 = 3;
  42. R_ARM_LDR_PC_G0 = 4;
  43. R_ARM_ABS16 = 5;
  44. R_ARM_ABS12 = 6;
  45. R_ARM_THM_ABS5 = 7;
  46. R_ARM_ABS8 = 8;
  47. R_ARM_SBREL32 = 9;
  48. R_ARM_THM_CALL = 10;
  49. R_ARM_THM_PC8 = 11;
  50. R_ARM_BREL_ADJ = 12;
  51. R_ARM_TLS_DESC = 13;
  52. { 14,15,16 are obsolete }
  53. R_ARM_TLS_DTPMOD32 = 17;
  54. R_ARM_TLS_DTPOFF32 = 18;
  55. R_ARM_TLS_TPOFF32 = 19;
  56. R_ARM_COPY = 20;
  57. R_ARM_GLOB_DAT = 21;
  58. R_ARM_JUMP_SLOT = 22;
  59. R_ARM_RELATIVE = 23;
  60. R_ARM_GOTOFF32 = 24;
  61. R_ARM_BASE_PREL = 25;
  62. R_ARM_GOT_BREL = 26;
  63. R_ARM_PLT32 = 27; // deprecated
  64. R_ARM_CALL = 28;
  65. R_ARM_JUMP24 = 29;
  66. R_ARM_THM_JUMP24 = 30;
  67. R_ARM_BASE_ABS = 31;
  68. { 32,33,34 are obsolete }
  69. R_ARM_LDR_SBREL_11_0 = 35; // deprecated
  70. R_ARM_ALU_SBREL_19_12 = 36; // deprecated
  71. R_ARM_ALU_SBREL_27_20 = 37; // deprecated
  72. R_ARM_TARGET1 = 38;
  73. R_ARM_SBREL31 = 39; // deprecated
  74. R_ARM_V4BX = 40;
  75. R_ARM_TARGET2 = 41;
  76. R_ARM_PREL31 = 42;
  77. R_ARM_MOVW_ABS_NC = 43;
  78. R_ARM_MOVT_ABS = 44;
  79. R_ARM_MOVW_PREL_NC = 45;
  80. R_ARM_MOVT_PREL = 46;
  81. R_ARM_THM_MOVW_ABS_NC = 47;
  82. R_ARM_THM_MOVT_ABS = 48;
  83. R_ARM_THM_MOVW_PREL_NC = 49;
  84. R_ARM_THM_MOVT_PREL = 50;
  85. R_ARM_THM_JUMP19 = 51;
  86. R_ARM_THM_JUMP6 = 52;
  87. R_ARM_THM_ALU_PREL_11_0 = 53;
  88. R_ARM_THM_PC12 = 54;
  89. R_ARM_ABS32_NOI = 55;
  90. R_ARM_REL32_NOI = 56;
  91. R_ARM_ALU_PC_G0_NC = 57;
  92. R_ARM_ALU_PC_G0 = 58;
  93. R_ARM_ALU_PC_G1_NC = 59;
  94. R_ARM_ALU_PC_G1 = 60;
  95. R_ARM_ALU_PC_G2 = 61;
  96. R_ARM_LDR_PC_G1 = 62;
  97. R_ARM_LDR_PC_G2 = 63;
  98. R_ARM_LDRS_PC_G0 = 64;
  99. R_ARM_LDRS_PC_G1 = 65;
  100. R_ARM_LDRS_PC_G2 = 66;
  101. R_ARM_LDC_PC_G0 = 67;
  102. R_ARM_LDC_PC_G1 = 68;
  103. R_ARM_LDC_PC_G2 = 69;
  104. R_ARM_ALU_SB_G0_NC = 70;
  105. R_ARM_ALU_SB_G0 = 71;
  106. R_ARM_ALU_SB_G1_NC = 72;
  107. R_ARM_ALU_SB_G1 = 73;
  108. R_ARM_ALU_SB_G2 = 74;
  109. R_ARM_LDR_SB_G0 = 75;
  110. R_ARM_LDR_SB_G1 = 76;
  111. R_ARM_LDR_SB_G2 = 77;
  112. R_ARM_LDRS_SB_G0 = 78;
  113. R_ARM_LDRS_SB_G1 = 79;
  114. R_ARM_LDRS_SB_G2 = 80;
  115. R_ARM_LDC_SB_G0 = 81;
  116. R_ARM_LDC_SB_G1 = 82;
  117. R_ARM_LDC_SB_G2 = 83;
  118. R_ARM_MOVW_BREL_NC = 84;
  119. R_ARM_MOVT_BREL = 85;
  120. R_ARM_MOVW_BREL = 86;
  121. R_ARM_THM_MOVW_BREL_NC = 87;
  122. R_ARM_THM_MOVT_BREL = 88;
  123. R_ARM_THM_MOVW_BREL = 89;
  124. R_ARM_TLS_GOTDESC = 90;
  125. R_ARM_TLS_CALL = 91;
  126. R_ARM_TLS_DESCSEQ = 92;
  127. R_ARM_THM_TLS_CALL = 93;
  128. R_ARM_PLT32_ABS = 94;
  129. R_ARM_GOT_ABS = 95;
  130. R_ARM_GOT_PREL = 96;
  131. R_ARM_GOT_BREL12 = 97;
  132. R_ARM_GOTOFF12 = 98;
  133. R_ARM_GOTRELAX = 99;
  134. R_ARM_GNU_VTENTRY = 100; // deprecated - old C++ abi
  135. R_ARM_GNU_VTINHERIT = 101; // deprecated - old C++ abi
  136. R_ARM_THM_JUMP11 = 102;
  137. R_ARM_THM_JUMP8 = 103;
  138. R_ARM_TLS_GD32 = 104;
  139. R_ARM_TLS_LDM32 = 105;
  140. R_ARM_TLS_LDO32 = 106;
  141. R_ARM_TLS_IE32 = 107;
  142. R_ARM_TLS_LE32 = 108;
  143. R_ARM_TLS_LDO12 = 109;
  144. R_ARM_TLS_LE12 = 110;
  145. R_ARM_TLS_IE12GP = 111;
  146. { 112-127 are for private experiments }
