aasmcpu.pas 131 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842
  1. {
  2. Copyright (c) 1998-2002 by Florian Klaempfl and Peter Vreman
  3. Contains the abstract assembler implementation for the i386
  4. * Portions of this code was inspired by the NASM sources
  5. The Netwide Assembler is Copyright (c) 1996 Simon Tatham and
  6. Julian Hall. All rights reserved.
  7. This program is free software; you can redistribute it and/or modify
  8. it under the terms of the GNU General Public License as published by
  9. the Free Software Foundation; either version 2 of the License, or
  10. (at your option) any later version.
  11. This program is distributed in the hope that it will be useful,
  12. but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. GNU General Public License for more details.
  15. You should have received a copy of the GNU General Public License
  16. along with this program; if not, write to the Free Software
  17. Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  18. ****************************************************************************
  19. }
  20. unit aasmcpu;
  21. {$i fpcdefs.inc}
  22. interface
  23. uses
  24. globtype,verbose,
  25. cpubase,
  26. cgbase,cgutils,
  27. symtype,
  28. aasmbase,aasmtai,aasmdata,aasmsym,
  29. ogbase;
  30. const
  31. { "mov reg,reg" source operand number }
  32. O_MOV_SOURCE = 0;
  33. { "mov reg,reg" destination operand number }
  34. O_MOV_DEST = 1;
  35. { Operand types }
  36. OT_NONE = $00000000;
  37. { Bits 0..7: sizes }
  38. OT_BITS8 = $00000001;
  39. OT_BITS16 = $00000002;
  40. OT_BITS32 = $00000004;
  41. OT_BITS64 = $00000008; { x86_64 and FPU }
  42. OT_BITS128 = $10000000; { 16 byte SSE }
  43. OT_BITS256 = $20000000; { 32 byte AVX }
  44. OT_BITS80 = $00000010; { FPU only }
  45. OT_FAR = $00000020; { this means 16:16 or 16:32, like in CALL/JMP }
  46. OT_NEAR = $00000040;
  47. OT_SHORT = $00000080;
  48. { TODO: FAR/NEAR/SHORT are sizes too, they should be included into size mask,
  49. but this requires adjusting the opcode table }
  50. OT_SIZE_MASK = $3000001F; { all the size attributes }
  51. OT_NON_SIZE = longint(not OT_SIZE_MASK);
  52. { Bits 8..11: modifiers }
  53. OT_SIGNED = $00000100; { the operand need to be signed -128-127 }
  54. OT_TO = $00000200; { reverse effect in FADD, FSUB &c }
  55. OT_COLON = $00000400; { operand is followed by a colon }
  56. OT_MODIFIER_MASK = $00000F00;
  57. { Bits 12..15: type of operand }
  58. OT_REGISTER = $00001000;
  59. OT_IMMEDIATE = $00002000;
  60. OT_MEMORY = $0000C000; { always includes 'OT_REGMEM' bit as well }
  61. OT_REGMEM = $00008000; { for r/m, ie EA, operands }
  62. OT_TYPE_MASK = OT_REGISTER or OT_IMMEDIATE or OT_MEMORY or OT_REGMEM;
  63. OT_REGNORM = OT_REGISTER or OT_REGMEM; { 'normal' reg, qualifies as EA }
  64. { Bits 20..22, 24..26: register classes
  65. otf_* consts are not used alone, only to build other constants. }
  66. otf_reg_cdt = $00100000;
  67. otf_reg_gpr = $00200000;
  68. otf_reg_sreg = $00400000;
  69. otf_reg_fpu = $01000000;
  70. otf_reg_mmx = $02000000;
  71. otf_reg_xmm = $04000000;
  72. otf_reg_ymm = $08000000;
  73. { Bits 16..19: subclasses, meaning depends on classes field }
  74. otf_sub0 = $00010000;
  75. otf_sub1 = $00020000;
  76. otf_sub2 = $00040000;
  77. otf_sub3 = $00080000;
  78. OT_REG_SMASK = otf_sub0 or otf_sub1 or otf_sub2 or otf_sub3;
  79. OT_REG_TYPMASK = otf_reg_cdt or otf_reg_gpr or otf_reg_sreg or otf_reg_fpu or otf_reg_mmx or otf_reg_xmm or otf_reg_ymm;
  80. { register class 0: CRx, DRx and TRx }
  81. {$ifdef x86_64}
  82. OT_REG_CDT = OT_REGISTER or otf_reg_cdt or OT_BITS64;
  83. {$else x86_64}
  84. OT_REG_CDT = OT_REGISTER or otf_reg_cdt or OT_BITS32;
  85. {$endif x86_64}
  86. OT_REG_CREG = OT_REG_CDT or otf_sub0; { CRn }
  87. OT_REG_DREG = OT_REG_CDT or otf_sub1; { DRn }
  88. OT_REG_TREG = OT_REG_CDT or otf_sub2; { TRn }
  89. OT_REG_CR4 = OT_REG_CDT or otf_sub3; { CR4 (Pentium only) }
  90. { register class 1: general-purpose registers }
  91. OT_REG_GPR = OT_REGNORM or otf_reg_gpr;
  92. OT_RM_GPR = OT_REGMEM or otf_reg_gpr;
  93. OT_REG8 = OT_REG_GPR or OT_BITS8; { 8-bit GPR }
  94. OT_REG16 = OT_REG_GPR or OT_BITS16;
  95. OT_REG32 = OT_REG_GPR or OT_BITS32;
  96. OT_REG64 = OT_REG_GPR or OT_BITS64;
  97. { GPR subclass 0: accumulator: AL, AX, EAX or RAX }
  98. OT_REG_ACCUM = OT_REG_GPR or otf_sub0;
  99. OT_REG_AL = OT_REG_ACCUM or OT_BITS8;
  100. OT_REG_AX = OT_REG_ACCUM or OT_BITS16;
  101. OT_REG_EAX = OT_REG_ACCUM or OT_BITS32;
  102. {$ifdef x86_64}
  103. OT_REG_RAX = OT_REG_ACCUM or OT_BITS64;
  104. {$endif x86_64}
  105. { GPR subclass 1: counter: CL, CX, ECX or RCX }
  106. OT_REG_COUNT = OT_REG_GPR or otf_sub1;
  107. OT_REG_CL = OT_REG_COUNT or OT_BITS8;
  108. OT_REG_CX = OT_REG_COUNT or OT_BITS16;
  109. OT_REG_ECX = OT_REG_COUNT or OT_BITS32;
  110. {$ifdef x86_64}
  111. OT_REG_RCX = OT_REG_COUNT or OT_BITS64;
  112. {$endif x86_64}
  113. { GPR subclass 2: data register: DL, DX, EDX or RDX }
  114. OT_REG_DX = OT_REG_GPR or otf_sub2 or OT_BITS16;
  115. OT_REG_EDX = OT_REG_GPR or otf_sub2 or OT_BITS32;
  116. { register class 2: Segment registers }
  117. OT_REG_SREG = OT_REGISTER or otf_reg_sreg or OT_BITS16;
  118. OT_REG_CS = OT_REG_SREG or otf_sub0; { CS }
  119. OT_REG_DESS = OT_REG_SREG or otf_sub1; { DS, ES, SS (non-CS 86 registers) }
  120. OT_REG_FSGS = OT_REG_SREG or otf_sub2; { FS, GS (386 extended registers) }
  121. { register class 3: FPU registers }
  122. OT_FPUREG = OT_REGISTER or otf_reg_fpu;
  123. OT_FPU0 = OT_FPUREG or otf_sub0; { FPU stack register zero }
  124. { register class 4: MMX (both reg and r/m) }
  125. OT_MMXREG = OT_REGNORM or otf_reg_mmx;
  126. OT_MMXRM = OT_REGMEM or otf_reg_mmx;
  127. { register class 5: XMM (both reg and r/m) }
  128. OT_XMMREG = OT_REGNORM or otf_reg_xmm;
  129. OT_XMMRM = OT_REGMEM or otf_reg_xmm;
  130. OT_XMEM32 = OT_REGNORM or otf_reg_xmm or otf_reg_gpr or OT_BITS32;
  131. OT_XMEM64 = OT_REGNORM or otf_reg_xmm or otf_reg_gpr or OT_BITS64;
  132. { register class 5: XMM (both reg and r/m) }
  133. OT_YMMREG = OT_REGNORM or otf_reg_ymm;
  134. OT_YMMRM = OT_REGMEM or otf_reg_ymm;
  135. OT_YMEM32 = OT_REGNORM or otf_reg_ymm or otf_reg_gpr or OT_BITS32;
  136. OT_YMEM64 = OT_REGNORM or otf_reg_ymm or otf_reg_gpr or OT_BITS64;
  137. { Vector-Memory operands }
  138. OT_VMEM_ANY = OT_XMEM32 or OT_XMEM64 or OT_YMEM32 or OT_YMEM64;
  139. { Memory operands }
  140. OT_MEM8 = OT_MEMORY or OT_BITS8;
  141. OT_MEM16 = OT_MEMORY or OT_BITS16;
  142. OT_MEM32 = OT_MEMORY or OT_BITS32;
  143. OT_MEM64 = OT_MEMORY or OT_BITS64;
  144. OT_MEM128 = OT_MEMORY or OT_BITS128;
  145. OT_MEM256 = OT_MEMORY or OT_BITS256;
  146. OT_MEM80 = OT_MEMORY or OT_BITS80;
  147. OT_MEM_OFFS = OT_MEMORY or otf_sub0; { special type of EA }
  148. { simple [address] offset }
  149. { Matches any type of r/m operand }
  150. OT_MEMORY_ANY = OT_MEMORY or OT_RM_GPR or OT_XMMRM or OT_MMXRM or OT_YMMRM;
  151. { Immediate operands }
  152. OT_IMM8 = OT_IMMEDIATE or OT_BITS8;
  153. OT_IMM16 = OT_IMMEDIATE or OT_BITS16;
  154. OT_IMM32 = OT_IMMEDIATE or OT_BITS32;
  155. OT_IMM64 = OT_IMMEDIATE or OT_BITS64;
  156. OT_ONENESS = otf_sub0; { special type of immediate operand }
  157. OT_UNITY = OT_IMMEDIATE or OT_ONENESS; { for shift/rotate instructions }
  158. { Size of the instruction table converted by nasmconv.pas }
  159. {$if defined(x86_64)}
  160. instabentries = {$i x8664nop.inc}
  161. {$elseif defined(i386)}
  162. instabentries = {$i i386nop.inc}
  163. {$elseif defined(i8086)}
  164. instabentries = {$i i8086nop.inc}
  165. {$endif}
  166. maxinfolen = 8;
  167. MaxInsChanges = 3; { Max things a instruction can change }
  168. type
  169. { What an instruction can change. Needed for optimizer and spilling code.
  170. Note: The order of this enumeration is should not be changed! }
  171. TInsChange = (Ch_None,
  172. {Read from a register}
  173. Ch_REAX, Ch_RECX, Ch_REDX, Ch_REBX, Ch_RESP, Ch_REBP, Ch_RESI, Ch_REDI,
  174. {write from a register}
  175. Ch_WEAX, Ch_WECX, Ch_WEDX, Ch_WEBX, Ch_WESP, Ch_WEBP, Ch_WESI, Ch_WEDI,
  176. {read and write from/to a register}
  177. Ch_RWEAX, Ch_RWECX, Ch_RWEDX, Ch_RWEBX, Ch_RWESP, Ch_RWEBP, Ch_RWESI, Ch_RWEDI,
  178. {modify the contents of a register with the purpose of using
  179. this changed content afterwards (add/sub/..., but e.g. not rep
  180. or movsd)}
  181. Ch_MEAX, Ch_MECX, Ch_MEDX, Ch_MEBX, Ch_MESP, Ch_MEBP, Ch_MESI, Ch_MEDI,
  182. Ch_CDirFlag {clear direction flag}, Ch_SDirFlag {set dir flag},
  183. Ch_RFlags, Ch_WFlags, Ch_RWFlags, Ch_FPU,
  184. Ch_Rop1, Ch_Wop1, Ch_RWop1,Ch_Mop1,
  185. Ch_Rop2, Ch_Wop2, Ch_RWop2,Ch_Mop2,
  186. Ch_Rop3, Ch_WOp3, Ch_RWOp3,Ch_Mop3,
  187. Ch_WMemEDI,
  188. Ch_All,
  189. { x86_64 registers }
  190. Ch_RRAX, Ch_RRCX, Ch_RRDX, Ch_RRBX, Ch_RRSP, Ch_RRBP, Ch_RRSI, Ch_RRDI,
  191. Ch_WRAX, Ch_WRCX, Ch_WRDX, Ch_WRBX, Ch_WRSP, Ch_WRBP, Ch_WRSI, Ch_WRDI,
  192. Ch_RWRAX, Ch_RWRCX, Ch_RWRDX, Ch_RWRBX, Ch_RWRSP, Ch_RWRBP, Ch_RWRSI, Ch_RWRDI,
  193. Ch_MRAX, Ch_MRCX, Ch_MRDX, Ch_MRBX, Ch_MRSP, Ch_MRBP, Ch_MRSI, Ch_MRDI
  194. );
  195. TInsProp = packed record
  196. Ch : Array[1..MaxInsChanges] of TInsChange;
  197. end;
  198. TMemRefSizeInfo = (msiUnkown, msiUnsupported, msiNoSize,
  199. msiMultiple, msiMultiple8, msiMultiple16, msiMultiple32,
  200. msiMultiple64, msiMultiple128, msiMultiple256,
  201. msiMemRegSize, msiMemRegx16y32, msiMemRegx32y64, msiMemRegx64y128, msiMemRegx64y256,
  202. msiMem8, msiMem16, msiMem32, msiMem64, msiMem128, msiMem256,
  203. msiXMem32, msiXMem64, msiYMem32, msiYMem64,
  204. msiVMemMultiple, msiVMemRegSize);
  205. TConstSizeInfo = (csiUnkown, csiMultiple, csiNoSize, csiMem8, csiMem16, csiMem32, csiMem64);
  206. TInsTabMemRefSizeInfoRec = record
  207. MemRefSize : TMemRefSizeInfo;
  208. ExistsSSEAVX: boolean;
  209. ConstSize : TConstSizeInfo;
  210. end;
  211. const
  212. MemRefMultiples: set of TMemRefSizeInfo = [msiMultiple, msiMultiple8,
  213. msiMultiple16, msiMultiple32,
  214. msiMultiple64, msiMultiple128,
  215. msiMultiple256, msiVMemMultiple];
  216. MemRefSizeInfoVMems: Set of TMemRefSizeInfo = [msiXMem32, msiXMem64, msiYMem32, msiYMem64,
  217. msiVMemMultiple, msiVMemRegSize];
  218. InsProp : array[tasmop] of TInsProp =
  219. {$if defined(x86_64)}
  220. {$i x8664pro.inc}
  221. {$elseif defined(i386)}
  222. {$i i386prop.inc}
  223. {$elseif defined(i8086)}
  224. {$i i8086prop.inc}
  225. {$endif}
  226. type
  227. TOperandOrder = (op_intel,op_att);
  228. tinsentry=packed record
  229. opcode : tasmop;
  230. ops : byte;
  231. optypes : array[0..max_operands-1] of longint;
  232. code : array[0..maxinfolen] of char;
  233. flags : int64;
  234. end;
  235. pinsentry=^tinsentry;
  236. { alignment for operator }
  237. tai_align = class(tai_align_abstract)
  238. reg : tregister;
  239. constructor create(b:byte);override;
  240. constructor create_op(b: byte; _op: byte);override;
  241. function calculatefillbuf(var buf : tfillbuffer;executable : boolean):pchar;override;
  242. end;
  243. taicpu = class(tai_cpu_abstract_sym)
  244. opsize : topsize;
  245. constructor op_none(op : tasmop);
  246. constructor op_none(op : tasmop;_size : topsize);
  247. constructor op_reg(op : tasmop;_size : topsize;_op1 : tregister);
  248. constructor op_const(op : tasmop;_size : topsize;_op1 : aint);
  249. constructor op_ref(op : tasmop;_size : topsize;const _op1 : treference);
  250. constructor op_reg_reg(op : tasmop;_size : topsize;_op1,_op2 : tregister);
  251. constructor op_reg_ref(op : tasmop;_size : topsize;_op1 : tregister;const _op2 : treference);
  252. constructor op_reg_const(op:tasmop; _size: topsize; _op1: tregister; _op2: aint);
  253. constructor op_const_reg(op : tasmop;_size : topsize;_op1 : aint;_op2 : tregister);
  254. constructor op_const_const(op : tasmop;_size : topsize;_op1,_op2 : aint);
  255. constructor op_const_ref(op : tasmop;_size : topsize;_op1 : aint;const _op2 : treference);
  256. constructor op_ref_reg(op : tasmop;_size : topsize;const _op1 : treference;_op2 : tregister);
  257. constructor op_reg_reg_reg(op : tasmop;_size : topsize;_op1,_op2,_op3 : tregister);
  258. constructor op_const_reg_reg(op : tasmop;_size : topsize;_op1 : aint;_op2 : tregister;_op3 : tregister);
  259. constructor op_const_ref_reg(op : tasmop;_size : topsize;_op1 : aint;const _op2 : treference;_op3 : tregister);
  260. constructor op_ref_reg_reg(op : tasmop;_size : topsize;const _op1 : treference;_op2,_op3 : tregister);
  261. constructor op_const_reg_ref(op : tasmop;_size : topsize;_op1 : aint;_op2 : tregister;const _op3 : treference);
  262. { this is for Jmp instructions }
  263. constructor op_cond_sym(op : tasmop;cond:TAsmCond;_size : topsize;_op1 : tasmsymbol);
  264. constructor op_sym(op : tasmop;_size : topsize;_op1 : tasmsymbol);
  265. constructor op_sym_ofs(op : tasmop;_size : topsize;_op1 : tasmsymbol;_op1ofs:longint);
  266. constructor op_sym_ofs_reg(op : tasmop;_size : topsize;_op1 : tasmsymbol;_op1ofs:longint;_op2 : tregister);
  267. constructor op_sym_ofs_ref(op : tasmop;_size : topsize;_op1 : tasmsymbol;_op1ofs:longint;const _op2 : treference);
  268. procedure changeopsize(siz:topsize);
  269. function GetString:string;
  270. { This is a workaround for the GAS non commutative fpu instruction braindamage.