  147. { 128 is obsolete }
  148. R_ARM_THM_TLS_DESCSEQ = 129;
  149. R_ARM_IRELATIVE = 160;
  150. { Section types }
  151. SHT_ARM_EXIDX = $70000001;
  152. SHT_ARM_PREEMPTMAP = $70000002;
  153. SHT_ARM_ATTRIBUTES = $70000003;
  154. SHT_ARM_DEBUGOVERLAY = $70000004;
  155. SHT_ARM_OVERLAYSECTION = $70000005;
  156. TCB_SIZE = 8;
  157. { Using short identifiers to save typing. This ARM thing has more relocations
  158. than it has instructions... }
  159. const
  160. g0=1;
  161. g1=2;
  162. g2=3;
  163. gpmask=3;
  164. pc=4;
  165. nc=8;
  166. thm=16;
  167. type
  168. TArmRelocProp=record
  169. name: PChar;
  170. flags: byte; // bits 0,1: group, bit 2: PC-relative, bit 3: unchecked,
  171. // bit 4: THUMB
  172. end;
  173. const
  174. relocprops: array[0..111] of TArmRelocProp = (
  175. (name: 'R_ARM_NONE'; flags: 0), //
  176. (name: 'R_ARM_PC24'; flags: pc), //
  177. (name: 'R_ARM_ABS32'; flags: 0), //
  178. (name: 'R_ARM_REL32'; flags: pc), //
  179. (name: 'R_ARM_LDR_PC_G0'; flags: g0+pc), //
  180. (name: 'R_ARM_ABS16'; flags: 0),
  181. (name: 'R_ARM_ABS12'; flags: 0),
  182. (name: 'R_ARM_THM_ABS5'; flags: thm),
  183. (name: 'R_ARM_ABS8'; flags: 0),
  184. (name: 'R_ARM_SBREL32'; flags: 0),
  185. (name: 'R_ARM_THM_CALL'; flags: thm),
  186. (name: 'R_ARM_THM_PC8'; flags: pc+thm),
  187. (name: 'R_ARM_BREL_ADJ'; flags: 0),
  188. (name: 'R_ARM_TLS_DESC'; flags: 0),
  189. (name: 'obsolete(14)'; flags: 0),
  190. (name: 'obsolete(15)'; flags: 0),
  191. (name: 'obsolete(16)'; flags: 0),
  192. (name: 'R_ARM_TLS_DTPMOD32'; flags: 0),
  193. (name: 'R_ARM_TLS_DTPOFF32'; flags: 0),
  194. (name: 'R_ARM_TLS_TPOFF32'; flags: 0),
  195. (name: 'R_ARM_COPY'; flags: 0),
  196. (name: 'R_ARM_GLOB_DAT'; flags: 0),
  197. (name: 'R_ARM_JUMP_SLOT'; flags: 0),
  198. (name: 'R_ARM_RELATIVE'; flags: 0),
  199. (name: 'R_ARM_GOTOFF32'; flags: 0),
  200. (name: 'R_ARM_BASE_PREL'; flags: pc), //
  201. (name: 'R_ARM_GOT_BREL'; flags: 0), //
  202. (name: 'R_ARM_PLT32'; flags: pc), //
  203. (name: 'R_ARM_CALL'; flags: pc), //
  204. (name: 'R_ARM_JUMP24'; flags: pc), //
  205. (name: 'R_ARM_THM_JUMP24'; flags: thm),
  206. (name: 'R_ARM_BASE_ABS'; flags: 0),
  207. (name: 'obsolete(32)'; flags: 0),
  208. (name: 'obsolete(33)'; flags: 0),
  209. (name: 'obsolete(34)'; flags: 0),
  210. (name: 'R_ARM_LDR_SBREL_11_0'; flags: g0),
  211. (name: 'R_ARM_ALU_SBREL_19_12'; flags: g1),
  212. (name: 'R_ARM_ALU_SBREL_27_20'; flags: g2),
  213. (name: 'R_ARM_TARGET1'; flags: 0),
  214. (name: 'R_ARM_SBREL31'; flags: 0),
  215. (name: 'R_ARM_V4BX'; flags: 0),
  216. (name: 'R_ARM_TARGET2'; flags: 0),
  217. (name: 'R_ARM_PREL31'; flags: 0),
  218. (name: 'R_ARM_MOVW_ABS_NC'; flags: nc),
  219. (name: 'R_ARM_MOVT_ABS'; flags: 0),
  220. (name: 'R_ARM_MOVW_PREL_NC'; flags: nc),
  221. (name: 'R_ARM_MOVT_PREL'; flags: 0),
  222. (name: 'R_ARM_THM_MOVW_ABS_NC'; flags: nc+thm),
  223. (name: 'R_ARM_THM_MOVT_ABS'; flags: thm),
  224. (name: 'R_ARM_THM_MOVW_PREL_NC'; flags: nc+thm),
  225. (name: 'R_ARM_THM_MOVT_PREL'; flags: thm),
  226. (name: 'R_ARM_THM_JUMP19'; flags: thm),
  227. (name: 'R_ARM_THM_JUMP6'; flags: thm),