  271. Early versions of the UnixWare assembler had a bug where some fpu instructions
  272. were reversed and GAS still keeps this "feature" for compatibility.
  273. for details: http://sourceware.org/binutils/docs/as/i386_002dBugs.html#i386_002dBugs
  274. http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=372528
  275. http://en.wikibooks.org/wiki/X86_Assembly/GAS_Syntax#Caveats
  276. Since FPC is "GAS centric" due to its history it generates instructions with the same operand order so
  277. when generating output for other assemblers, the opcodes must be fixed before writing them.
  278. This function returns the fixed opcodes. Changing the opcodes permanently is no good idea
  279. because in case of smartlinking assembler is generated twice so at the second run wrong
  280. assembler is generated.
  281. }
  282. function FixNonCommutativeOpcodes: tasmop;
  283. private
  284. FOperandOrder : TOperandOrder;
  285. procedure init(_size : topsize); { this need to be called by all constructor }
  286. public
  287. { the next will reset all instructions that can change in pass 2 }
  288. procedure ResetPass1;override;
  289. procedure ResetPass2;override;
  290. function CheckIfValid:boolean;
  291. function Pass1(objdata:TObjData):longint;override;
  292. procedure Pass2(objdata:TObjData);override;
  293. procedure SetOperandOrder(order:TOperandOrder);
  294. function is_same_reg_move(regtype: Tregistertype):boolean;override;
  295. { register spilling code }
  296. function spilling_get_operation_type(opnr: longint): topertype;override;
  297. private
  298. { next fields are filled in pass1, so pass2 is faster }
  299. insentry : PInsEntry;
  300. insoffset : longint;
  301. LastInsOffset : longint; { need to be public to be reset }
  302. inssize : shortint;
  303. {$ifdef x86_64}
  304. rex : byte;
  305. {$endif x86_64}
  306. function InsEnd:longint;
  307. procedure create_ot(objdata:TObjData);
  308. function Matches(p:PInsEntry):boolean;
  309. function calcsize(p:PInsEntry):shortint;
  310. procedure gencode(objdata:TObjData);
  311. function NeedAddrPrefix(opidx:byte):boolean;
  312. procedure Swapoperands;
  313. function FindInsentry(objdata:TObjData):boolean;
  314. end;
  315. function spilling_create_load(const ref:treference;r:tregister):Taicpu;
  316. function spilling_create_store(r:tregister; const ref:treference):Taicpu;
  317. function MemRefInfo(aAsmop: TAsmOp): TInsTabMemRefSizeInfoRec;
  318. procedure InitAsm;
  319. procedure DoneAsm;
  320. implementation
  321. uses
  322. cutils,
  323. globals,
  324. systems,
  325. procinfo,
  326. itcpugas,
  327. symsym,
  328. cpuinfo;
  329. {*****************************************************************************
  330. Instruction table
  331. *****************************************************************************}
  332. const
  333. {Instruction flags }
  334. IF_NONE = $00000000;
  335. IF_SM = $00000001; { size match first two operands }
  336. IF_SM2 = $00000002;
  337. IF_SB = $00000004; { unsized operands can't be non-byte }
  338. IF_SW = $00000008; { unsized operands can't be non-word }
  339. IF_SD = $00000010; { unsized operands can't be nondword }
  340. IF_SMASK = $0000001f;
  341. IF_AR0 = $00000020; { SB, SW, SD applies to argument 0 }
  342. IF_AR1 = $00000040; { SB, SW, SD applies to argument 1 }
  343. IF_AR2 = $00000060; { SB, SW, SD applies to argument 2 }
  344. IF_ARMASK = $00000060; { mask for unsized argument spec }
  345. IF_ARSHIFT = 5; { LSB of IF_ARMASK }
  346. IF_PRIV = $00000100; { it's a privileged instruction }
  347. IF_SMM = $00000200; { it's only valid in SMM }
  348. IF_PROT = $00000400; { it's protected mode only }
  349. IF_NOX86_64 = $00000800; { removed instruction in x86_64 }
  350. IF_UNDOC = $00001000; { it's an undocumented instruction }
  351. IF_FPU = $00002000; { it's an FPU instruction }
  352. IF_MMX = $00004000; { it's an MMX instruction }
  353. { it's a 3DNow! instruction }
  354. IF_3DNOW = $00008000;
  355. { it's a SSE (KNI, MMX2) instruction }
  356. IF_SSE = $00010000;
  357. { SSE2 instructions }
  358. IF_SSE2 = $00020000;
  359. { SSE3 instructions }
  360. IF_SSE3 = $00040000;
  361. { SSE64 instructions }
  362. IF_SSE64 = $00080000;
  363. { the mask for processor types }
  364. {IF_PMASK = longint($FF000000);}
  365. { the mask for disassembly "prefer" }
  366. {IF_PFMASK = longint($F001FF00);}
  367. { SVM instructions }
  368. IF_SVM = $00100000;
  369. { SSE4 instructions }
  370. IF_SSE4 = $00200000;
  371. { TODO: These flags were added to make x86ins.dat more readable.
  372. Values must be reassigned to make any other use of them. }
  373. IF_SSSE3 = $00200000;
  374. IF_SSE41 = $00200000;
  375. IF_SSE42 = $00200000;
  376. IF_AVX = $00200000;
  377. IF_AVX2 = $00200000;
  378. IF_BMI1 = $00200000;
  379. IF_BMI2 = $00200000;
  380. IF_16BITONLY = $00200000;
  381. IF_FMA = $00200000;
  382. IF_FMA4 = $00200000;
  383. IF_PLEVEL = $0F000000; { mask for processor level }
  384. IF_8086 = $00000000; { 8086 instruction }
  385. IF_186 = $01000000; { 186+ instruction }
  386. IF_286 = $02000000; { 286+ instruction }
  387. IF_386 = $03000000; { 386+ instruction }
  388. IF_486 = $04000000; { 486+ instruction }
  389. IF_PENT = $05000000; { Pentium instruction }
  390. IF_P6 = $06000000; { P6 instruction }
  391. IF_KATMAI = $07000000; { Katmai instructions }
  392. IF_WILLAMETTE = $08000000; { Willamette instructions }
  393. IF_PRESCOTT = $09000000; { Prescott instructions }
  394. IF_X86_64 = $0a000000;
  395. IF_CYRIX = $0b000000; { Cyrix-specific instruction }
  396. IF_AMD = $0c000000; { AMD-specific instruction }
  397. IF_CENTAUR = $0d000000; { centaur-specific instruction }
  398. IF_SANDYBRIDGE = $0e000000; { Sandybridge-specific instruction }
  399. IF_NEC = $0f000000; { NEC V20/V30 instruction }
  400. { added flags }
  401. IF_PRE = $40000000; { it's a prefix instruction }
  402. IF_PASS2 = $80000000; { if the instruction can change in a second pass }
  403. type
  404. TInsTabCache=array[TasmOp] of longint;
  405. PInsTabCache=^TInsTabCache;
  406. TInsTabMemRefSizeInfoCache=array[TasmOp] of TInsTabMemRefSizeInfoRec;
  407. PInsTabMemRefSizeInfoCache=^TInsTabMemRefSizeInfoCache;
  408. const
  409. {$if defined(x86_64)}
  410. InsTab:array[0..instabentries-1] of TInsEntry={$i x8664tab.inc}
  411. {$elseif defined(i386)}
  412. InsTab:array[0..instabentries-1] of TInsEntry={$i i386tab.inc}
  413. {$elseif defined(i8086)}
  414. InsTab:array[0..instabentries-1] of TInsEntry={$i i8086tab.inc}
  415. {$endif}
  416. var
  417. InsTabCache : PInsTabCache;
  418. InsTabMemRefSizeInfoCache: PInsTabMemRefSizeInfoCache;
  419. const
  420. {$if defined(x86_64)}
  421. { Intel style operands ! }
  422. opsize_2_type:array[0..2,topsize] of longint=(
  423. (OT_NONE,
  424. OT_BITS8,OT_BITS16,OT_BITS32,OT_BITS64,OT_BITS16,OT_BITS32,OT_BITS32,OT_BITS64,OT_BITS64,OT_BITS64,
  425. OT_BITS16,OT_BITS32,OT_BITS64,
  426. OT_BITS32,OT_BITS64,OT_BITS80,OT_BITS64,OT_NONE,
  427. OT_BITS64,
  428. OT_NEAR,OT_FAR,OT_SHORT,
  429. OT_NONE,
  430. OT_BITS128,
  431. OT_BITS256
  432. ),
  433. (OT_NONE,
  434. OT_BITS8,OT_BITS16,OT_BITS32,OT_BITS64,OT_BITS8,OT_BITS8,OT_BITS16,OT_BITS8,OT_BITS16,OT_BITS32,
  435. OT_BITS16,OT_BITS32,OT_BITS64,
  436. OT_BITS32,OT_BITS64,OT_BITS80,OT_BITS64,OT_NONE,
  437. OT_BITS64,
  438. OT_NEAR,OT_FAR,OT_SHORT,
  439. OT_NONE,
  440. OT_BITS128,
  441. OT_BITS256
  442. ),
  443. (OT_NONE,
  444. OT_BITS8,OT_BITS16,OT_BITS32,OT_BITS64,OT_NONE,OT_NONE,OT_NONE,OT_NONE,OT_NONE,OT_NONE,
  445. OT_BITS16,OT_BITS32,OT_BITS64,
  446. OT_BITS32,OT_BITS64,OT_BITS80,OT_BITS64,OT_NONE,
  447. OT_BITS64,
  448. OT_NEAR,OT_FAR,OT_SHORT,
  449. OT_NONE,
  450. OT_BITS128,
  451. OT_BITS256
  452. )
  453. );
  454. reg_ot_table : array[tregisterindex] of longint = (
  455. {$i r8664ot.inc}
  456. );
  457. {$elseif defined(i386)}
  458. { Intel style operands ! }
  459. opsize_2_type:array[0..2,topsize] of longint=(
  460. (OT_NONE,
  461. OT_BITS8,OT_BITS16,OT_BITS32,OT_BITS64,OT_BITS16,OT_BITS32,OT_BITS32,
  462. OT_BITS16,OT_BITS32,OT_BITS64,
  463. OT_BITS32,OT_BITS64,OT_BITS80,OT_BITS64,OT_NONE,
  464. OT_BITS64,
  465. OT_NEAR,OT_FAR,OT_SHORT,
  466. OT_NONE,
  467. OT_BITS128,
  468. OT_BITS256
  469. ),
  470. (OT_NONE,
  471. OT_BITS8,OT_BITS16,OT_BITS32,OT_BITS64,OT_BITS8,OT_BITS8,OT_BITS16,
  472. OT_BITS16,OT_BITS32,OT_BITS64,
  473. OT_BITS32,OT_BITS64,OT_BITS80,OT_BITS64,OT_NONE,
  474. OT_BITS64,
  475. OT_NEAR,OT_FAR,OT_SHORT,
  476. OT_NONE,
  477. OT_BITS128,
  478. OT_BITS256
  479. ),
  480. (OT_NONE,
  481. OT_BITS8,OT_BITS16,OT_BITS32,OT_BITS64,OT_NONE,OT_NONE,OT_NONE,
  482. OT_BITS16,OT_BITS32,OT_BITS64,
  483. OT_BITS32,OT_BITS64,OT_BITS80,OT_BITS64,OT_NONE,
  484. OT_BITS64,
  485. OT_NEAR,OT_FAR,OT_SHORT,
  486. OT_NONE,
  487. OT_BITS128,
  488. OT_BITS256
  489. )
  490. );
  491. reg_ot_table : array[tregisterindex] of longint = (
  492. {$i r386ot.inc}
  493. );
  494. {$elseif defined(i8086)}
  495. { Intel style operands ! }
  496. opsize_2_type:array[0..2,topsize] of longint=(
  497. (OT_NONE,
  498. OT_BITS8,OT_BITS16,OT_BITS32,OT_BITS64,OT_BITS16,OT_BITS32,OT_BITS32,
  499. OT_BITS16,OT_BITS32,OT_BITS64,
  500. OT_BITS32,OT_BITS64,OT_BITS80,OT_BITS64,OT_NONE,
  501. OT_BITS64,
  502. OT_NEAR,OT_FAR,OT_SHORT,
  503. OT_NONE,
  504. OT_BITS128,
  505. OT_BITS256
  506. ),
  507. (OT_NONE,
  508. OT_BITS8,OT_BITS16,OT_BITS32,OT_BITS64,OT_BITS8,OT_BITS8,OT_BITS16,
  509. OT_BITS16,OT_BITS32,OT_BITS64,
  510. OT_BITS32,OT_BITS64,OT_BITS80,OT_BITS64,OT_NONE,
  511. OT_BITS64,
  512. OT_NEAR,OT_FAR,OT_SHORT,
  513. OT_NONE,
  514. OT_BITS128,
  515. OT_BITS256
  516. ),
  517. (OT_NONE,
  518. OT_BITS8,OT_BITS16,OT_BITS32,OT_BITS64,OT_NONE,OT_NONE,OT_NONE,
  519. OT_BITS16,OT_BITS32,OT_BITS64,
  520. OT_BITS32,OT_BITS64,OT_BITS80,OT_BITS64,OT_NONE,
  521. OT_BITS64,
  522. OT_NEAR,OT_FAR,OT_SHORT,
  523. OT_NONE,
  524. OT_BITS128,
  525. OT_BITS256
  526. )
  527. );
  528. reg_ot_table : array[tregisterindex] of longint = (
  529. {$i r8086ot.inc}
  530. );
  531. {$endif}
  532. function MemRefInfo(aAsmop: TAsmOp): TInsTabMemRefSizeInfoRec;
  533. begin
  534. result := InsTabMemRefSizeInfoCache^[aAsmop];
  535. end;
  536. { Operation type for spilling code }
  537. type
  538. toperation_type_table=array[tasmop,0..Max_Operands] of topertype;
  539. var
  540. operation_type_table : ^toperation_type_table;
  541. {****************************************************************************
  542. TAI_ALIGN
  543. ****************************************************************************}
  544. constructor tai_align.create(b: byte);
  545. begin
  546. inherited create(b);
  547. reg:=NR_ECX;
  548. end;
  549. constructor tai_align.create_op(b: byte; _op: byte);
  550. begin
  551. inherited create_op(b,_op);
  552. reg:=NR_NO;
  553. end;
  554. function tai_align.calculatefillbuf(var buf : tfillbuffer;executable : boolean):pchar;
  555. const
  556. { Updated according to
  557. Software Optimization Guide for AMD Family 15h Processors, Verison 3.08, January 2014
  558. and
  559. Intel 64 and IA-32 Architectures Software Developer’s Manual
  560. Volume 2B: Instruction Set Reference, N-Z, January 2015
  561. }
  562. alignarray_cmovcpus:array[0..10] of string[11]=(
  563. #$66#$66#$66#$0F#$1F#$84#$00#$00#$00#$00#$00,
  564. #$66#$66#$0F#$1F#$84#$00#$00#$00#$00#$00,
  565. #$66#$0F#$1F#$84#$00#$00#$00#$00#$00,
  566. #$0F#$1F#$84#$00#$00#$00#$00#$00,
  567. #$0F#$1F#$80#$00#$00#$00#$00,
  568. #$66#$0F#$1F#$44#$00#$00,
  569. #$0F#$1F#$44#$00#$00,
  570. #$0F#$1F#$40#$00,
  571. #$0F#$1F#$00,
  572. #$66#$90,
  573. #$90);
  574. alignarray:array[0..5] of string[8]=(
  575. #$8D#$B4#$26#$00#$00#$00#$00,
  576. #$8D#$B6#$00#$00#$00#$00,
  577. #$8D#$74#$26#$00,
  578. #$8D#$76#$00,
  579. #$89#$F6,
  580. #$90);
  581. var
  582. bufptr : pchar;
  583. j : longint;
  584. localsize: byte;
  585. begin
  586. inherited calculatefillbuf(buf,executable);
  587. if not(use_op) and executable then
  588. begin
  589. bufptr:=pchar(@buf);
  590. { fillsize may still be used afterwards, so don't modify }
  591. { e.g. writebytes(hp.calculatefillbuf(buf)^,hp.fillsize) }
  592. localsize:=fillsize;
  593. while (localsize>0) do
  594. begin
  595. {$ifndef i8086}
  596. if CPUX86_HAS_CMOV in cpu_capabilities[current_settings.cputype] then
  597. begin
  598. for j:=low(alignarray_cmovcpus) to high(alignarray_cmovcpus) do
  599. if (localsize>=length(alignarray_cmovcpus[j])) then
  600. break;
  601. move(alignarray_cmovcpus[j][1],bufptr^,length(alignarray_cmovcpus[j]));
  602. inc(bufptr,length(alignarray_cmovcpus[j]));
  603. dec(localsize,length(alignarray_cmovcpus[j]));
  604. end
  605. else
  606. {$endif not i8086}
  607. begin
  608. for j:=low(alignarray) to high(alignarray) do
  609. if (localsize>=length(alignarray[j])) then
  610. break;
  611. move(alignarray[j][1],bufptr^,length(alignarray[j]));
  612. inc(bufptr,length(alignarray[j]));
  613. dec(localsize,length(alignarray[j]));
  614. end
  615. end;
  616. end;
  617. calculatefillbuf:=pchar(@buf);
  618. end;
  619. {*****************************************************************************
  620. Taicpu Constructors
  621. *****************************************************************************}
  622. procedure taicpu.changeopsize(siz:topsize);
  623. begin
  624. opsize:=siz;
  625. end;
  626. procedure taicpu.init(_size : topsize);
  627. begin
  628. { default order is att }
  629. FOperandOrder:=op_att;
  630. segprefix:=NR_NO;
  631. opsize:=_size;
  632. insentry:=nil;
  633. LastInsOffset:=-1;
  634. InsOffset:=0;
  635. InsSize:=0;
  636. end;
  637. constructor taicpu.op_none(op : tasmop);
  638. begin
  639. inherited create(op);
  640. init(S_NO);
  641. end;
  642. constructor taicpu.op_none(op : tasmop;_size : topsize);
  643. begin
  644. inherited create(op);
  645. init(_size);
  646. end;
  647. constructor taicpu.op_reg(op : tasmop;_size : topsize;_op1 : tregister);
  648. begin
  649. inherited create(op);
  650. init(_size);
  651. ops:=1;
  652. loadreg(0,_op1);
  653. end;
  654. constructor taicpu.op_const(op : tasmop;_size : topsize;_op1 : aint);
  655. begin
  656. inherited create(op);
  657. init(_size);
  658. ops:=1;
  659. loadconst(0,_op1);
  660. end;
  661. constructor taicpu.op_ref(op : tasmop;_size : topsize;const _op1 : treference);
  662. begin
  663. inherited create(op);
  664. init(_size);
  665. ops:=1;
  666. loadref(0,_op1);
  667. end;
  668. constructor taicpu.op_reg_reg(op : tasmop;_size : topsize;_op1,_op2 : tregister);
  669. begin
  670. inherited create(op);
  671. init(_size);
  672. ops:=2;
  673. loadreg(0,_op1);
  674. loadreg(1,_op2);
  675. end;
  676. constructor taicpu.op_reg_const(op:tasmop; _size: topsize; _op1: tregister; _op2: aint);
  677. begin
  678. inherited create(op);
  679. init(_size);
  680. ops:=2;
  681. loadreg(0,_op1);
  682. loadconst(1,_op2);
  683. end;
  684. constructor taicpu.op_reg_ref(op : tasmop;_size : topsize;_op1 : tregister;const _op2 : treference);
  685. begin
  686. inherited create(op);
  687. init(_size);
  688. ops:=2;
  689. loadreg(0,_op1);
  690. loadref(1,_op2);
  691. end;
  692. constructor taicpu.op_const_reg(op : tasmop;_size : topsize;_op1 : aint;_op2 : tregister);
  693. begin
  694. inherited create(op);
  695. init(_size);
  696. ops:=2;
  697. loadconst(0,_op1);
  698. loadreg(1,_op2);
  699. end;
  700. constructor taicpu.op_const_const(op : tasmop;_size : topsize;_op1,_op2 : aint);
  701. begin
  702. inherited create(op);
  703. init(_size);
  704. ops:=2;
  705. loadconst(0,_op1);
  706. loadconst(1,_op2);
  707. end;
  708. constructor taicpu.op_const_ref(op : tasmop;_size : topsize;_op1 : aint;const _op2 : treference);
  709. begin
  710. inherited create(op);
  711. init(_size);
  712. ops:=2;
  713. loadconst(0,_op1);
  714. loadref(1,_op2);
  715. end;
  716. constructor taicpu.op_ref_reg(op : tasmop;_size : topsize;const _op1 : treference;_op2 : tregister);
  717. begin
  718. inherited create(op);
  719. init(_size);
  720. ops:=2;
  721. loadref(0,_op1);
  722. loadreg(1,_op2);
  723. end;
  724. constructor taicpu.op_reg_reg_reg(op : tasmop;_size : topsize;_op1,_op2,_op3 : tregister);
  725. begin
  726. inherited create(op);
  727. init(_size);
  728. ops:=3;
  729. loadreg(0,_op1);
  730. loadreg(1,_op2);
  731. loadreg(2,_op3);
  732. end;
  733. constructor taicpu.op_const_reg_reg(op : tasmop;_size : topsize;_op1 : aint;_op2 : tregister;_op3 : tregister);
  734. begin
  735. inherited create(op);
  736. init(_size);
  737. ops:=3;
  738. loadconst(0,_op1);
  739. loadreg(1,_op2);
  740. loadreg(2,_op3);
  741. end;
  742. constructor taicpu.op_ref_reg_reg(op : tasmop;_size : topsize;const _op1 : treference;_op2,_op3 : tregister);
  743. begin
  744. inherited create(op);
  745. init(_size);
  746. ops:=3;
  747. loadref(0,_op1);
  748. loadreg(1,_op2);
  749. loadreg(2,_op3);
  750. end;
  751. constructor taicpu.op_const_ref_reg(op : tasmop;_size : topsize;_op1 : aint;const _op2 : treference;_op3 : tregister);
  752. begin
  753. inherited create(op);
  754. init(_size);
  755. ops:=3;
  756. loadconst(0,_op1);
  757. loadref(1,_op2);
  758. loadreg(2,_op3);
  759. end;
  760. constructor taicpu.op_const_reg_ref(op : tasmop;_size : topsize;_op1 : aint;_op2 : tregister;const _op3 : treference);
  761. begin
  762. inherited create(op);
  763. init(_size);
  764. ops:=3;
  765. loadconst(0,_op1);
  766. loadreg(1,_op2);
  767. loadref(2,_op3);
  768. end;
  769. constructor taicpu.op_cond_sym(op : tasmop;cond:TAsmCond;_size : topsize;_op1 : tasmsymbol);
  770. begin
  771. inherited create(op);
  772. init(_size);
  773. condition:=cond;
  774. ops:=1;
  775. loadsymbol(0,_op1,0);
  776. end;
  777. constructor taicpu.op_sym(op : tasmop;_size : topsize;_op1 : tasmsymbol);
  778. begin
  779. inherited create(op);
  780. init(_size);
  781. ops:=1;
  782. loadsymbol(0,_op1,0);
  783. end;
  784. constructor taicpu.op_sym_ofs(op : tasmop;_size : topsize;_op1 : tasmsymbol;_op1ofs:longint);
  785. begin
  786. inherited create(op);
  787. init(_size);
  788. ops:=1;
  789. loadsymbol(0,_op1,_op1ofs);
  790. end;
  791. constructor taicpu.op_sym_ofs_reg(op : tasmop;_size : topsize;_op1 : tasmsymbol;_op1ofs:longint;_op2 : tregister);
  792. begin
  793. inherited create(op);
  794. init(_size);
  795. ops:=2;
  796. loadsymbol(0,_op1,_op1ofs);
  797. loadreg(1,_op2);
  798. end;
  799. constructor taicpu.op_sym_ofs_ref(op : tasmop;_size : topsize;_op1 : tasmsymbol;_op1ofs:longint;const _op2 : treference);
  800. begin
  801. inherited create(op);
  802. init(_size);
  803. ops:=2;
  804. loadsymbol(0,_op1,_op1ofs);
  805. loadref(1,_op2);
  806. end;
  807. function taicpu.GetString:string;
  808. var
  809. i : longint;
  810. s : string;
  811. addsize : boolean;
  812. begin
  813. s:='['+std_op2str[opcode];
  814. for i:=0 to ops-1 do
  815. begin
  816. with oper[i]^ do
  817. begin
  818. if i=0 then
  819. s:=s+' '
  820. else
  821. s:=s+',';
  822. { type }
  823. addsize:=false;
  824. if (ot and OT_XMMREG)=OT_XMMREG then
  825. s:=s+'xmmreg'
  826. else
  827. if (ot and OT_YMMREG)=OT_YMMREG then
  828. s:=s+'ymmreg'
  829. else
  830. if (ot and OT_MMXREG)=OT_MMXREG then
  831. s:=s+'mmxreg'
  832. else
  833. if (ot and OT_FPUREG)=OT_FPUREG then
  834. s:=s+'fpureg'
  835. else
  836. if (ot and OT_REGISTER)=OT_REGISTER then
  837. begin
  838. s:=s+'reg';
  839. addsize:=true;
  840. end
  841. else
  842. if (ot and OT_IMMEDIATE)=OT_IMMEDIATE then
  843. begin
  844. s:=s+'imm';
  845. addsize:=true;
  846. end
  847. else
  848. if (ot and OT_MEMORY)=OT_MEMORY then
  849. begin
  850. s:=s+'mem';
  851. addsize:=true;
  852. end
  853. else
  854. s:=s+'???';
  855. { size }
  856. if addsize then
  857. begin
  858. if (ot and OT_BITS8)<>0 then
  859. s:=s+'8'
  860. else
  861. if (ot and OT_BITS16)<>0 then
  862. s:=s+'16'
  863. else
  864. if (ot and OT_BITS32)<>0 then
  865. s:=s+'32'
  866. else
  867. if (ot and OT_BITS64)<>0 then
  868. s:=s+'64'
  869. else
  870. if (ot and OT_BITS128)<>0 then
  871. s:=s+'128'
  872. else
  873. if (ot and OT_BITS256)<>0 then
  874. s:=s+'256'
  875. else
  876. s:=s+'??';
  877. { signed }
  878. if (ot and OT_SIGNED)<>0 then
  879. s:=s+'s';
  880. end;
  881. end;
  882. end;
  883. GetString:=s+']';
  884. end;
  885. procedure taicpu.Swapoperands;
  886. var
  887. p : POper;
  888. begin
  889. { Fix the operands which are in AT&T style and we need them in Intel style }
  890. case ops of
  891. 0,1:
  892. ;
  893. 2 : begin
  894. { 0,1 -> 1,0 }
  895. p:=oper[0];
  896. oper[0]:=oper[1];
  897. oper[1]:=p;
  898. end;
  899. 3 : begin
  900. { 0,1,2 -> 2,1,0 }
  901. p:=oper[0];
  902. oper[0]:=oper[2];
  903. oper[2]:=p;
  904. end;
  905. 4 : begin
  906. { 0,1,2,3 -> 3,2,1,0 }
  907. p:=oper[0];
  908. oper[0]:=oper[3];
  909. oper[3]:=p;
  910. p:=oper[1];
  911. oper[1]:=oper[2];
  912. oper[2]:=p;
  913. end;
  914. else
  915. internalerror(201108141);
  916. end;
  917. end;
  918. procedure taicpu.SetOperandOrder(order:TOperandOrder);
  919. begin
  920. if FOperandOrder<>order then
  921. begin
  922. Swapoperands;
  923. FOperandOrder:=order;
  924. end;
  925. end;
  926. function taicpu.FixNonCommutativeOpcodes: tasmop;
  927. begin
  928. result:=opcode;
  929. { we need ATT order }
  930. SetOperandOrder(op_att);
  931. if (
  932. (ops=2) and
  933. (oper[0]^.typ=top_reg) and
  934. (oper[1]^.typ=top_reg) and
  935. { if the first is ST and the second is also a register
  936. it is necessarily ST1 .. ST7 }
  937. ((oper[0]^.reg=NR_ST) or
  938. (oper[0]^.reg=NR_ST0))
  939. ) or
  940. { ((ops=1) and
  941. (oper[0]^.typ=top_reg) and
  942. (oper[0]^.reg in [R_ST1..R_ST7])) or}
  943. (ops=0) then
  944. begin
  945. if opcode=A_FSUBR then
  946. result:=A_FSUB
  947. else if opcode=A_FSUB then
  948. result:=A_FSUBR
  949. else if opcode=A_FDIVR then
  950. result:=A_FDIV
  951. else if opcode=A_FDIV then
  952. result:=A_FDIVR
  953. else if opcode=A_FSUBRP then
  954. result:=A_FSUBP
  955. else if opcode=A_FSUBP then
  956. result:=A_FSUBRP
  957. else if opcode=A_FDIVRP then
  958. result:=A_FDIVP
  959. else if opcode=A_FDIVP then
  960. result:=A_FDIVRP;
  961. end;
  962. if (
  963. (ops=1) and
  964. (oper[0]^.typ=top_reg) and
  965. (getregtype(oper[0]^.reg)=R_FPUREGISTER) and
  966. (oper[0]^.reg<>NR_ST)
  967. ) then
  968. begin
  969. if opcode=A_FSUBRP then
  970. result:=A_FSUBP
  971. else if opcode=A_FSUBP then
  972. result:=A_FSUBRP
  973. else if opcode=A_FDIVRP then
  974. result:=A_FDIVP
  975. else if opcode=A_FDIVP then
  976. result:=A_FDIVRP;
  977. end;
  978. end;
  979. {*****************************************************************************
  980. Assembler
  981. *****************************************************************************}
  982. type
  983. ea = packed record
  984. sib_present : boolean;
  985. bytes : byte;
  986. size : byte;
  987. modrm : byte;
  988. sib : byte;
  989. {$ifdef x86_64}
  990. rex : byte;
  991. {$endif x86_64}
  992. end;
  993. procedure taicpu.create_ot(objdata:TObjData);
  994. {
  995. this function will also fix some other fields which only needs to be once
  996. }
  997. var
  998. i,l,relsize : longint;
  999. currsym : TObjSymbol;
  1000. begin
  1001. if ops=0 then
  1002. exit;
  1003. { update oper[].ot field }
  1004. for i:=0 to ops-1 do
  1005. with oper[i]^ do
  1006. begin
  1007. case typ of
  1008. top_reg :
  1009. begin
  1010. ot:=reg_ot_table[findreg_by_number(reg)];
  1011. end;
  1012. top_ref :
  1013. begin
  1014. if (ref^.refaddr=addr_no)
  1015. {$ifdef i386}
  1016. or (
  1017. (ref^.refaddr in [addr_pic]) and
  1018. { allow any base for assembler blocks }
  1019. ((assigned(current_procinfo) and
  1020. (pi_has_assembler_block in current_procinfo.flags) and
  1021. (ref^.base<>NR_NO)) or (ref^.base=NR_EBX))
  1022. )
  1023. {$endif i386}
  1024. {$ifdef x86_64}
  1025. or (
  1026. (ref^.refaddr in [addr_pic,addr_pic_no_got]) and
  1027. (ref^.base<>NR_NO)
  1028. )
  1029. {$endif x86_64}
  1030. then
  1031. begin
  1032. { create ot field }
  1033. if (reg_ot_table[findreg_by_number(ref^.base)] and OT_REG_GPR = OT_REG_GPR) and
  1034. ((reg_ot_table[findreg_by_number(ref^.index)] = OT_XMMREG) or
  1035. (reg_ot_table[findreg_by_number(ref^.index)] = OT_YMMREG)
  1036. ) then
  1037. // AVX2 - vector-memory-referenz (e.g. vgatherdpd xmm0, [rax xmm1], xmm2)
  1038. ot := (reg_ot_table[findreg_by_number(ref^.base)] and OT_REG_GPR) or
  1039. (reg_ot_table[findreg_by_number(ref^.index)])
  1040. else if (ref^.base = NR_NO) and
  1041. ((reg_ot_table[findreg_by_number(ref^.index)] = OT_XMMREG) or
  1042. (reg_ot_table[findreg_by_number(ref^.index)] = OT_YMMREG)
  1043. ) then
  1044. // AVX2 - vector-memory-referenz without base-register (e.g. vgatherdpd xmm0, [xmm1], xmm2)
  1045. ot := (OT_REG_GPR) or
  1046. (reg_ot_table[findreg_by_number(ref^.index)])
  1047. else if (ot and OT_SIZE_MASK)=0 then
  1048. ot:=OT_MEMORY_ANY or opsize_2_type[i,opsize]
  1049. else
  1050. ot:=OT_MEMORY_ANY or (ot and OT_SIZE_MASK);
  1051. if (ref^.base=NR_NO) and (ref^.index=NR_NO) then
  1052. ot:=ot or OT_MEM_OFFS;
  1053. { fix scalefactor }
  1054. if (ref^.index=NR_NO) then
  1055. ref^.scalefactor:=0
  1056. else
  1057. if (ref^.scalefactor=0) then
  1058. ref^.scalefactor:=1;
  1059. end
  1060. else
  1061. begin
  1062. { Jumps use a relative offset which can be 8bit,
  1063. for other opcodes we always need to generate the full
  1064. 32bit address }
  1065. if assigned(objdata) and
  1066. is_jmp then
  1067. begin
  1068. currsym:=objdata.symbolref(ref^.symbol);
  1069. l:=ref^.offset;
  1070. {$push}
  1071. {$r-,q-} { disable also overflow as address returns a qword for x86_64 }
  1072. if assigned(currsym) then
  1073. inc(l,currsym.address);
  1074. {$pop}
  1075. { when it is a forward jump we need to compensate the
  1076. offset of the instruction since the previous time,
  1077. because the symbol address is then still using the
  1078. 'old-style' addressing.