  228. (name: 'R_ARM_THM_ALU_PREL_11_0'; flags: thm+pc),
  229. (name: 'R_ARM_THM_PC12'; flags: thm+pc),
  230. (name: 'R_ARM_ABS32_NOI'; flags: 0),
  231. (name: 'R_ARM_REL32_NOI'; flags: pc),
  232. (name: 'R_ARM_ALU_PC_G0_NC'; flags: pc+g0+nc), //
  233. (name: 'R_ARM_ALU_PC_G0'; flags: pc+g0), //
  234. (name: 'R_ARM_ALU_PC_G1_NC'; flags: pc+g1+nc), //
  235. (name: 'R_ARM_ALU_PC_G1'; flags: pc+g1), //
  236. (name: 'R_ARM_ALU_PC_G2'; flags: pc+g2), //
  237. (name: 'R_ARM_LDR_PC_G1'; flags: pc+g1), //
  238. (name: 'R_ARM_LDR_PC_G2'; flags: pc+g2), //
  239. (name: 'R_ARM_LDRS_PC_G0'; flags: pc+g0), //
  240. (name: 'R_ARM_LDRS_PC_G1'; flags: pc+g1), //
  241. (name: 'R_ARM_LDRS_PC_G2'; flags: pc+g2), //
  242. (name: 'R_ARM_LDC_PC_G0'; flags: pc+g0), //
  243. (name: 'R_ARM_LDC_PC_G1'; flags: pc+g1), //
  244. (name: 'R_ARM_LDC_PC_G2'; flags: pc+g2), //
  245. (name: 'R_ARM_ALU_SB_G0_NC'; flags: g0+nc), //
  246. (name: 'R_ARM_ALU_SB_G0'; flags: g0), //
  247. (name: 'R_ARM_ALU_SB_G1_NC'; flags: g1+nc), //
  248. (name: 'R_ARM_ALU_SB_G1'; flags: g1), //
  249. (name: 'R_ARM_ALU_SB_G2'; flags: g2), //
  250. (name: 'R_ARM_LDR_SB_G0'; flags: g0), //
  251. (name: 'R_ARM_LDR_SB_G1'; flags: g1), //
  252. (name: 'R_ARM_LDR_SB_G2'; flags: g2), //
  253. (name: 'R_ARM_LDRS_SB_G0'; flags: g0), //
  254. (name: 'R_ARM_LDRS_SB_G1'; flags: g1), //
  255. (name: 'R_ARM_LDRS_SB_G2'; flags: g2), //
  256. (name: 'R_ARM_LDC_SB_G0'; flags: g0), //
  257. (name: 'R_ARM_LDC_SB_G1'; flags: g1), //
  258. (name: 'R_ARM_LDC_SB_G2'; flags: g2), //
  259. (name: 'R_ARM_MOVW_BREL_NC'; flags: nc),
  260. (name: 'R_ARM_MOVT_BREL'; flags: 0),
  261. (name: 'R_ARM_MOVW_BREL'; flags: 0),
  262. (name: 'R_ARM_THM_MOVW_BREL_NC'; flags: nc+thm),
  263. (name: 'R_ARM_THM_MOVT_BREL'; flags: thm),
  264. (name: 'R_ARM_THM_MOVW_BREL'; flags: thm),
  265. (name: 'R_ARM_TLS_GOTDESC'; flags: 0),
  266. (name: 'R_ARM_TLS_CALL'; flags: 0),
  267. (name: 'R_ARM_TLS_DESCSEQ'; flags: 0),
  268. (name: 'R_ARM_THM_TLS_CALL'; flags: 0),
  269. (name: 'R_ARM_PLT32_ABS'; flags: 0),
  270. (name: 'R_ARM_GOT_ABS'; flags: 0),
  271. (name: 'R_ARM_GOT_PREL'; flags: pc), //
  272. (name: 'R_ARM_GOT_BREL12'; flags: 0),
  273. (name: 'R_ARM_GOTOFF12'; flags: 0),
  274. (name: 'R_ARM_GOTRELAX'; flags: 0),
  275. (name: 'R_ARM_GNU_VTENTRY'; flags: 0),
  276. (name: 'R_ARM_GNU_VTINHERIT'; flags: 0),
  277. (name: 'R_ARM_THM_JUMP11'; flags: thm),
  278. (name: 'R_ARM_THM_JUMP8'; flags: thm),
  279. (name: 'R_ARM_TLS_GD32'; flags: 0),
  280. (name: 'R_ARM_TLS_LDM32'; flags: 0),
  281. (name: 'R_ARM_TLS_LDO32'; flags: 0),
  282. (name: 'R_ARM_TLS_IE32'; flags: 0),
  283. (name: 'R_ARM_TLS_LE32'; flags: 0),
  284. (name: 'R_ARM_TLS_LDO12'; flags: 0),
  285. (name: 'R_ARM_TLS_LE12'; flags: 0),
  286. (name: 'R_ARM_TLS_IE12GP'; flags: 0)
  287. );
  288. {****************************************************************************
  289. ELF Target methods
  290. ****************************************************************************}
  291. function elf_arm_encodereloc(objrel:TObjRelocation):byte;
  292. begin
  293. case objrel.typ of
  294. RELOC_NONE:
  295. result:=R_ARM_NONE;