  1079. For backwards jumps this is not required because the
  1080. address of the symbol is already adjusted to the
  1081. new offset }
  1082. if (l>InsOffset) and (LastInsOffset<>-1) then
  1083. inc(l,InsOffset-LastInsOffset);
  1084. { instruction size will then always become 2 (PFV) }
  1085. relsize:=(InsOffset+2)-l;
  1086. if (relsize>=-128) and (relsize<=127) and
  1087. (
  1088. not assigned(currsym) or
  1089. (currsym.objsection=objdata.currobjsec)
  1090. ) then
  1091. ot:=OT_IMM8 or OT_SHORT
  1092. else
  1093. {$ifdef i8086}
  1094. ot:=OT_IMM16 or OT_NEAR;
  1095. {$else i8086}
  1096. ot:=OT_IMM32 or OT_NEAR;
  1097. {$endif i8086}
  1098. end
  1099. else
  1100. {$ifdef i8086}
  1101. ot:=OT_IMM16 or OT_NEAR;
  1102. {$else i8086}
  1103. ot:=OT_IMM32 or OT_NEAR;
  1104. {$endif i8086}
  1105. end;
  1106. end;
  1107. top_local :
  1108. begin
  1109. if (ot and OT_SIZE_MASK)=0 then
  1110. ot:=OT_MEMORY or opsize_2_type[i,opsize]
  1111. else
  1112. ot:=OT_MEMORY or (ot and OT_SIZE_MASK);
  1113. end;
  1114. top_const :
  1115. begin
  1116. // if opcode is a SSE or AVX-instruction then we need a
  1117. // special handling (opsize can different from const-size)
  1118. // (e.g. "pextrw reg/m16, xmmreg, imm8" =>> opsize (16 bit), const-size (8 bit)
  1119. if (InsTabMemRefSizeInfoCache^[opcode].ExistsSSEAVX) and
  1120. (not(InsTabMemRefSizeInfoCache^[opcode].ConstSize in [csiMultiple, csiUnkown])) then
  1121. begin
  1122. case InsTabMemRefSizeInfoCache^[opcode].ConstSize of
  1123. csiNoSize: ot := ot and (not(OT_SIZE_MASK)) or OT_IMMEDIATE;
  1124. csiMem8: ot := ot and (not(OT_SIZE_MASK)) or OT_IMMEDIATE or OT_BITS8;
  1125. csiMem16: ot := ot and (not(OT_SIZE_MASK)) or OT_IMMEDIATE or OT_BITS16;
  1126. csiMem32: ot := ot and (not(OT_SIZE_MASK)) or OT_IMMEDIATE or OT_BITS32;
  1127. csiMem64: ot := ot and (not(OT_SIZE_MASK)) or OT_IMMEDIATE or OT_BITS64;
  1128. end;
  1129. end
  1130. else
  1131. begin
  1132. { allow 2nd, 3rd or 4th operand being a constant and expect no size for shuf* etc. }
  1133. { further, allow AAD and AAM with imm. operand }
  1134. if (opsize=S_NO) and not((i in [1,2,3])
  1135. {$ifndef x86_64}
  1136. or ((i=0) and (opcode in [A_AAD,A_AAM]))
  1137. {$endif x86_64}
  1138. ) then
  1139. message(asmr_e_invalid_opcode_and_operand);
  1140. if (opsize<>S_W) and (aint(val)>=-128) and (val<=127) then
  1141. ot:=OT_IMM8 or OT_SIGNED
  1142. else
  1143. ot:=OT_IMMEDIATE or opsize_2_type[i,opsize];
  1144. if (val=1) and (i=1) then
  1145. ot := ot or OT_ONENESS;
  1146. end;
  1147. end;
  1148. top_none :
  1149. begin
  1150. { generated when there was an error in the
  1151. assembler reader. It never happends when generating
  1152. assembler }
  1153. end;
  1154. else
  1155. internalerror(200402266);
  1156. end;
  1157. end;
  1158. end;
  1159. function taicpu.InsEnd:longint;
  1160. begin
  1161. InsEnd:=InsOffset+InsSize;
  1162. end;
  1163. function taicpu.Matches(p:PInsEntry):boolean;
  1164. { * IF_SM stands for Size Match: any operand whose size is not
  1165. * explicitly specified by the template is `really' intended to be
  1166. * the same size as the first size-specified operand.
  1167. * Non-specification is tolerated in the input instruction, but
  1168. * _wrong_ specification is not.
  1169. *
  1170. * IF_SM2 invokes Size Match on only the first _two_ operands, for
  1171. * three-operand instructions such as SHLD: it implies that the
  1172. * first two operands must match in size, but that the third is
  1173. * required to be _unspecified_.
  1174. *
  1175. * IF_SB invokes Size Byte: operands with unspecified size in the
  1176. * template are really bytes, and so no non-byte specification in
  1177. * the input instruction will be tolerated. IF_SW similarly invokes
  1178. * Size Word, and IF_SD invokes Size Doubleword.
  1179. *
  1180. * (The default state if neither IF_SM nor IF_SM2 is specified is
  1181. * that any operand with unspecified size in the template is
  1182. * required to have unspecified size in the instruction too...)
  1183. }
  1184. var
  1185. insot,
  1186. currot,
  1187. i,j,asize,oprs : longint;
  1188. insflags:cardinal;
  1189. siz : array[0..max_operands-1] of longint;
  1190. begin
  1191. result:=false;
  1192. { Check the opcode and operands }
  1193. if (p^.opcode<>opcode) or (p^.ops<>ops) then
  1194. exit;
  1195. for i:=0 to p^.ops-1 do
  1196. begin
  1197. insot:=p^.optypes[i];
  1198. currot:=oper[i]^.ot;
  1199. { Check the operand flags }
  1200. if (insot and (not currot) and OT_NON_SIZE)<>0 then
  1201. exit;
  1202. { Check if the passed operand size matches with one of
  1203. the supported operand sizes }
  1204. if ((insot and OT_SIZE_MASK)<>0) and
  1205. ((insot and currot and OT_SIZE_MASK)<>(currot and OT_SIZE_MASK)) then
  1206. exit;
  1207. end;
  1208. { Check operand sizes }
  1209. insflags:=p^.flags;
  1210. if insflags and IF_SMASK<>0 then
  1211. begin
  1212. { as default an untyped size can get all the sizes, this is different
  1213. from nasm, but else we need to do a lot checking which opcodes want
  1214. size or not with the automatic size generation }
  1215. asize:=-1;
  1216. if (insflags and IF_SB)<>0 then
  1217. asize:=OT_BITS8
  1218. else if (insflags and IF_SW)<>0 then
  1219. asize:=OT_BITS16
  1220. else if (insflags and IF_SD)<>0 then
  1221. asize:=OT_BITS32;
  1222. if (insflags and IF_ARMASK)<>0 then
  1223. begin
  1224. siz[0]:=-1;
  1225. siz[1]:=-1;
  1226. siz[2]:=-1;
  1227. siz[((insflags and IF_ARMASK) shr IF_ARSHIFT)-1]:=asize;
  1228. end
  1229. else
  1230. begin
  1231. siz[0]:=asize;
  1232. siz[1]:=asize;
  1233. siz[2]:=asize;
  1234. end;
  1235. if (insflags and (IF_SM or IF_SM2))<>0 then
  1236. begin
  1237. if (insflags and IF_SM2)<>0 then
  1238. oprs:=2
  1239. else
  1240. oprs:=p^.ops;
  1241. for i:=0 to oprs-1 do
  1242. if ((p^.optypes[i] and OT_SIZE_MASK) <> 0) then
  1243. begin
  1244. for j:=0 to oprs-1 do
  1245. siz[j]:=p^.optypes[i] and OT_SIZE_MASK;
  1246. break;
  1247. end;
  1248. end
  1249. else
  1250. oprs:=2;
  1251. { Check operand sizes }
  1252. for i:=0 to p^.ops-1 do
  1253. begin
  1254. insot:=p^.optypes[i];
  1255. currot:=oper[i]^.ot;
  1256. if ((insot and OT_SIZE_MASK)=0) and
  1257. ((currot and OT_SIZE_MASK and (not siz[i]))<>0) and
  1258. { Immediates can always include smaller size }
  1259. ((currot and OT_IMMEDIATE)=0) and
  1260. (((insot and OT_SIZE_MASK) or siz[i])<(currot and OT_SIZE_MASK)) then
  1261. exit;
  1262. end;
  1263. end;
  1264. if (InsTabMemRefSizeInfoCache^[opcode].MemRefSize in MemRefMultiples) and
  1265. (InsTabMemRefSizeInfoCache^[opcode].ExistsSSEAVX) then
  1266. begin
  1267. for i:=0 to p^.ops-1 do
  1268. begin
  1269. insot:=p^.optypes[i];
  1270. if ((insot and OT_XMMRM) = OT_XMMRM) OR
  1271. ((insot and OT_YMMRM) = OT_YMMRM) then
  1272. begin
  1273. if (insot and OT_SIZE_MASK) = 0 then
  1274. begin
  1275. case insot and (OT_XMMRM or OT_YMMRM) of
  1276. OT_XMMRM: insot := insot or OT_BITS128;
  1277. OT_YMMRM: insot := insot or OT_BITS256;
  1278. end;
  1279. end;
  1280. end;
  1281. currot:=oper[i]^.ot;
  1282. { Check the operand flags }
  1283. if (insot and (not currot) and OT_NON_SIZE)<>0 then
  1284. exit;
  1285. { Check if the passed operand size matches with one of
  1286. the supported operand sizes }
  1287. if ((insot and OT_SIZE_MASK)<>0) and
  1288. ((insot and currot and OT_SIZE_MASK)<>(currot and OT_SIZE_MASK)) then
  1289. exit;
  1290. end;
  1291. end;
  1292. result:=true;
  1293. end;
  1294. procedure taicpu.ResetPass1;
  1295. begin
  1296. { we need to reset everything here, because the choosen insentry
  1297. can be invalid for a new situation where the previously optimized
  1298. insentry is not correct }
  1299. InsEntry:=nil;
  1300. InsSize:=0;
  1301. LastInsOffset:=-1;
  1302. end;
  1303. procedure taicpu.ResetPass2;
  1304. begin
  1305. { we are here in a second pass, check if the instruction can be optimized }
  1306. if assigned(InsEntry) and
  1307. ((InsEntry^.flags and IF_PASS2)<>0) then
  1308. begin
  1309. InsEntry:=nil;
  1310. InsSize:=0;
  1311. end;
  1312. LastInsOffset:=-1;
  1313. end;
  1314. function taicpu.CheckIfValid:boolean;
  1315. begin
  1316. result:=FindInsEntry(nil);
  1317. end;
  1318. function taicpu.FindInsentry(objdata:TObjData):boolean;
  1319. var
  1320. i : longint;
  1321. begin
  1322. result:=false;
  1323. { Things which may only be done once, not when a second pass is done to
  1324. optimize }
  1325. if (Insentry=nil) or ((InsEntry^.flags and IF_PASS2)<>0) then
  1326. begin
  1327. current_filepos:=fileinfo;
  1328. { We need intel style operands }
  1329. SetOperandOrder(op_intel);
  1330. { create the .ot fields }
  1331. create_ot(objdata);
  1332. { set the file postion }
  1333. end
  1334. else
  1335. begin
  1336. { we've already an insentry so it's valid }
  1337. result:=true;
  1338. exit;
  1339. end;
  1340. { Lookup opcode in the table }
  1341. InsSize:=-1;
  1342. i:=instabcache^[opcode];
  1343. if i=-1 then
  1344. begin
  1345. Message1(asmw_e_opcode_not_in_table,gas_op2str[opcode]);
  1346. exit;
  1347. end;
  1348. insentry:=@instab[i];
  1349. while (insentry^.opcode=opcode) do
  1350. begin
  1351. if matches(insentry) then
  1352. begin
  1353. result:=true;
  1354. exit;
  1355. end;
  1356. inc(insentry);
  1357. end;
  1358. Message1(asmw_e_invalid_opcode_and_operands,GetString);
  1359. { No instruction found, set insentry to nil and inssize to -1 }
  1360. insentry:=nil;
  1361. inssize:=-1;
  1362. end;
  1363. function taicpu.Pass1(objdata:TObjData):longint;
  1364. begin
  1365. Pass1:=0;
  1366. { Save the old offset and set the new offset }
  1367. InsOffset:=ObjData.CurrObjSec.Size;
  1368. { Error? }
  1369. if (Insentry=nil) and (InsSize=-1) then
  1370. exit;
  1371. { set the file postion }
  1372. current_filepos:=fileinfo;
  1373. { Get InsEntry }
  1374. if FindInsEntry(ObjData) then
  1375. begin
  1376. { Calculate instruction size }
  1377. InsSize:=calcsize(insentry);
  1378. if segprefix<>NR_NO then
  1379. inc(InsSize);
  1380. { Fix opsize if size if forced }
  1381. if (insentry^.flags and (IF_SB or IF_SW or IF_SD))<>0 then
  1382. begin
  1383. if (insentry^.flags and IF_ARMASK)=0 then
  1384. begin
  1385. if (insentry^.flags and IF_SB)<>0 then
  1386. begin
  1387. if opsize=S_NO then
  1388. opsize:=S_B;
  1389. end
  1390. else if (insentry^.flags and IF_SW)<>0 then
  1391. begin
  1392. if opsize=S_NO then
  1393. opsize:=S_W;
  1394. end
  1395. else if (insentry^.flags and IF_SD)<>0 then
  1396. begin
  1397. if opsize=S_NO then
  1398. opsize:=S_L;
  1399. end;
  1400. end;
  1401. end;
  1402. LastInsOffset:=InsOffset;
  1403. Pass1:=InsSize;
  1404. exit;
  1405. end;
  1406. LastInsOffset:=-1;
  1407. end;
  1408. const
  1409. segprefixes: array[NR_ES..NR_GS] of Byte=(
  1410. // es cs ss ds fs gs
  1411. $26, $2E, $36, $3E, $64, $65
  1412. );
  1413. procedure taicpu.Pass2(objdata:TObjData);
  1414. begin
  1415. { error in pass1 ? }
  1416. if insentry=nil then
  1417. exit;
  1418. current_filepos:=fileinfo;
  1419. { Segment override }
  1420. if (segprefix>=NR_ES) and (segprefix<=NR_GS) then
  1421. begin
  1422. objdata.writebytes(segprefixes[segprefix],1);
  1423. { fix the offset for GenNode }
  1424. inc(InsOffset);
  1425. end
  1426. else if segprefix<>NR_NO then
  1427. InternalError(201001071);
  1428. { Generate the instruction }
  1429. GenCode(objdata);
  1430. end;
  1431. function taicpu.needaddrprefix(opidx:byte):boolean;
  1432. begin
  1433. result:=(oper[opidx]^.typ=top_ref) and
  1434. (oper[opidx]^.ref^.refaddr=addr_no) and
  1435. {$ifdef x86_64}
  1436. (oper[opidx]^.ref^.base<>NR_RIP) and
  1437. {$endif x86_64}
  1438. (
  1439. (
  1440. (oper[opidx]^.ref^.index<>NR_NO) and
  1441. (getsubreg(oper[opidx]^.ref^.index)<>R_SUBADDR)
  1442. ) or
  1443. (
  1444. (oper[opidx]^.ref^.base<>NR_NO) and
  1445. (getsubreg(oper[opidx]^.ref^.base)<>R_SUBADDR)
  1446. )
  1447. );
  1448. end;
  1449. procedure badreg(r:Tregister);
  1450. begin
  1451. Message1(asmw_e_invalid_register,generic_regname(r));
  1452. end;
  1453. function regval(r:Tregister):byte;
  1454. const
  1455. intsupreg2opcode: array[0..7] of byte=
  1456. // ax cx dx bx si di bp sp -- in x86reg.dat
  1457. // ax cx dx bx sp bp si di -- needed order
  1458. (0, 1, 2, 3, 6, 7, 5, 4);
  1459. maxsupreg: array[tregistertype] of tsuperregister=
  1460. {$ifdef x86_64}
  1461. (0, 16, 9, 8, 16, 32, 0, 0);
  1462. {$else x86_64}
  1463. (0, 8, 9, 8, 8, 32, 0, 0);
  1464. {$endif x86_64}
  1465. var
  1466. rs: tsuperregister;
  1467. rt: tregistertype;
  1468. begin
  1469. rs:=getsupreg(r);
  1470. rt:=getregtype(r);
  1471. if (rs>=maxsupreg[rt]) then
  1472. badreg(r);
  1473. result:=rs and 7;
  1474. if (rt=R_INTREGISTER) then
  1475. begin
  1476. if (rs<8) then
  1477. result:=intsupreg2opcode[rs];
  1478. if getsubreg(r)=R_SUBH then
  1479. inc(result,4);
  1480. end;
  1481. end;
  1482. {$if defined(x86_64)}
  1483. function rexbits(r: tregister): byte;
  1484. begin
  1485. result:=0;
  1486. case getregtype(r) of
  1487. R_INTREGISTER:
  1488. if (getsupreg(r)>=RS_R8) then
  1489. { Either B,X or R bits can be set, depending on register role in instruction.
  1490. Set all three bits here, caller will discard unnecessary ones. }
  1491. result:=result or $47
  1492. else if (getsubreg(r)=R_SUBL) and
  1493. (getsupreg(r) in [RS_RDI,RS_RSI,RS_RBP,RS_RSP]) then
  1494. result:=result or $40
  1495. else if (getsubreg(r)=R_SUBH) then
  1496. { Not an actual REX bit, used to detect incompatible usage of
  1497. AH/BH/CH/DH }
  1498. result:=result or $80;
  1499. R_MMREGISTER:
  1500. if getsupreg(r)>=RS_XMM8 then
  1501. result:=result or $47;
  1502. end;
  1503. end;
  1504. function process_ea(const input:toper;out output:ea;rfield:longint):boolean;
  1505. var
  1506. sym : tasmsymbol;
  1507. md,s,rv : byte;
  1508. base,index,scalefactor,
  1509. o : longint;
  1510. ir,br : Tregister;
  1511. isub,bsub : tsubregister;
  1512. begin
  1513. process_ea:=false;
  1514. fillchar(output,sizeof(output),0);
  1515. {Register ?}
  1516. if (input.typ=top_reg) then
  1517. begin
  1518. rv:=regval(input.reg);
  1519. output.modrm:=$c0 or (rfield shl 3) or rv;
  1520. output.size:=1;
  1521. output.rex:=output.rex or (rexbits(input.reg) and $F1);
  1522. process_ea:=true;
  1523. exit;
  1524. end;
  1525. {No register, so memory reference.}
  1526. if input.typ<>top_ref then
  1527. internalerror(200409263);
  1528. ir:=input.ref^.index;
  1529. br:=input.ref^.base;
  1530. isub:=getsubreg(ir);
  1531. bsub:=getsubreg(br);
  1532. s:=input.ref^.scalefactor;
  1533. o:=input.ref^.offset;
  1534. sym:=input.ref^.symbol;
  1535. //if ((ir<>NR_NO) and (getregtype(ir)<>R_INTREGISTER)) or
  1536. // ((br<>NR_NO) and (br<>NR_RIP) and (getregtype(br)<>R_INTREGISTER)) then
  1537. if ((ir<>NR_NO) and (getregtype(ir)=R_MMREGISTER) and (br<>NR_NO) and (getregtype(br)<>R_INTREGISTER)) or // vector memory (AVX2)
  1538. ((ir<>NR_NO) and (getregtype(ir)<>R_INTREGISTER) and (getregtype(ir)<>R_MMREGISTER)) or
  1539. ((br<>NR_NO) and (br<>NR_RIP) and (getregtype(br)<>R_INTREGISTER)) then
  1540. internalerror(200301081);
  1541. { it's direct address }
  1542. if (br=NR_NO) and (ir=NR_NO) then
  1543. begin
  1544. output.sib_present:=true;
  1545. output.bytes:=4;
  1546. output.modrm:=4 or (rfield shl 3);
  1547. output.sib:=$25;
  1548. end
  1549. else if (br=NR_RIP) and (ir=NR_NO) then
  1550. begin
  1551. { rip based }
  1552. output.sib_present:=false;
  1553. output.bytes:=4;
  1554. output.modrm:=5 or (rfield shl 3);
  1555. end
  1556. else
  1557. { it's an indirection }
  1558. begin
  1559. { 16 bit? }
  1560. if ((ir<>NR_NO) and (isub in [R_SUBMMX,R_SUBMMY]) and
  1561. (br<>NR_NO) and (bsub=R_SUBADDR)
  1562. ) then
  1563. begin
  1564. // vector memory (AVX2) =>> ignore
  1565. end
  1566. else if ((ir<>NR_NO) and (isub<>R_SUBADDR) and (isub<>R_SUBD)) or
  1567. ((br<>NR_NO) and (bsub<>R_SUBADDR) and (bsub<>R_SUBD)) then
  1568. begin
  1569. message(asmw_e_16bit_32bit_not_supported);
  1570. end;
  1571. { wrong, for various reasons }
  1572. if (ir=NR_ESP) or ((s<>1) and (s<>2) and (s<>4) and (s<>8) and (ir<>NR_NO)) then
  1573. exit;
  1574. output.rex:=output.rex or (rexbits(br) and $F1) or (rexbits(ir) and $F2);
  1575. process_ea:=true;
  1576. { base }
  1577. case br of
  1578. NR_R8D,
  1579. NR_EAX,
  1580. NR_R8,
  1581. NR_RAX : base:=0;
  1582. NR_R9D,
  1583. NR_ECX,
  1584. NR_R9,
  1585. NR_RCX : base:=1;
  1586. NR_R10D,
  1587. NR_EDX,
  1588. NR_R10,
  1589. NR_RDX : base:=2;
  1590. NR_R11D,
  1591. NR_EBX,
  1592. NR_R11,
  1593. NR_RBX : base:=3;
  1594. NR_R12D,
  1595. NR_ESP,
  1596. NR_R12,
  1597. NR_RSP : base:=4;
  1598. NR_R13D,
  1599. NR_EBP,
  1600. NR_R13,
  1601. NR_NO,
  1602. NR_RBP : base:=5;
  1603. NR_R14D,
  1604. NR_ESI,
  1605. NR_R14,
  1606. NR_RSI : base:=6;
  1607. NR_R15D,
  1608. NR_EDI,
  1609. NR_R15,
  1610. NR_RDI : base:=7;
  1611. else
  1612. exit;
  1613. end;
  1614. { index }
  1615. case ir of
  1616. NR_R8D,
  1617. NR_EAX,
  1618. NR_R8,
  1619. NR_RAX,
  1620. NR_XMM0,
  1621. NR_XMM8,
  1622. NR_YMM0,
  1623. NR_YMM8 : index:=0;
  1624. NR_R9D,
  1625. NR_ECX,
  1626. NR_R9,
  1627. NR_RCX,
  1628. NR_XMM1,
  1629. NR_XMM9,
  1630. NR_YMM1,
  1631. NR_YMM9 : index:=1;
  1632. NR_R10D,
  1633. NR_EDX,
  1634. NR_R10,
  1635. NR_RDX,
  1636. NR_XMM2,
  1637. NR_XMM10,
  1638. NR_YMM2,
  1639. NR_YMM10 : index:=2;
  1640. NR_R11D,
  1641. NR_EBX,
  1642. NR_R11,
  1643. NR_RBX,
  1644. NR_XMM3,
  1645. NR_XMM11,
  1646. NR_YMM3,
  1647. NR_YMM11 : index:=3;
  1648. NR_R12D,
  1649. NR_ESP,
  1650. NR_R12,
  1651. NR_NO,
  1652. NR_XMM4,
  1653. NR_XMM12,
  1654. NR_YMM4,
  1655. NR_YMM12 : index:=4;
  1656. NR_R13D,
  1657. NR_EBP,
  1658. NR_R13,
  1659. NR_RBP,
  1660. NR_XMM5,
  1661. NR_XMM13,
  1662. NR_YMM5,
  1663. NR_YMM13: index:=5;
  1664. NR_R14D,
  1665. NR_ESI,
  1666. NR_R14,
  1667. NR_RSI,
  1668. NR_XMM6,
  1669. NR_XMM14,
  1670. NR_YMM6,
  1671. NR_YMM14: index:=6;
  1672. NR_R15D,
  1673. NR_EDI,
  1674. NR_R15,
  1675. NR_RDI,
  1676. NR_XMM7,
  1677. NR_XMM15,
  1678. NR_YMM7,
  1679. NR_YMM15: index:=7;
  1680. else
  1681. exit;
  1682. end;
  1683. case s of
  1684. 0,
  1685. 1 : scalefactor:=0;
  1686. 2 : scalefactor:=1;
  1687. 4 : scalefactor:=2;
  1688. 8 : scalefactor:=3;
  1689. else
  1690. exit;
  1691. end;
  1692. { If rbp or r13 is used we must always include an offset }
  1693. if (br=NR_NO) or
  1694. ((br<>NR_RBP) and (br<>NR_R13) and (br<>NR_EBP) and (br<>NR_R13D) and (o=0) and (sym=nil)) then
  1695. md:=0
  1696. else
  1697. if ((o>=-128) and (o<=127) and (sym=nil)) then
  1698. md:=1
  1699. else
  1700. md:=2;
  1701. if (br=NR_NO) or (md=2) then
  1702. output.bytes:=4
  1703. else
  1704. output.bytes:=md;
  1705. { SIB needed ? }
  1706. if (ir=NR_NO) and (br<>NR_RSP) and (br<>NR_R12) and (br<>NR_ESP) and (br<>NR_R12D) then
  1707. begin
  1708. output.sib_present:=false;
  1709. output.modrm:=(md shl 6) or (rfield shl 3) or base;
  1710. end
  1711. else
  1712. begin
  1713. output.sib_present:=true;
  1714. output.modrm:=(md shl 6) or (rfield shl 3) or 4;
  1715. output.sib:=(scalefactor shl 6) or (index shl 3) or base;
  1716. end;
  1717. end;
  1718. output.size:=1+ord(output.sib_present)+output.bytes;
  1719. process_ea:=true;
  1720. end;
  1721. {$elseif defined(i386)}
  1722. function process_ea(const input:toper;out output:ea;rfield:longint):boolean;
  1723. var
  1724. sym : tasmsymbol;
  1725. md,s,rv : byte;
  1726. base,index,scalefactor,
  1727. o : longint;
  1728. ir,br : Tregister;
  1729. isub,bsub : tsubregister;
  1730. begin
  1731. process_ea:=false;
  1732. fillchar(output,sizeof(output),0);
  1733. {Register ?}
  1734. if (input.typ=top_reg) then
  1735. begin
  1736. rv:=regval(input.reg);
  1737. output.modrm:=$c0 or (rfield shl 3) or rv;
  1738. output.size:=1;
  1739. process_ea:=true;
  1740. exit;
  1741. end;
  1742. {No register, so memory reference.}
  1743. if (input.typ<>top_ref) then
  1744. internalerror(200409262);
  1745. if ((input.ref^.index<>NR_NO) and (getregtype(input.ref^.index)=R_MMREGISTER) and (input.ref^.base<>NR_NO) and (getregtype(input.ref^.base)<>R_INTREGISTER)) or // vector memory (AVX2)
  1746. ((input.ref^.index<>NR_NO) and (getregtype(input.ref^.index)<>R_INTREGISTER) and (getregtype(input.ref^.index)<>R_MMREGISTER)) or
  1747. ((input.ref^.base<>NR_NO) and (getregtype(input.ref^.base)<>R_INTREGISTER)) then
  1748. internalerror(200301081);
  1749. ir:=input.ref^.index;
  1750. br:=input.ref^.base;
  1751. isub:=getsubreg(ir);
  1752. bsub:=getsubreg(br);
  1753. s:=input.ref^.scalefactor;
  1754. o:=input.ref^.offset;
  1755. sym:=input.ref^.symbol;
  1756. { it's direct address }
  1757. if (br=NR_NO) and (ir=NR_NO) then
  1758. begin
  1759. { it's a pure offset }
  1760. output.sib_present:=false;
  1761. output.bytes:=4;
  1762. output.modrm:=5 or (rfield shl 3);
  1763. end
  1764. else
  1765. { it's an indirection }
  1766. begin
  1767. { 16 bit address? }
  1768. if ((ir<>NR_NO) and (isub in [R_SUBMMX,R_SUBMMY]) and
  1769. (br<>NR_NO) and (bsub=R_SUBADDR)
  1770. ) then
  1771. begin
  1772. // vector memory (AVX2) =>> ignore
  1773. end
  1774. else if ((ir<>NR_NO) and (isub<>R_SUBADDR)) or
  1775. ((br<>NR_NO) and (bsub<>R_SUBADDR)) then
  1776. message(asmw_e_16bit_not_supported);
  1777. {$ifdef OPTEA}
  1778. { make single reg base }
  1779. if (br=NR_NO) and (s=1) then
  1780. begin
  1781. br:=ir;
  1782. ir:=NR_NO;
  1783. end;
  1784. { convert [3,5,9]*EAX to EAX+[2,4,8]*EAX }
  1785. if (br=NR_NO) and
  1786. (((s=2) and (ir<>NR_ESP)) or
  1787. (s=3) or (s=5) or (s=9)) then
  1788. begin
  1789. br:=ir;
  1790. dec(s);
  1791. end;
  1792. { swap ESP into base if scalefactor is 1 }
  1793. if (s=1) and (ir=NR_ESP) then
  1794. begin
  1795. ir:=br;
  1796. br:=NR_ESP;
  1797. end;
  1798. {$endif OPTEA}
  1799. { wrong, for various reasons }
  1800. if (ir=NR_ESP) or ((s<>1) and (s<>2) and (s<>4) and (s<>8) and (ir<>NR_NO)) then
  1801. exit;
  1802. { base }
  1803. case br of
  1804. NR_EAX : base:=0;
  1805. NR_ECX : base:=1;
  1806. NR_EDX : base:=2;
  1807. NR_EBX : base:=3;
  1808. NR_ESP : base:=4;
  1809. NR_NO,
  1810. NR_EBP : base:=5;
  1811. NR_ESI : base:=6;
  1812. NR_EDI : base:=7;
  1813. else
  1814. exit;
  1815. end;
  1816. { index }
  1817. case ir of
  1818. NR_EAX,
  1819. NR_XMM0,
  1820. NR_YMM0: index:=0;
  1821. NR_ECX,
  1822. NR_XMM1,
  1823. NR_YMM1: index:=1;
  1824. NR_EDX,
  1825. NR_XMM2,
  1826. NR_YMM2: index:=2;
  1827. NR_EBX,
  1828. NR_XMM3,
  1829. NR_YMM3: index:=3;
  1830. NR_NO,
  1831. NR_XMM4,
  1832. NR_YMM4: index:=4;
  1833. NR_EBP,
  1834. NR_XMM5,
  1835. NR_YMM5: index:=5;
  1836. NR_ESI,
  1837. NR_XMM6,
  1838. NR_YMM6: index:=6;
  1839. NR_EDI,
  1840. NR_XMM7,
  1841. NR_YMM7: index:=7;
  1842. else
  1843. exit;
  1844. end;
  1845. case s of
  1846. 0,
  1847. 1 : scalefactor:=0;
  1848. 2 : scalefactor:=1;
  1849. 4 : scalefactor:=2;
  1850. 8 : scalefactor:=3;
  1851. else
  1852. exit;
  1853. end;
  1854. if (br=NR_NO) or
  1855. ((br<>NR_EBP) and (o=0) and (sym=nil)) then
  1856. md:=0
  1857. else
  1858. if ((o>=-128) and (o<=127) and (sym=nil)) then
  1859. md:=1
  1860. else
  1861. md:=2;
  1862. if (br=NR_NO) or (md=2) then
  1863. output.bytes:=4
  1864. else
  1865. output.bytes:=md;
  1866. { SIB needed ? }
  1867. if (ir=NR_NO) and (br<>NR_ESP) then
  1868. begin
  1869. output.sib_present:=false;
  1870. output.modrm:=(longint(md) shl 6) or (rfield shl 3) or base;
  1871. end
  1872. else
  1873. begin
  1874. output.sib_present:=true;
  1875. output.modrm:=(longint(md) shl 6) or (rfield shl 3) or 4;
  1876. output.sib:=(scalefactor shl 6) or (index shl 3) or base;
  1877. end;
  1878. end;
  1879. if output.sib_present then
  1880. output.size:=2+output.bytes
  1881. else
  1882. output.size:=1+output.bytes;
  1883. process_ea:=true;
  1884. end;
  1885. {$elseif defined(i8086)}
  1886. procedure maybe_swap_index_base(var br,ir:Tregister);
  1887. var
  1888. tmpreg: Tregister;
  1889. begin
  1890. if ((br=NR_NO) or (br=NR_SI) or (br=NR_DI)) and
  1891. ((ir=NR_NO) or (ir=NR_BP) or (ir=NR_BX)) then
  1892. begin
  1893. tmpreg:=br;
  1894. br:=ir;
  1895. ir:=tmpreg;
  1896. end;
  1897. end;
  1898. function process_ea(const input:toper;out output:ea;rfield:longint):boolean;
  1899. var
  1900. sym : tasmsymbol;
  1901. md,s,rv : byte;
  1902. base,
  1903. o : longint;
  1904. ir,br : Tregister;
  1905. isub,bsub : tsubregister;
  1906. begin
  1907. process_ea:=false;
  1908. fillchar(output,sizeof(output),0);
  1909. {Register ?}
  1910. if (input.typ=top_reg) then