  296. RELOC_ABSOLUTE:
  297. result:=R_ARM_ABS32;
  298. RELOC_RELATIVE:
  299. result:=R_ARM_REL32;
  300. else
  301. result:=0;
  302. InternalError(2012110602);
  303. end;
  304. end;
  305. function elf_arm_relocname(reltyp:byte):string;
  306. begin
  307. if reltyp<=high(relocprops) then
  308. result:=relocprops[reltyp].name
  309. else
  310. case reltyp of
  311. 112..127:
  312. result:='R_ARM_PRIVATE_'+tostr(reltyp-112);
  313. R_ARM_THM_TLS_DESCSEQ:
  314. result:='R_ARM_THM_TLS_DESCSEQ';
  315. R_ARM_IRELATIVE:
  316. result:='R_ARM_IRELATIVE';
  317. else
  318. result:='unknown ('+tostr(reltyp)+')';
  319. end;
  320. end;
  321. procedure elf_arm_loadreloc(objrel:TObjRelocation);
  322. begin
  323. if (objrel.ftype=R_ARM_V4BX) then
  324. objrel.flags:=objrel.flags or rf_nosymbol;
  325. end;
  326. function elf_arm_loadsection(objinput:TElfObjInput;objdata:TObjData;const shdr:TElfsechdr;shindex:longint):boolean;
  327. var
  328. secname:string;
  329. begin
  330. case shdr.sh_type of
  331. SHT_ARM_EXIDX,
  332. SHT_ARM_PREEMPTMAP,
  333. SHT_ARM_ATTRIBUTES:
  334. begin
  335. objinput.CreateSection(shdr,shindex,objdata,secname);
  336. result:=true;
  337. end;
  338. else
  339. writeln(hexstr(shdr.sh_type,8));
  340. result:=false;
  341. end;
  342. end;
  343. {****************************************************************************
  344. TELFExeOutputARM
  345. ****************************************************************************}
  346. function group_reloc_mask(value:longword;n:longint;out final_residual:longword):longword;
  347. var
  348. i:longint;
  349. g_n:longword;
  350. shift:longint;
  351. begin
  352. result:=0;
  353. for i:=0 to n do
  354. begin
  355. if (value=0) then
  356. shift:=0
  357. else
  358. { MSB in the residual, aligned to a 2-bit boundary }
  359. shift:=max(0,(bsrdword(value) and (not 1))-6);
  360. { Calculate plain g_n and encode it into constant+rotation form }
  361. g_n:=value and ($ff shl shift);
  362. result:=(g_n shr shift);
  363. if (g_n>$FF) then
  364. result:=result or ((32-shift) div 2) shl 8;
  365. { Mask away the processed part of residual }
  366. value:=value and (not g_n);
  367. end;
  368. final_residual:=value;
  369. end;
  370. procedure TElfExeOutputARM.MaybeWriteGOTEntry(reltyp:byte;relocval:aint;objsym:TObjSymbol);
  371. var
  372. gotoff,tmp:aword;
  373. begin
  374. gotoff:=objsym.exesymbol.gotoffset;
  375. if gotoff=0 then
  376. InternalError(2012060902);
  377. { the GOT slot itself, and a dynamic relocation for it }
  378. { TODO: only data symbols must get here }
  379. if gotoff=gotobjsec.Data.size+sizeof(pint) then
  380. begin
  381. gotobjsec.write(relocval,sizeof(pint));
  382. tmp:=gotobjsec.mempos+gotoff-sizeof(pint);
  383. if (objsym.exesymbol.dynindex>0) then
  384. begin
  385. WriteDynRelocEntry(tmp,R_ARM_GLOB_DAT,objsym.exesymbol.dynindex,0)
  386. end
  387. else if IsSharedLibrary then
  388. WriteDynRelocEntry(tmp,R_ARM_RELATIVE,0,relocval);
  389. end;
  390. end;
  391. procedure TElfExeOutputARM.WriteFirstPLTEntry;
  392. begin
  393. pltobjsec.WriteBytes(
  394. #$04#$E0#$2D#$E5+ // str lr, [sp, #-4]!