  1911. begin
  1912. rv:=regval(input.reg);
  1913. output.modrm:=$c0 or (rfield shl 3) or rv;
  1914. output.size:=1;
  1915. process_ea:=true;
  1916. exit;
  1917. end;
  1918. {No register, so memory reference.}
  1919. if (input.typ<>top_ref) then
  1920. internalerror(200409262);
  1921. if ((input.ref^.index<>NR_NO) and (getregtype(input.ref^.index)<>R_INTREGISTER)) or
  1922. ((input.ref^.base<>NR_NO) and (getregtype(input.ref^.base)<>R_INTREGISTER)) then
  1923. internalerror(200301081);
  1924. ir:=input.ref^.index;
  1925. br:=input.ref^.base;
  1926. isub:=getsubreg(ir);
  1927. bsub:=getsubreg(br);
  1928. s:=input.ref^.scalefactor;
  1929. o:=input.ref^.offset;
  1930. sym:=input.ref^.symbol;
  1931. { it's a direct address }
  1932. if (br=NR_NO) and (ir=NR_NO) then
  1933. begin
  1934. { it's a pure offset }
  1935. output.bytes:=2;
  1936. output.modrm:=6 or (rfield shl 3);
  1937. end
  1938. else
  1939. { it's an indirection }
  1940. begin
  1941. { 32 bit address? }
  1942. if ((ir<>NR_NO) and (isub<>R_SUBADDR)) or
  1943. ((br<>NR_NO) and (bsub<>R_SUBADDR)) then
  1944. message(asmw_e_32bit_not_supported);
  1945. { scalefactor can only be 1 in 16-bit addresses }
  1946. if (s<>1) and (ir<>NR_NO) then
  1947. exit;
  1948. maybe_swap_index_base(br,ir);
  1949. if (br=NR_BX) and (ir=NR_SI) then
  1950. base:=0
  1951. else if (br=NR_BX) and (ir=NR_DI) then
  1952. base:=1
  1953. else if (br=NR_BP) and (ir=NR_SI) then
  1954. base:=2
  1955. else if (br=NR_BP) and (ir=NR_DI) then
  1956. base:=3
  1957. else if (br=NR_NO) and (ir=NR_SI) then
  1958. base:=4
  1959. else if (br=NR_NO) and (ir=NR_DI) then
  1960. base:=5
  1961. else if (br=NR_BP) and (ir=NR_NO) then
  1962. base:=6
  1963. else if (br=NR_BX) and (ir=NR_NO) then
  1964. base:=7
  1965. else
  1966. exit;
  1967. if (base<>6) and (o=0) and (sym=nil) then
  1968. md:=0
  1969. else if ((o>=-128) and (o<=127) and (sym=nil)) then
  1970. md:=1
  1971. else
  1972. md:=2;
  1973. output.bytes:=md;
  1974. output.modrm:=(longint(md) shl 6) or (rfield shl 3) or base;
  1975. end;
  1976. output.size:=1+output.bytes;
  1977. output.sib_present:=false;
  1978. process_ea:=true;
  1979. end;
  1980. {$endif}
  1981. function taicpu.calcsize(p:PInsEntry):shortint;
  1982. var
  1983. codes : pchar;
  1984. c : byte;
  1985. len : shortint;
  1986. ea_data : ea;
  1987. exists_vex: boolean;
  1988. exists_vex_extension: boolean;
  1989. exists_prefix_66: boolean;
  1990. exists_prefix_F2: boolean;
  1991. exists_prefix_F3: boolean;
  1992. {$ifdef x86_64}
  1993. omit_rexw : boolean;
  1994. {$endif x86_64}
  1995. begin
  1996. len:=0;
  1997. codes:=@p^.code[0];
  1998. exists_vex := false;
  1999. exists_vex_extension := false;
  2000. exists_prefix_66 := false;
  2001. exists_prefix_F2 := false;
  2002. exists_prefix_F3 := false;
  2003. {$ifdef x86_64}
  2004. rex:=0;
  2005. omit_rexw:=false;
  2006. {$endif x86_64}
  2007. repeat
  2008. c:=ord(codes^);
  2009. inc(codes);
  2010. case c of
  2011. 0 :
  2012. break;
  2013. 1,2,3 :
  2014. begin
  2015. inc(codes,c);
  2016. inc(len,c);
  2017. end;
  2018. 8,9,10 :
  2019. begin
  2020. {$ifdef x86_64}
  2021. rex:=rex or (rexbits(oper[c-8]^.reg) and $F1);
  2022. {$endif x86_64}
  2023. inc(codes);
  2024. inc(len);
  2025. end;
  2026. 11 :
  2027. begin
  2028. inc(codes);
  2029. inc(len);
  2030. end;
  2031. 4,5,6,7 :
  2032. begin
  2033. if opsize={$ifdef i8086}S_L{$else}S_W{$endif} then
  2034. inc(len,2)
  2035. else
  2036. inc(len);
  2037. end;
  2038. 12,13,14,
  2039. 16,17,18,
  2040. 20,21,22,23,
  2041. 40,41,42 :
  2042. inc(len);
  2043. 24,25,26,
  2044. 31,
  2045. 48,49,50 :
  2046. inc(len,2);
  2047. 28,29,30:
  2048. begin
  2049. if opsize=S_Q then
  2050. inc(len,8)
  2051. else
  2052. inc(len,4);
  2053. end;
  2054. 36,37,38:
  2055. inc(len,sizeof(pint));
  2056. 44,45,46:
  2057. inc(len,8);
  2058. 32,33,34,
  2059. 52,53,54,
  2060. 56,57,58,
  2061. 172,173,174 :
  2062. inc(len,4);
  2063. 60,61,62,63: ; // ignore vex-coded operand-idx
  2064. 208,209,210 :
  2065. begin
  2066. case (oper[c-208]^.ot and OT_SIZE_MASK) of
  2067. {$if defined(i386) or defined(x86_64)}
  2068. OT_BITS16 :
  2069. {$elseif defined(i8086)}
  2070. OT_BITS32 :
  2071. {$endif}
  2072. inc(len);
  2073. {$ifdef x86_64}
  2074. OT_BITS64:
  2075. begin
  2076. rex:=rex or $48;
  2077. end;
  2078. {$endif x86_64}
  2079. end;
  2080. end;
  2081. 200 :
  2082. {$if defined(x86_64)}
  2083. { every insentry with code 0310 must be marked with NOX86_64 }
  2084. InternalError(2011051301);
  2085. {$elseif defined(i386)}
  2086. inc(len);
  2087. {$elseif defined(i8086)}
  2088. {nothing};
  2089. {$endif}
  2090. 201 :
  2091. {$if defined(x86_64) or defined(i8086)}
  2092. inc(len)
  2093. {$endif x86_64 or i8086}
  2094. ;
  2095. 212 :
  2096. {$ifndef i8086}
  2097. inc(len)
  2098. {$endif not i8086}
  2099. ;
  2100. 214 :
  2101. begin
  2102. {$ifdef x86_64}
  2103. rex:=rex or $48;
  2104. {$endif x86_64}
  2105. end;
  2106. 202,
  2107. 211,
  2108. 213,
  2109. 215,
  2110. 217,218: ;
  2111. 219:
  2112. begin
  2113. inc(len);
  2114. exists_prefix_F2 := true;
  2115. end;
  2116. 220:
  2117. begin
  2118. inc(len);
  2119. exists_prefix_F3 := true;
  2120. end;
  2121. 241:
  2122. begin
  2123. {$ifndef i8086}
  2124. inc(len);
  2125. exists_prefix_66 := true;
  2126. {$endif not i8086}
  2127. end;
  2128. 221:
  2129. {$ifdef x86_64}
  2130. omit_rexw:=true
  2131. {$endif x86_64}
  2132. ;
  2133. 64..151 :
  2134. begin
  2135. {$ifdef x86_64}
  2136. if (c<127) then
  2137. begin
  2138. if (oper[c and 7]^.typ=top_reg) then
  2139. begin
  2140. rex:=rex or (rexbits(oper[c and 7]^.reg) and $F4);
  2141. end;
  2142. end;
  2143. {$endif x86_64}
  2144. if not process_ea(oper[(c shr 3) and 7]^, ea_data, 0) then
  2145. Message(asmw_e_invalid_effective_address)
  2146. else
  2147. inc(len,ea_data.size);
  2148. {$ifdef x86_64}
  2149. rex:=rex or ea_data.rex;
  2150. {$endif x86_64}
  2151. end;
  2152. 242: // VEX prefix for AVX (length = 2 or 3 bytes, dependens on REX.XBW or opcode-prefix ($0F38 or $0F3A))
  2153. // =>> DEFAULT = 2 Bytes
  2154. begin
  2155. if not(exists_vex) then
  2156. begin
  2157. inc(len, 2);
  2158. exists_vex := true;
  2159. end;
  2160. end;
  2161. 243: // REX.W = 1
  2162. // =>> VEX prefix length = 3
  2163. begin
  2164. if not(exists_vex_extension) then
  2165. begin
  2166. inc(len);
  2167. exists_vex_extension := true;
  2168. end;
  2169. end;
  2170. 244: ; // VEX length bit
  2171. 246, // operand 2 (ymmreg) encoded immediate byte (bit 4-7)
  2172. 247: inc(len); // operand 3 (ymmreg) encoded immediate byte (bit 4-7)
  2173. 248: // VEX-Extension prefix $0F
  2174. // ignore for calculating length
  2175. ;
  2176. 249, // VEX-Extension prefix $0F38
  2177. 250: // VEX-Extension prefix $0F3A
  2178. begin
  2179. if not(exists_vex_extension) then
  2180. begin
  2181. inc(len);
  2182. exists_vex_extension := true;
  2183. end;
  2184. end;
  2185. 192,193,194:
  2186. begin
  2187. {$if defined(x86_64) or defined(i8086)}
  2188. if (oper[c and 3]^.ot and OT_SIZE_MASK)=OT_BITS32 then
  2189. inc(len);
  2190. {$endif x86_64 or i8086}
  2191. end;
  2192. else
  2193. InternalError(200603141);
  2194. end;
  2195. until false;
  2196. {$ifdef x86_64}
  2197. if ((rex and $80)<>0) and ((rex and $4F)<>0) then
  2198. Message(asmw_e_bad_reg_with_rex);
  2199. rex:=rex and $4F; { reset extra bits in upper nibble }
  2200. if omit_rexw then
  2201. begin
  2202. if rex=$48 then { remove rex entirely? }
  2203. rex:=0
  2204. else
  2205. rex:=rex and $F7;
  2206. end;
  2207. if not(exists_vex) then
  2208. begin
  2209. if rex<>0 then
  2210. Inc(len);
  2211. end;
  2212. {$endif}
  2213. if exists_vex then
  2214. begin
  2215. if exists_prefix_66 then dec(len);
  2216. if exists_prefix_F2 then dec(len);
  2217. if exists_prefix_F3 then dec(len);
  2218. {$ifdef x86_64}
  2219. if not(exists_vex_extension) then
  2220. if rex and $0B <> 0 then inc(len); // REX.WXB <> 0 =>> needed VEX-Extension
  2221. {$endif x86_64}
  2222. end;
  2223. calcsize:=len;
  2224. end;
  2225. procedure taicpu.GenCode(objdata:TObjData);
  2226. {
  2227. * the actual codes (C syntax, i.e. octal):
  2228. * \0 - terminates the code. (Unless it's a literal of course.)
  2229. * \1, \2, \3 - that many literal bytes follow in the code stream
  2230. * \4, \6 - the POP/PUSH (respectively) codes for CS, DS, ES, SS
  2231. * (POP is never used for CS) depending on operand 0
  2232. * \5, \7 - the second byte of POP/PUSH codes for FS, GS, depending
  2233. * on operand 0
  2234. * \10, \11, \12 - a literal byte follows in the code stream, to be added
  2235. * to the register value of operand 0, 1 or 2
  2236. * \13 - a literal byte follows in the code stream, to be added
  2237. * to the condition code value of the instruction.
  2238. * \14, \15, \16 - a signed byte immediate operand, from operand 0, 1 or 2
  2239. * \20, \21, \22 - a byte immediate operand, from operand 0, 1 or 2
  2240. * \24, \25, \26, \27 - an unsigned byte immediate operand, from operand 0, 1, 2 or 3
  2241. * \30, \31, \32 - a word immediate operand, from operand 0, 1 or 2
  2242. * \34, \35, \36 - select between \3[012] and \4[012] depending on 16/32 bit
  2243. * assembly mode or the address-size override on the operand
  2244. * \37 - a word constant, from the _segment_ part of operand 0
  2245. * \40, \41, \42 - a long immediate operand, from operand 0, 1 or 2
  2246. * \44, \45, \46 - select between \3[012], \4[012] or \5[456] depending
  2247. on the address size of instruction
  2248. * \50, \51, \52 - a byte relative operand, from operand 0, 1 or 2
  2249. * \54, \55, \56 - a qword immediate, from operand 0, 1 or 2
  2250. * \60, \61, \62 - a word relative operand, from operand 0, 1 or 2
  2251. * \64, \65, \66 - select between \6[012] and \7[012] depending on 16/32 bit
  2252. * assembly mode or the address-size override on the operand
  2253. * \70, \71, \72 - a long relative operand, from operand 0, 1 or 2
  2254. * \74, \75, \76 - a vex-coded vector operand, from operand 0, 1 or 2
  2255. * \1ab - a ModRM, calculated on EA in operand a, with the spare
  2256. * field the register value of operand b.
  2257. * \2ab - a ModRM, calculated on EA in operand a, with the spare
  2258. * field equal to digit b.
  2259. * \254,\255,\256 - a signed 32-bit immediate to be extended to 64 bits
  2260. * \300,\301,\302 - might be an 0x67, depending on the address size of
  2261. * the memory reference in operand x.
  2262. * \310 - indicates fixed 16-bit address size, i.e. optional 0x67.
  2263. * \311 - indicates fixed 32-bit address size, i.e. optional 0x67.
  2264. * \312 - (disassembler only) invalid with non-default address size.
  2265. * \320,\321,\322 - might be an 0x66 or 0x48 byte, depending on the operand
  2266. * size of operand x.
  2267. * \324 - indicates fixed 16-bit operand size, i.e. optional 0x66.
  2268. * \325 - indicates fixed 32-bit operand size, i.e. optional 0x66.
  2269. * \326 - indicates fixed 64-bit operand size, i.e. optional 0x48.
  2270. * \327 - indicates that this instruction is only valid when the
  2271. * operand size is the default (instruction to disassembler,
  2272. * generates no code in the assembler)
  2273. * \331 - instruction not valid with REP prefix. Hint for
  2274. * disassembler only; for SSE instructions.
  2275. * \332 - disassemble a rep (0xF3 byte) prefix as repe not rep.
  2276. * \333 - 0xF3 prefix for SSE instructions
  2277. * \334 - 0xF2 prefix for SSE instructions
  2278. * \335 - Indicates 64-bit operand size with REX.W not necessary
  2279. * \361 - 0x66 prefix for SSE instructions
  2280. * \362 - VEX prefix for AVX instructions
  2281. * \363 - VEX W1
  2282. * \364 - VEX Vector length 256
  2283. * \366 - operand 2 (ymmreg) encoded in bit 4-7 of the immediate byte
  2284. * \367 - operand 3 (ymmreg) encoded in bit 4-7 of the immediate byte
  2285. * \370 - VEX 0F-FLAG
  2286. * \371 - VEX 0F38-FLAG
  2287. * \372 - VEX 0F3A-FLAG
  2288. }
  2289. var
  2290. currval : aint;
  2291. currsym : tobjsymbol;
  2292. currrelreloc,
  2293. currabsreloc,
  2294. currabsreloc32 : TObjRelocationType;
  2295. {$ifdef x86_64}
  2296. rexwritten : boolean;
  2297. {$endif x86_64}
  2298. procedure getvalsym(opidx:longint);
  2299. begin
  2300. case oper[opidx]^.typ of
  2301. top_ref :
  2302. begin
  2303. currval:=oper[opidx]^.ref^.offset;
  2304. currsym:=ObjData.symbolref(oper[opidx]^.ref^.symbol);
  2305. {$ifdef i386}
  2306. if (oper[opidx]^.ref^.refaddr=addr_pic) and
  2307. (tf_pic_uses_got in target_info.flags) then
  2308. begin
  2309. currrelreloc:=RELOC_PLT32;
  2310. currabsreloc:=RELOC_GOT32;
  2311. currabsreloc32:=RELOC_GOT32;
  2312. end
  2313. else
  2314. {$endif i386}
  2315. {$ifdef x86_64}
  2316. if oper[opidx]^.ref^.refaddr=addr_pic then
  2317. begin
  2318. currrelreloc:=RELOC_PLT32;
  2319. currabsreloc:=RELOC_GOTPCREL;
  2320. currabsreloc32:=RELOC_GOTPCREL;
  2321. end
  2322. else if oper[opidx]^.ref^.refaddr=addr_pic_no_got then
  2323. begin
  2324. currrelreloc:=RELOC_RELATIVE;
  2325. currabsreloc:=RELOC_RELATIVE;
  2326. currabsreloc32:=RELOC_RELATIVE;
  2327. end
  2328. else
  2329. {$endif x86_64}
  2330. begin
  2331. currrelreloc:=RELOC_RELATIVE;
  2332. currabsreloc:=RELOC_ABSOLUTE;
  2333. currabsreloc32:=RELOC_ABSOLUTE32;
  2334. end;
  2335. end;
  2336. top_const :
  2337. begin
  2338. currval:=aint(oper[opidx]^.val);
  2339. currsym:=nil;
  2340. currabsreloc:=RELOC_ABSOLUTE;
  2341. currabsreloc32:=RELOC_ABSOLUTE32;
  2342. end;
  2343. else
  2344. Message(asmw_e_immediate_or_reference_expected);
  2345. end;
  2346. end;
  2347. {$ifdef x86_64}
  2348. procedure maybewriterex;
  2349. begin
  2350. if (rex<>0) and not(rexwritten) then
  2351. begin
  2352. rexwritten:=true;
  2353. objdata.writebytes(rex,1);
  2354. end;
  2355. end;
  2356. {$endif x86_64}
  2357. procedure objdata_writereloc(Data:aint;len:aword;p:TObjSymbol;Reloctype:TObjRelocationType);
  2358. begin
  2359. {$ifdef i386}
  2360. { Special case of '_GLOBAL_OFFSET_TABLE_'
  2361. which needs a special relocation type R_386_GOTPC }
  2362. if assigned (p) and
  2363. (p.name='_GLOBAL_OFFSET_TABLE_') and
  2364. (tf_pic_uses_got in target_info.flags) then
  2365. begin
  2366. { nothing else than a 4 byte relocation should occur
  2367. for GOT }
  2368. if len<>4 then
  2369. Message1(asmw_e_invalid_opcode_and_operands,GetString);
  2370. Reloctype:=RELOC_GOTPC;
  2371. { We need to add the offset of the relocation
  2372. of _GLOBAL_OFFSET_TABLE symbol within
  2373. the current instruction }
  2374. inc(data,objdata.currobjsec.size-insoffset);
  2375. end;
  2376. {$endif i386}
  2377. objdata.writereloc(data,len,p,Reloctype);
  2378. end;
  2379. const
  2380. CondVal:array[TAsmCond] of byte=($0,
  2381. $7, $3, $2, $6, $2, $4, $F, $D, $C, $E, $6, $2,
  2382. $3, $7, $3, $5, $E, $C, $D, $F, $1, $B, $9, $5,
  2383. $0, $A, $A, $B, $8, $4);
  2384. var
  2385. c : byte;
  2386. pb : pbyte;
  2387. codes : pchar;
  2388. bytes : array[0..3] of byte;
  2389. rfield,
  2390. data,s,opidx : longint;
  2391. ea_data : ea;
  2392. relsym : TObjSymbol;
  2393. needed_VEX_Extension: boolean;
  2394. needed_VEX: boolean;
  2395. opmode: integer;
  2396. VEXvvvv: byte;
  2397. VEXmmmmm: byte;
  2398. begin
  2399. { safety check }
  2400. if objdata.currobjsec.size<>longword(insoffset) then
  2401. internalerror(200130121);
  2402. { those variables are initialized inside local procedures, the dfa cannot handle this yet }
  2403. currsym:=nil;
  2404. currabsreloc:=RELOC_NONE;
  2405. currabsreloc32:=RELOC_NONE;
  2406. currrelreloc:=RELOC_NONE;
  2407. currval:=0;
  2408. { load data to write }
  2409. codes:=insentry^.code;
  2410. {$ifdef x86_64}
  2411. rexwritten:=false;
  2412. {$endif x86_64}
  2413. { Force word push/pop for registers }
  2414. if (opsize={$ifdef i8086}S_L{$else}S_W{$endif}) and ((codes[0]=#4) or (codes[0]=#6) or
  2415. ((codes[0]=#1) and ((codes[2]=#5) or (codes[2]=#7)))) then
  2416. begin
  2417. bytes[0]:=$66;
  2418. objdata.writebytes(bytes,1);
  2419. end;
  2420. // needed VEX Prefix (for AVX etc.)
  2421. needed_VEX := false;
  2422. needed_VEX_Extension := false;
  2423. opmode := -1;
  2424. VEXvvvv := 0;
  2425. VEXmmmmm := 0;
  2426. repeat
  2427. c:=ord(codes^);
  2428. inc(codes);
  2429. case c of
  2430. 0: break;
  2431. 1,
  2432. 2,
  2433. 3: inc(codes,c);
  2434. 60: opmode := 0;
  2435. 61: opmode := 1;
  2436. 62: opmode := 2;
  2437. 219: VEXvvvv := VEXvvvv OR $02; // set SIMD-prefix $F3
  2438. 220: VEXvvvv := VEXvvvv OR $03; // set SIMD-prefix $F2
  2439. 241: VEXvvvv := VEXvvvv OR $01; // set SIMD-prefix $66
  2440. 242: needed_VEX := true;
  2441. 243: begin
  2442. needed_VEX_Extension := true;
  2443. VEXvvvv := VEXvvvv OR (1 shl 7); // set REX.W
  2444. end;
  2445. 244: VEXvvvv := VEXvvvv OR $04; // vectorlength = 256 bits AND no scalar
  2446. 248: VEXmmmmm := VEXmmmmm OR $01; // set leading opcode byte $0F
  2447. 249: begin
  2448. needed_VEX_Extension := true;
  2449. VEXmmmmm := VEXmmmmm OR $02; // set leading opcode byte $0F38
  2450. end;
  2451. 250: begin
  2452. needed_VEX_Extension := true;
  2453. VEXmmmmm := VEXmmmmm OR $03; // set leading opcode byte $0F3A
  2454. end;
  2455. end;
  2456. until false;
  2457. if needed_VEX then
  2458. begin
  2459. if (opmode > ops) or
  2460. (opmode < -1) then
  2461. begin
  2462. Internalerror(777100);
  2463. end
  2464. else if opmode = -1 then
  2465. begin
  2466. VEXvvvv := VEXvvvv or ($0F shl 3); // set VEXvvvv bits (bits 6-3) to 1
  2467. end
  2468. else if oper[opmode]^.typ = top_reg then
  2469. begin
  2470. VEXvvvv := VEXvvvv or ((not(regval(oper[opmode]^.reg)) and $07) shl 3);
  2471. {$ifdef x86_64}
  2472. if rexbits(oper[opmode]^.reg) = 0 then VEXvvvv := VEXvvvv or (1 shl 6);
  2473. {$else}
  2474. VEXvvvv := VEXvvvv or (1 shl 6);
  2475. {$endif x86_64}
  2476. end
  2477. else Internalerror(777101);
  2478. if not(needed_VEX_Extension) then
  2479. begin
  2480. {$ifdef x86_64}
  2481. if rex and $0B <> 0 then needed_VEX_Extension := true;
  2482. {$endif x86_64}
  2483. end;
  2484. if needed_VEX_Extension then
  2485. begin
  2486. // VEX-Prefix-Length = 3 Bytes
  2487. bytes[0]:=$C4;
  2488. objdata.writebytes(bytes,1);
  2489. {$ifdef x86_64}
  2490. VEXmmmmm := VEXmmmmm or ((not(rex) and $07) shl 5); // set REX.rxb
  2491. {$else}
  2492. VEXmmmmm := VEXmmmmm or (7 shl 5); //
  2493. {$endif x86_64}
  2494. bytes[0] := VEXmmmmm;
  2495. objdata.writebytes(bytes,1);
  2496. {$ifdef x86_64}
  2497. VEXvvvv := VEXvvvv OR ((rex and $08) shl 7); // set REX.w
  2498. {$endif x86_64}
  2499. bytes[0] := VEXvvvv;
  2500. objdata.writebytes(bytes,1);
  2501. end
  2502. else
  2503. begin
  2504. // VEX-Prefix-Length = 2 Bytes
  2505. bytes[0]:=$C5;
  2506. objdata.writebytes(bytes,1);
  2507. {$ifdef x86_64}
  2508. if rex and $04 = 0 then
  2509. {$endif x86_64}
  2510. begin
  2511. VEXvvvv := VEXvvvv or (1 shl 7);
  2512. end;
  2513. bytes[0] := VEXvvvv;
  2514. objdata.writebytes(bytes,1);
  2515. end;
  2516. end
  2517. else
  2518. begin
  2519. needed_VEX_Extension := false;
  2520. opmode := -1;
  2521. end;
  2522. { load data to write }
  2523. codes:=insentry^.code;
  2524. repeat
  2525. c:=ord(codes^);
  2526. inc(codes);
  2527. case c of
  2528. 0 :
  2529. break;
  2530. 1,2,3 :
  2531. begin
  2532. {$ifdef x86_64}
  2533. if not(needed_VEX) then // TG
  2534. maybewriterex;
  2535. {$endif x86_64}
  2536. objdata.writebytes(codes^,c);
  2537. inc(codes,c);
  2538. end;
  2539. 4,6 :
  2540. begin
  2541. case oper[0]^.reg of
  2542. NR_CS:
  2543. bytes[0]:=$e;
  2544. NR_NO,
  2545. NR_DS:
  2546. bytes[0]:=$1e;
  2547. NR_ES:
  2548. bytes[0]:=$6;
  2549. NR_SS:
  2550. bytes[0]:=$16;
  2551. else
  2552. internalerror(777004);
  2553. end;
  2554. if c=4 then
  2555. inc(bytes[0]);
  2556. objdata.writebytes(bytes,1);
  2557. end;
  2558. 5,7 :
  2559. begin
  2560. case oper[0]^.reg of
  2561. NR_FS:
  2562. bytes[0]:=$a0;
  2563. NR_GS:
  2564. bytes[0]:=$a8;
  2565. else
  2566. internalerror(777005);
  2567. end;
  2568. if c=5 then
  2569. inc(bytes[0]);
  2570. objdata.writebytes(bytes,1);
  2571. end;
  2572. 8,9,10 :
  2573. begin
  2574. {$ifdef x86_64}
  2575. if not(needed_VEX) then // TG
  2576. maybewriterex;
  2577. {$endif x86_64}
  2578. bytes[0]:=ord(codes^)+regval(oper[c-8]^.reg);
  2579. inc(codes);
  2580. objdata.writebytes(bytes,1);
  2581. end;
  2582. 11 :
  2583. begin
  2584. bytes[0]:=ord(codes^)+condval[condition];
  2585. inc(codes);
  2586. objdata.writebytes(bytes,1);
  2587. end;
  2588. 12,13,14 :
  2589. begin
  2590. getvalsym(c-12);
  2591. if (currval<-128) or (currval>127) then
  2592. Message2(asmw_e_value_exceeds_bounds,'signed byte',tostr(currval));
  2593. if assigned(currsym) then
  2594. objdata_writereloc(currval,1,currsym,currabsreloc)
  2595. else
  2596. objdata.writebytes(currval,1);
  2597. end;
  2598. 16,17,18 :
  2599. begin
  2600. getvalsym(c-16);
  2601. if (currval<-256) or (currval>255) then
  2602. Message2(asmw_e_value_exceeds_bounds,'byte',tostr(currval));
  2603. if assigned(currsym) then
  2604. objdata_writereloc(currval,1,currsym,currabsreloc)
  2605. else
  2606. objdata.writebytes(currval,1);
  2607. end;
  2608. 20,21,22,23 :
  2609. begin
  2610. getvalsym(c-20);
  2611. if (currval<0) or (currval>255) then
  2612. Message2(asmw_e_value_exceeds_bounds,'unsigned byte',tostr(currval));
  2613. if assigned(currsym) then
  2614. objdata_writereloc(currval,1,currsym,currabsreloc)
  2615. else
  2616. objdata.writebytes(currval,1);
  2617. end;
  2618. 24,25,26 : // 030..032
  2619. begin
  2620. getvalsym(c-24);
  2621. {$ifndef i8086}
  2622. { currval is an aint so this cannot happen on i8086 and causes only a warning }
  2623. if (currval<-65536) or (currval>65535) then
  2624. Message2(asmw_e_value_exceeds_bounds,'word',tostr(currval));
  2625. {$endif i8086}
  2626. if assigned(currsym) then
  2627. objdata_writereloc(currval,2,currsym,currabsreloc)
  2628. else
  2629. objdata.writebytes(currval,2);
  2630. end;
  2631. 28,29,30 : // 034..036
  2632. { !!! These are intended (and used in opcode table) to select depending
  2633. on address size, *not* operand size. Works by coincidence only. }
  2634. begin
  2635. getvalsym(c-28);
  2636. if opsize=S_Q then
  2637. begin
  2638. if assigned(currsym) then
  2639. objdata_writereloc(currval,8,currsym,currabsreloc)
  2640. else
  2641. objdata.writebytes(currval,8);
  2642. end
  2643. else
  2644. begin
  2645. if assigned(currsym) then
  2646. objdata_writereloc(currval,4,currsym,currabsreloc32)
  2647. else
  2648. objdata.writebytes(currval,4);
  2649. end
  2650. end;
  2651. 32,33,34 : // 040..042
  2652. begin
  2653. getvalsym(c-32);
  2654. if assigned(currsym) then
  2655. objdata_writereloc(currval,4,currsym,currabsreloc32)
  2656. else
  2657. objdata.writebytes(currval,4);
  2658. end;
  2659. 36,37,38 : // 044..046 - select between word/dword/qword depending on
  2660. begin // address size (we support only default address sizes).