  395. #$04#$E0#$9F#$E5+ // ldr lr, [pc, #4]
  396. #$0E#$E0#$8F#$E0+ // add lr, pc, lr
  397. #$08#$F0#$BE#$E5); // ldr pc, [lr, #8]!
  398. // .long _GLOBAL_OFFSET_TABLE-.
  399. pltobjsec.writeReloc_internal(gotpltobjsec,0,4,RELOC_RELATIVE);
  400. end;
  401. procedure TElfExeOutputARM.WritePLTEntry(exesym: TExeSymbol);
  402. var
  403. tmp: longword;
  404. sym:TObjSymbol;
  405. begin
  406. { TODO: it may be beneficial to postpone processing until after mempos pass,
  407. and calculate instructions directly, instead of messing with complex relocations. }
  408. { Group relocation to "section+offset" with REL-style is impossible, because the
  409. offset has be encoded into instructions, and it is only possible for offsets
  410. representable as shifter constants. Therefore we need to define a symbol
  411. (and risk a name conflict, to some degree) }
  412. internalobjdata.setsection(gotpltobjsec);
  413. sym:=internalobjdata.SymbolDefine(exesym.name+'_ptr',AB_LOCAL,AT_DATA);
  414. pltobjsec.WriteBytes(
  415. #$08#$C0#$4F#$E2+ // add ip,pc,#:pc_g0_nc:sym-8
  416. #$04#$C0#$4C#$E2+ // add ip,ip,#:pc_g1_nc:sym-4
  417. #$00#$F0#$BC#$E5); // ldr pc,[ip,#:pc_g2:sym]!
  418. pltobjsec.addrawReloc(pltobjsec.size-12,sym,R_ARM_ALU_PC_G0_NC);
  419. pltobjsec.addrawReloc(pltobjsec.size-8,sym,R_ARM_ALU_PC_G1_NC);
  420. pltobjsec.addrawReloc(pltobjsec.size-4,sym,R_ARM_LDR_PC_G2);
  421. { .got.plt slot initially points to the first PLT entry }
  422. gotpltobjsec.writeReloc_internal(pltobjsec,0,sizeof(pint),RELOC_ABSOLUTE);
  423. { write a .rel.plt entry (Elf32_rel record) }
  424. pltrelocsec.writeReloc_internal(gotpltobjsec,gotpltobjsec.size-sizeof(pint),sizeof(pint),RELOC_ABSOLUTE);
  425. tmp:=(exesym.dynindex shl 8) or R_ARM_JUMP_SLOT;
  426. pltrelocsec.write(tmp,sizeof(tmp));
  427. if ElfTarget.relocs_use_addend then
  428. pltrelocsec.writezeros(sizeof(pint));
  429. end;
  430. procedure TElfExeOutputARM.WriteIndirectPLTEntry(exesym: TExeSymbol);
  431. begin
  432. inherited WriteIndirectPLTEntry(exesym);
  433. end;
  434. procedure TElfExeOutputARM.GOTRelocPass1(objsec:TObjSection;var idx:longint);
  435. var
  436. objreloc:TObjRelocation;
  437. exesym:TExeSymbol;
  438. objsym:TObjSymbol;
  439. reltyp:byte;
  440. begin
  441. objreloc:=TObjRelocation(objsec.ObjRelocations[idx]);
  442. if (ObjReloc.flags and rf_raw)=0 then
  443. reltyp:=ElfTarget.encodereloc(ObjReloc)
  444. else
  445. reltyp:=ObjReloc.ftype;
  446. case reltyp of
  447. // Any call or jump can go through PLT, no x86-like segregation here.
  448. R_ARM_PC24,
  449. R_ARM_CALL,
  450. R_ARM_JUMP24,
  451. R_ARM_PREL31,
  452. R_ARM_THM_CALL,
  453. R_ARM_THM_JUMP24,
  454. R_ARM_THM_JUMP19,
  455. R_ARM_PLT32:
  456. begin
  457. if (objreloc.symbol=nil) or (objreloc.symbol.exesymbol=nil) then
  458. exit;
  459. exesym:=objreloc.symbol.exesymbol;
  460. exesym.objsymbol.refs:=exesym.objsymbol.refs or symref_plt;
  461. end;
  462. R_ARM_ABS32:
  463. if Assigned(ObjReloc.symbol.exesymbol) then
  464. begin
  465. objsym:=ObjReloc.symbol.exesymbol.ObjSymbol;
  466. if (oso_executable in objsec.SecOptions) or
  467. not (oso_write in objsec.SecOptions) then
  468. objsym.refs:=objsym.refs or symref_from_text;
  469. end;
  470. end;
  471. case reltyp of
  472. R_ARM_ABS32:
  473. begin
  474. if not IsSharedLibrary then
  475. exit;
  476. if (oso_executable in objsec.SecOptions) or
  477. not (oso_write in objsec.SecOptions) then
  478. hastextrelocs:=True;
  479. dynrelocsec.alloc(dynrelocsec.shentsize);
  480. objreloc.flags:=objreloc.flags or rf_dynamic;
  481. end;
  482. //R_ARM_GOT_ABS,
  483. //R_ARM_GOT_PREL,
  484. //R_ARM_GOT_BREL12,
  485. R_ARM_GOT_BREL:
  486. begin
  487. AllocGOTSlot(objreloc.symbol);
  488. end;
  489. R_ARM_TLS_IE32:
  490. AllocGOTSlot(objreloc.symbol);
  491. end;
  492. end;
  493. procedure TElfExeOutputARM.DoRelocationFixup(objsec:TObjSection);
  494. var
  495. i,zero:longint;
  496. objreloc: TObjRelocation;
  497. tmp,
  498. address,
  499. relocval : aint;
  500. relocsec : TObjSection;
  501. data: TDynamicArray;
  502. reltyp: byte;
  503. group:longint;
  504. rotation:longint;
  505. residual,g_n:longword;
  506. curloc: aword;
  507. begin
  508. data:=objsec.data;
  509. for i:=0 to objsec.ObjRelocations.Count-1 do
  510. begin
  511. objreloc:=TObjRelocation(objsec.ObjRelocations[i]);
  512. case objreloc.typ of
  513. RELOC_NONE:
  514. continue;
  515. RELOC_ZERO:
  516. begin
  517. data.Seek(objreloc.dataoffset);
  518. zero:=0;
  519. data.Write(zero,4);
  520. continue;
  521. end;
  522. end;
  523. if (objreloc.flags and rf_raw)=0 then
  524. reltyp:=ElfTarget.encodereloc(objreloc)
  525. else
  526. reltyp:=objreloc.ftype;
  527. { TODO: TARGET1 and TARGET2 are intended to be configured via commandline }
  528. if (reltyp=R_ARM_TARGET1) then
  529. reltyp:=R_ARM_ABS32; { may be ABS32 or REL32 }
  530. if (reltyp=R_ARM_TARGET2) then
  531. reltyp:=R_ARM_ABS32; { may be ABS32,REL32 or GOT_PREL }
  532. if ElfTarget.relocs_use_addend then
  533. address:=objreloc.orgsize
  534. else
  535. begin
  536. data.Seek(objreloc.dataoffset);
  537. data.Read(address,4);
  538. end;
  539. if assigned(objreloc.symbol) then
  540. begin
  541. relocsec:=objreloc.symbol.objsection;
  542. relocval:=objreloc.symbol.address;
  543. end
  544. else if assigned(objreloc.objsection) then
  545. begin
  546. relocsec:=objreloc.objsection;
  547. relocval:=objreloc.objsection.mempos
  548. end
  549. else if (reltyp=R_ARM_V4BX) then
  550. continue // ignore for now
  551. else
  552. internalerror(2012060702);
  553. { Only debug sections are allowed to have relocs pointing to unused sections }
  554. if assigned(relocsec) and not (relocsec.used and assigned(relocsec.exesection)) and
  555. not (oso_debug in objsec.secoptions) then
  556. begin
  557. writeln(objsec.fullname,' references ',relocsec.fullname);
  558. internalerror(2012060703);
  559. end;
  560. curloc:=objsec.mempos+objreloc.dataoffset;
  561. if (relocsec=nil) or (relocsec.used) then
  562. case reltyp of
  563. R_ARM_ABS32:
  564. begin
  565. if (objreloc.flags and rf_dynamic)<>0 then
  566. begin
  567. if (objreloc.symbol=nil) or
  568. (objreloc.symbol.exesymbol=nil) or
  569. (objreloc.symbol.exesymbol.dynindex=0) then
  570. begin
  571. address:=address+relocval;
  572. WriteDynRelocEntry(objreloc.dataoffset+objsec.mempos,R_ARM_RELATIVE,0,address);
  573. end
  574. else
  575. { Don't modify address in this case, as it serves as addend for RTLD }
  576. WriteDynRelocEntry(objreloc.dataoffset+objsec.mempos,R_ARM_ABS32,objreloc.symbol.exesymbol.dynindex,0);
  577. end
  578. else
  579. address:=address+relocval;
  580. end;
  581. R_ARM_REL32:
  582. begin
  583. address:=address+relocval-curloc;
  584. end;
  585. R_ARM_PC24,
  586. R_ARM_PLT32,
  587. R_ARM_JUMP24,
  588. R_ARM_CALL:
  589. begin
  590. { R_ARM_PC24 is deprecated in favour of R_ARM_JUMP24 and R_ARM_CALL,
  591. which allow to distinguish opcodes without examining them.
  592. Difference is:
  593. 1) when target is Thumb, BL can be changed to BLX, while B has
  594. to go via thunking code.
  595. 2) when target is unresolved weak symbol, CALL must be changed to NOP,
  596. while JUMP24 behavior is unspecified. }
  597. tmp:=sarlongint((address and $00FFFFFF) shl 8,6);
  598. tmp:=tmp+relocval-curloc;
  599. // TODO: check overflow
  600. address:=(address and $FF000000) or ((tmp and $3FFFFFE) shr 2);
  601. end;
  602. R_ARM_BASE_PREL: { GOTPC }
  603. address:=address+gotsymbol.address-curloc;
  604. R_ARM_GOT_BREL: { GOT32 }
  605. begin
  606. MaybeWriteGOTEntry(reltyp,relocval,objreloc.symbol);
  607. address:=address+gotobjsec.mempos+objreloc.symbol.exesymbol.gotoffset-sizeof(pint)-gotsymbol.address;
  608. end;
  609. R_ARM_GOTOFF32:
  610. address:=address+relocval-gotsymbol.address;
  611. R_ARM_ALU_PC_G0_NC,
  612. R_ARM_ALU_PC_G1_NC,
  613. R_ARM_ALU_PC_G0,
  614. R_ARM_ALU_PC_G1,
  615. R_ARM_ALU_PC_G2,
  616. R_ARM_ALU_SB_G0_NC,
  617. R_ARM_ALU_SB_G1_NC,
  618. R_ARM_ALU_SB_G0,
  619. R_ARM_ALU_SB_G1,
  620. R_ARM_ALU_SB_G2:
  621. begin
  622. group:=(relocprops[reltyp].flags and gpmask)-1;
  623. if group<0 then
  624. InternalError(2012112601);
  625. if (not ElfTarget.relocs_use_addend) then
  626. begin
  627. { initial addend must be determined by parsing the instruction }
  628. tmp:=address and $FF;
  629. rotation:=(address and $F00) shr 7; { is in multpile of 2 bits }
  630. if rotation<>0 then
  631. tmp:=RorDword(tmp,rotation);
  632. case (address and $1E00000) of
  633. 1 shl 23: ; { ADD instruction }
  634. 1 shl 22: tmp:=-tmp; { SUB instruction }
  635. else
  636. Comment(v_error,'Group ALU relocations are permitted only for ADD or SUB instructions');
  637. continue;
  638. end;
  639. end
  640. else { TODO: must read the instruction anyway!! }
  641. tmp:=address;
  642. if (relocprops[reltyp].flags and pc)<>0 then
  643. tmp:=tmp+relocval-curloc
  644. else
  645. tmp:=tmp+relocval{-SB}; { assuming zero segment base }
  646. g_n:=group_reloc_mask(abs(tmp),group,residual);
  647. {TODO: check for overflow}
  648. address:=address and $FF1FF000 or g_n;
  649. { set opcode depending on the sign of resulting value }
  650. if tmp<0 then
  651. address:=address or (1 shl 22)
  652. else
  653. address:=address or (1 shl 23);
  654. end;
  655. R_ARM_LDR_PC_G0,
  656. R_ARM_LDR_PC_G1,
  657. R_ARM_LDR_PC_G2,
  658. R_ARM_LDR_SB_G0,
  659. R_ARM_LDR_SB_G1,
  660. R_ARM_LDR_SB_G2:
  661. begin
  662. group:=(relocprops[reltyp].flags and gpmask)-1;
  663. if group<0 then
  664. InternalError(2012112602);
  665. if (not ElfTarget.relocs_use_addend) then
  666. begin
  667. tmp:=(address and $FFF);
  668. if (address and (1 shl 23))=0 then
  669. tmp:=-tmp;
  670. end
  671. else { TODO: must read the instruction anyway }
  672. tmp:=address;
  673. if (relocprops[reltyp].flags and pc)<>0 then
  674. tmp:=tmp+relocval-curloc
  675. else
  676. tmp:=tmp+relocval{-SB}; { assuming zero segment base }
  677. group_reloc_mask(abs(tmp),group-1,residual);
  678. if residual>$FFF then
  679. InternalError(2012112603); { TODO: meaningful overflow error message }
  680. address:=address and $FF7FF000 or residual;
  681. if tmp>=0 then
  682. address:=address or (1 shl 23);
  683. end;
  684. R_ARM_LDRS_PC_G0,
  685. R_ARM_LDRS_PC_G1,
  686. R_ARM_LDRS_PC_G2,
  687. R_ARM_LDRS_SB_G0,
  688. R_ARM_LDRS_SB_G1,
  689. R_ARM_LDRS_SB_G2:
  690. begin
  691. group:=(relocprops[reltyp].flags and gpmask)-1;
  692. if group<0 then
  693. InternalError(2012112606);
  694. if (not ElfTarget.relocs_use_addend) then
  695. begin
  696. tmp:=((address and $F00) shr 4) or (address and $F);
  697. if (address and (1 shl 23))=0 then
  698. tmp:=-tmp;
  699. end
  700. else { TODO: must read the instruction anyway }
  701. tmp:=address;
  702. if (relocprops[reltyp].flags and pc)<>0 then
  703. tmp:=tmp+relocval-curloc
  704. else
  705. tmp:=tmp+relocval{-SB}; { assuming zero segment base }
  706. group_reloc_mask(abs(tmp),group-1,residual);
  707. if (residual>$FF) then
  708. InternalError(2012112607); { TODO: meaningful overflow error message }
  709. address:=address and $FF7FF0F0 or ((residual and $F0) shl 4) or (residual and $F);
  710. if tmp>=0 then
  711. address:=address or (1 shl 23);
  712. end;
  713. R_ARM_LDC_PC_G0,
  714. R_ARM_LDC_PC_G1,
  715. R_ARM_LDC_PC_G2,
  716. R_ARM_LDC_SB_G0,
  717. R_ARM_LDC_SB_G1,
  718. R_ARM_LDC_SB_G2:
  719. begin
  720. group:=(relocprops[reltyp].flags and gpmask)-1;
  721. if group<0 then
  722. InternalError(2012112604);
  723. if (not ElfTarget.relocs_use_addend) then
  724. begin
  725. tmp:=(address and $FF) shl 2;
  726. if (address and (1 shl 23))=0 then
  727. tmp:=-tmp;
  728. end
  729. else { TODO: must read the instruction anyway }
  730. tmp:=address;
  731. if (relocprops[reltyp].flags and pc)<>0 then
  732. tmp:=tmp+relocval-curloc
  733. else
  734. tmp:=tmp+relocval{-SB}; { assuming zero segment base }
  735. group_reloc_mask(abs(tmp),group-1,residual);
  736. { residual must be divisible by 4 and fit into 8 bits after having been divided }
  737. if ((residual and 3)<>0) or (residual>$3FF) then
  738. InternalError(2012112605); { TODO: meaningful overflow error message }
  739. address:=address and $FF7FFF00 or (residual shr 2);
  740. if tmp>=0 then
  741. address:=address or (1 shl 23);
  742. end;
  743. R_ARM_TLS_IE32:
  744. begin
  745. relocval:=relocval-tlsseg.mempos+align_aword(TCB_SIZE,tlsseg.align);
  746. MaybeWriteGOTEntry(reltyp,relocval,objreloc.symbol);
  747. { resolves to PC-relative offset to GOT slot }
  748. relocval:=gotobjsec.mempos+objreloc.symbol.exesymbol.gotoffset-sizeof(pint);
  749. address:=address+relocval-curloc;
  750. end;
  751. R_ARM_TLS_LE32:
  752. if IsSharedLibrary then
  753. { TODO: error message saying "recompile with -Cg" isn't correct. Or is it? }
  754. ReportNonDSOReloc(reltyp,objsec,objreloc)
  755. else
  756. address:=relocval-tlsseg.mempos+align_aword(TCB_SIZE,tlsseg.align);
  757. else
  758. begin
  759. writeln(objreloc.ftype);
  760. internalerror(200604014);
  761. end;
  762. end
  763. else { not relocsec.Used }
  764. address:=0; { Relocation in debug section points to unused section, which is eliminated by linker }
  765. data.Seek(objreloc.dataoffset);
  766. data.Write(address,4);
  767. end;
  768. end;
  769. {*****************************************************************************
  770. Initialize
  771. *****************************************************************************}
  772. const
  773. elf_target_arm: TElfTarget =
  774. (
  775. max_page_size: $8000;
  776. exe_image_base: $8000;
  777. machine_code: EM_ARM;
  778. relocs_use_addend: false;
  779. dyn_reloc_codes: (
  780. R_ARM_RELATIVE,
  781. R_ARM_GLOB_DAT,
  782. R_ARM_JUMP_SLOT,
  783. R_ARM_COPY,
  784. R_ARM_IRELATIVE
  785. );
  786. relocname: @elf_arm_relocName;
  787. encodereloc: @elf_arm_encodeReloc;
  788. loadreloc: @elf_arm_loadReloc;
  789. loadsection: @elf_arm_loadSection;
  790. );
  791. initialization
  792. ElfTarget:=elf_target_arm;
  793. ElfExeOutputClass:=TElfExeOutputARM;
  794. end.