  2661. getvalsym(c-36);
  2662. {$if defined(x86_64)}
  2663. if assigned(currsym) then
  2664. objdata_writereloc(currval,8,currsym,currabsreloc)
  2665. else
  2666. objdata.writebytes(currval,8);
  2667. {$elseif defined(i386)}
  2668. if assigned(currsym) then
  2669. objdata_writereloc(currval,4,currsym,currabsreloc32)
  2670. else
  2671. objdata.writebytes(currval,4);
  2672. {$elseif defined(i8086)}
  2673. if assigned(currsym) then
  2674. objdata_writereloc(currval,2,currsym,currabsreloc)
  2675. else
  2676. objdata.writebytes(currval,2);
  2677. {$endif}
  2678. end;
  2679. 40,41,42 : // 050..052 - byte relative operand
  2680. begin
  2681. getvalsym(c-40);
  2682. data:=currval-insend;
  2683. {$push}
  2684. {$r-,q-} { disable also overflow as address returns a qword for x86_64 }
  2685. if assigned(currsym) then
  2686. inc(data,currsym.address);
  2687. {$pop}
  2688. if (data>127) or (data<-128) then
  2689. Message1(asmw_e_short_jmp_out_of_range,tostr(data));
  2690. objdata.writebytes(data,1);
  2691. end;
  2692. 44,45,46: // 054..056 - qword immediate operand
  2693. begin
  2694. getvalsym(c-44);
  2695. if assigned(currsym) then
  2696. objdata_writereloc(currval,8,currsym,currabsreloc)
  2697. else
  2698. objdata.writebytes(currval,8);
  2699. end;
  2700. 52,53,54 : // 064..066 - select between 16/32 address mode, but we support only 32
  2701. begin
  2702. getvalsym(c-52);
  2703. if assigned(currsym) then
  2704. objdata_writereloc(currval,4,currsym,currrelreloc)
  2705. else
  2706. objdata_writereloc(currval-insend,4,nil,currabsreloc32)
  2707. end;
  2708. 56,57,58 : // 070..072 - long relative operand
  2709. begin
  2710. getvalsym(c-56);
  2711. if assigned(currsym) then
  2712. objdata_writereloc(currval,4,currsym,currrelreloc)
  2713. else
  2714. objdata_writereloc(currval-insend,4,nil,currabsreloc32)
  2715. end;
  2716. 60,61,62 : ; // 074..076 - vex-coded vector operand
  2717. // ignore
  2718. 172,173,174 : // 0254..0256 - dword implicitly sign-extended to 64-bit (x86_64 only)
  2719. begin
  2720. getvalsym(c-172);
  2721. {$ifdef x86_64}
  2722. { for i386 as aint type is longint the
  2723. following test is useless }
  2724. if (currval<low(longint)) or (currval>high(longint)) then
  2725. Message2(asmw_e_value_exceeds_bounds,'signed dword',tostr(currval));
  2726. {$endif x86_64}
  2727. if assigned(currsym) then
  2728. objdata_writereloc(currval,4,currsym,currabsreloc32)
  2729. else
  2730. objdata.writebytes(currval,4);
  2731. end;
  2732. 192,193,194:
  2733. begin
  2734. {$if defined(x86_64) or defined(i8086)}
  2735. if (oper[c and 3]^.ot and OT_SIZE_MASK)=OT_BITS32 then
  2736. begin
  2737. bytes[0]:=$67;
  2738. objdata.writebytes(bytes,1);
  2739. end;
  2740. {$endif x86_64 or i8086}
  2741. end;
  2742. 200 : { fixed 16-bit addr }
  2743. {$if defined(x86_64)}
  2744. { every insentry having code 0310 must be marked with NOX86_64 }
  2745. InternalError(2011051302);
  2746. {$elseif defined(i386)}
  2747. begin
  2748. bytes[0]:=$67;
  2749. objdata.writebytes(bytes,1);
  2750. end;
  2751. {$elseif defined(i8086)}
  2752. {nothing};
  2753. {$endif}
  2754. 201 : { fixed 32-bit addr }
  2755. {$if defined(x86_64) or defined(i8086)}
  2756. begin
  2757. bytes[0]:=$67;
  2758. objdata.writebytes(bytes,1);
  2759. end
  2760. {$endif x86_64 or i8086}
  2761. ;
  2762. 208,209,210 :
  2763. begin
  2764. case oper[c-208]^.ot and OT_SIZE_MASK of
  2765. {$if defined(i386) or defined(x86_64)}
  2766. OT_BITS16 :
  2767. {$elseif defined(i8086)}
  2768. OT_BITS32 :
  2769. {$endif}
  2770. begin
  2771. bytes[0]:=$66;
  2772. objdata.writebytes(bytes,1);
  2773. end;
  2774. {$ifndef x86_64}
  2775. OT_BITS64 :
  2776. Message(asmw_e_64bit_not_supported);
  2777. {$endif x86_64}
  2778. end;
  2779. end;
  2780. 211,
  2781. 213 : {no action needed};
  2782. 212,
  2783. 241:
  2784. begin
  2785. {$ifndef i8086}
  2786. if not(needed_VEX) then
  2787. begin
  2788. bytes[0]:=$66;
  2789. objdata.writebytes(bytes,1);
  2790. end;
  2791. {$endif not i8086}
  2792. end;
  2793. 214 :
  2794. begin
  2795. {$ifndef x86_64}
  2796. Message(asmw_e_64bit_not_supported);
  2797. {$endif x86_64}
  2798. end;
  2799. 219 :
  2800. begin
  2801. if not(needed_VEX) then
  2802. begin
  2803. bytes[0]:=$f3;
  2804. objdata.writebytes(bytes,1);
  2805. end;
  2806. end;
  2807. 220 :
  2808. begin
  2809. if not(needed_VEX) then
  2810. begin
  2811. bytes[0]:=$f2;
  2812. objdata.writebytes(bytes,1);
  2813. end;
  2814. end;
  2815. 221:
  2816. ;
  2817. 202,
  2818. 215,
  2819. 217,218 :
  2820. begin
  2821. { these are dissambler hints or 32 bit prefixes which
  2822. are not needed }
  2823. end;
  2824. 242..244: ; // VEX flags =>> nothing todo
  2825. 246: begin
  2826. if needed_VEX then
  2827. begin
  2828. if ops = 4 then
  2829. begin
  2830. if (oper[2]^.typ=top_reg) then
  2831. begin
  2832. if (oper[2]^.ot and otf_reg_xmm <> 0) or
  2833. (oper[2]^.ot and otf_reg_ymm <> 0) then
  2834. begin
  2835. bytes[0] := ((getsupreg(oper[2]^.reg) and 15) shl 4);
  2836. objdata.writebytes(bytes,1);
  2837. end
  2838. else Internalerror(2014032001);
  2839. end
  2840. else Internalerror(2014032002);
  2841. end
  2842. else Internalerror(2014032003);
  2843. end
  2844. else Internalerror(2014032004);
  2845. end;
  2846. 247: begin
  2847. if needed_VEX then
  2848. begin
  2849. if ops = 4 then
  2850. begin
  2851. if (oper[3]^.typ=top_reg) then
  2852. begin
  2853. if (oper[3]^.ot and otf_reg_xmm <> 0) or
  2854. (oper[3]^.ot and otf_reg_ymm <> 0) then
  2855. begin
  2856. bytes[0] := ((getsupreg(oper[3]^.reg) and 15) shl 4);
  2857. objdata.writebytes(bytes,1);
  2858. end
  2859. else Internalerror(2014032005);
  2860. end
  2861. else Internalerror(2014032006);
  2862. end
  2863. else Internalerror(2014032007);
  2864. end
  2865. else Internalerror(2014032008);
  2866. end;
  2867. 248..250: ; // VEX flags =>> nothing todo
  2868. 31,
  2869. 48,49,50 :
  2870. begin
  2871. InternalError(777006);
  2872. end
  2873. else
  2874. begin
  2875. { rex should be written at this point }
  2876. {$ifdef x86_64}
  2877. if not(needed_VEX) then // TG
  2878. if (rex<>0) and not(rexwritten) then
  2879. internalerror(200603191);
  2880. {$endif x86_64}
  2881. if (c>=64) and (c<=151) then // 0100..0227
  2882. begin
  2883. if (c<127) then // 0177
  2884. begin
  2885. if (oper[c and 7]^.typ=top_reg) then
  2886. rfield:=regval(oper[c and 7]^.reg)
  2887. else
  2888. rfield:=regval(oper[c and 7]^.ref^.base);
  2889. end
  2890. else
  2891. rfield:=c and 7;
  2892. opidx:=(c shr 3) and 7;
  2893. if not process_ea(oper[opidx]^,ea_data,rfield) then
  2894. Message(asmw_e_invalid_effective_address);
  2895. pb:=@bytes[0];
  2896. pb^:=ea_data.modrm;
  2897. inc(pb);
  2898. if ea_data.sib_present then
  2899. begin
  2900. pb^:=ea_data.sib;
  2901. inc(pb);
  2902. end;
  2903. s:=pb-@bytes[0];
  2904. objdata.writebytes(bytes,s);
  2905. case ea_data.bytes of
  2906. 0 : ;
  2907. 1 :
  2908. begin
  2909. if (oper[opidx]^.ot and OT_MEMORY)=OT_MEMORY then
  2910. begin
  2911. currsym:=objdata.symbolref(oper[opidx]^.ref^.symbol);
  2912. {$ifdef i386}
  2913. if (oper[opidx]^.ref^.refaddr=addr_pic) and
  2914. (tf_pic_uses_got in target_info.flags) then
  2915. currabsreloc:=RELOC_GOT32
  2916. else
  2917. {$endif i386}
  2918. {$ifdef x86_64}
  2919. if oper[opidx]^.ref^.refaddr=addr_pic then
  2920. currabsreloc:=RELOC_GOTPCREL
  2921. else
  2922. {$endif x86_64}
  2923. currabsreloc:=RELOC_ABSOLUTE;
  2924. objdata_writereloc(oper[opidx]^.ref^.offset,1,currsym,currabsreloc);
  2925. end
  2926. else
  2927. begin
  2928. bytes[0]:=oper[opidx]^.ref^.offset;
  2929. objdata.writebytes(bytes,1);
  2930. end;
  2931. inc(s);
  2932. end;
  2933. 2,4 :
  2934. begin
  2935. currsym:=objdata.symbolref(oper[opidx]^.ref^.symbol);
  2936. currval:=oper[opidx]^.ref^.offset;
  2937. {$ifdef x86_64}
  2938. if oper[opidx]^.ref^.refaddr=addr_pic then
  2939. currabsreloc:=RELOC_GOTPCREL
  2940. else
  2941. if oper[opidx]^.ref^.base=NR_RIP then
  2942. begin
  2943. currabsreloc:=RELOC_RELATIVE;
  2944. { Adjust reloc value by number of bytes following the displacement,
  2945. but not if displacement is specified by literal constant }
  2946. if Assigned(currsym) then
  2947. Dec(currval,InsEnd-objdata.CurrObjSec.Size-ea_data.bytes);
  2948. end
  2949. else
  2950. {$endif x86_64}
  2951. {$ifdef i386}
  2952. if (oper[opidx]^.ref^.refaddr=addr_pic) and
  2953. (tf_pic_uses_got in target_info.flags) then
  2954. currabsreloc:=RELOC_GOT32
  2955. else
  2956. {$endif i386}
  2957. currabsreloc:=RELOC_ABSOLUTE32;
  2958. if (currabsreloc=RELOC_ABSOLUTE32) and
  2959. (Assigned(oper[opidx]^.ref^.relsymbol)) then
  2960. begin
  2961. relsym:=objdata.symbolref(oper[opidx]^.ref^.relsymbol);
  2962. if relsym.objsection=objdata.CurrObjSec then
  2963. begin
  2964. currval:=objdata.CurrObjSec.size+ea_data.bytes-relsym.offset+currval;
  2965. currabsreloc:=RELOC_RELATIVE;
  2966. end
  2967. else
  2968. begin
  2969. currabsreloc:=RELOC_PIC_PAIR;
  2970. currval:=relsym.offset;
  2971. end;
  2972. end;
  2973. objdata_writereloc(currval,ea_data.bytes,currsym,currabsreloc);
  2974. inc(s,ea_data.bytes);
  2975. end;
  2976. end;
  2977. end
  2978. else
  2979. InternalError(777007);
  2980. end;
  2981. end;
  2982. until false;
  2983. end;
  2984. function taicpu.is_same_reg_move(regtype: Tregistertype):boolean;
  2985. begin
  2986. result:=(((opcode=A_MOV) or (opcode=A_XCHG)) and
  2987. (regtype = R_INTREGISTER) and
  2988. (ops=2) and
  2989. (oper[0]^.typ=top_reg) and
  2990. (oper[1]^.typ=top_reg) and
  2991. (oper[0]^.reg=oper[1]^.reg)
  2992. ) or
  2993. (((opcode=A_MOVSS) or (opcode=A_MOVSD) or (opcode=A_MOVQ) or
  2994. (opcode=A_MOVAPS) or (OPCODE=A_MOVAPD) or
  2995. (opcode=A_VMOVSS) or (opcode=A_VMOVSD) or (opcode=A_VMOVQ) or
  2996. (opcode=A_VMOVAPS) or (OPCODE=A_VMOVAPD)) and
  2997. (regtype = R_MMREGISTER) and
  2998. (ops=2) and
  2999. (oper[0]^.typ=top_reg) and
  3000. (oper[1]^.typ=top_reg) and
  3001. (oper[0]^.reg=oper[1]^.reg)
  3002. );
  3003. end;
  3004. procedure build_spilling_operation_type_table;
  3005. var
  3006. opcode : tasmop;
  3007. i : integer;
  3008. begin
  3009. new(operation_type_table);
  3010. fillchar(operation_type_table^,sizeof(toperation_type_table),byte(operand_read));
  3011. for opcode:=low(tasmop) to high(tasmop) do
  3012. begin
  3013. for i:=1 to MaxInsChanges do
  3014. begin
  3015. case InsProp[opcode].Ch[i] of
  3016. Ch_Rop1 :
  3017. operation_type_table^[opcode,0]:=operand_read;
  3018. Ch_Wop1 :
  3019. operation_type_table^[opcode,0]:=operand_write;
  3020. Ch_RWop1,
  3021. Ch_Mop1 :
  3022. operation_type_table^[opcode,0]:=operand_readwrite;
  3023. Ch_Rop2 :
  3024. operation_type_table^[opcode,1]:=operand_read;
  3025. Ch_Wop2 :
  3026. operation_type_table^[opcode,1]:=operand_write;
  3027. Ch_RWop2,
  3028. Ch_Mop2 :
  3029. operation_type_table^[opcode,1]:=operand_readwrite;
  3030. Ch_Rop3 :
  3031. operation_type_table^[opcode,2]:=operand_read;
  3032. Ch_Wop3 :
  3033. operation_type_table^[opcode,2]:=operand_write;
  3034. Ch_RWop3,
  3035. Ch_Mop3 :
  3036. operation_type_table^[opcode,2]:=operand_readwrite;
  3037. end;
  3038. end;
  3039. end;
  3040. end;
  3041. function taicpu.spilling_get_operation_type(opnr: longint): topertype;
  3042. begin
  3043. { the information in the instruction table is made for the string copy
  3044. operation MOVSD so hack here (FK)
  3045. VMOVSS and VMOVSD has two and three operand flavours, this cannot modelled by x86ins.dat
  3046. so fix it here (FK)
  3047. }
  3048. if ((opcode=A_MOVSD) or (opcode=A_VMOVSS) or (opcode=A_VMOVSD)) and (ops=2) then
  3049. begin
  3050. case opnr of
  3051. 0:
  3052. result:=operand_read;
  3053. 1:
  3054. result:=operand_write;
  3055. else
  3056. internalerror(200506055);
  3057. end
  3058. end
  3059. { IMUL has 1, 2 and 3-operand forms }
  3060. else if opcode=A_IMUL then
  3061. begin
  3062. case ops of
  3063. 1:
  3064. if opnr=0 then
  3065. result:=operand_read
  3066. else
  3067. internalerror(2014011802);
  3068. 2:
  3069. begin
  3070. case opnr of
  3071. 0:
  3072. result:=operand_read;
  3073. 1:
  3074. result:=operand_readwrite;
  3075. else
  3076. internalerror(2014011803);
  3077. end;
  3078. end;
  3079. 3:
  3080. begin
  3081. case opnr of
  3082. 0,1:
  3083. result:=operand_read;
  3084. 2:
  3085. result:=operand_write;
  3086. else
  3087. internalerror(2014011804);
  3088. end;
  3089. end;
  3090. else
  3091. internalerror(2014011805);
  3092. end;
  3093. end
  3094. else
  3095. result:=operation_type_table^[opcode,opnr];
  3096. end;
  3097. function spilling_create_load(const ref:treference;r:tregister):Taicpu;
  3098. var
  3099. tmpref: treference;
  3100. begin
  3101. tmpref:=ref;
  3102. {$ifdef i8086}
  3103. if tmpref.segment=NR_SS then
  3104. tmpref.segment:=NR_NO;
  3105. {$endif i8086}
  3106. case getregtype(r) of
  3107. R_INTREGISTER :
  3108. begin
  3109. if getsubreg(r)=R_SUBH then
  3110. inc(tmpref.offset);
  3111. { we don't need special code here for 32 bit loads on x86_64, since
  3112. those will automatically zero-extend the upper 32 bits. }
  3113. result:=taicpu.op_ref_reg(A_MOV,reg2opsize(r),tmpref,r);
  3114. end;
  3115. R_MMREGISTER :
  3116. if current_settings.fputype in fpu_avx_instructionsets then
  3117. case getsubreg(r) of
  3118. R_SUBMMD:
  3119. result:=taicpu.op_ref_reg(A_VMOVSD,reg2opsize(r),tmpref,r);
  3120. R_SUBMMS:
  3121. result:=taicpu.op_ref_reg(A_VMOVSS,reg2opsize(r),tmpref,r);
  3122. R_SUBQ,
  3123. R_SUBMMWHOLE:
  3124. result:=taicpu.op_ref_reg(A_VMOVQ,S_NO,tmpref,r);
  3125. else
  3126. internalerror(200506043);
  3127. end
  3128. else
  3129. case getsubreg(r) of
  3130. R_SUBMMD:
  3131. result:=taicpu.op_ref_reg(A_MOVSD,reg2opsize(r),tmpref,r);
  3132. R_SUBMMS:
  3133. result:=taicpu.op_ref_reg(A_MOVSS,reg2opsize(r),tmpref,r);
  3134. R_SUBQ,
  3135. R_SUBMMWHOLE:
  3136. result:=taicpu.op_ref_reg(A_MOVQ,S_NO,tmpref,r);
  3137. else
  3138. internalerror(200506043);
  3139. end;
  3140. else
  3141. internalerror(200401041);
  3142. end;
  3143. end;
  3144. function spilling_create_store(r:tregister; const ref:treference):Taicpu;
  3145. var
  3146. size: topsize;
  3147. tmpref: treference;
  3148. begin
  3149. tmpref:=ref;
  3150. {$ifdef i8086}
  3151. if tmpref.segment=NR_SS then
  3152. tmpref.segment:=NR_NO;
  3153. {$endif i8086}
  3154. case getregtype(r) of
  3155. R_INTREGISTER :
  3156. begin
  3157. if getsubreg(r)=R_SUBH then
  3158. inc(tmpref.offset);
  3159. size:=reg2opsize(r);
  3160. {$ifdef x86_64}
  3161. { even if it's a 32 bit reg, we still have to spill 64 bits
  3162. because we often perform 64 bit operations on them }
  3163. if (size=S_L) then
  3164. begin
  3165. size:=S_Q;
  3166. r:=newreg(getregtype(r),getsupreg(r),R_SUBWHOLE);
  3167. end;
  3168. {$endif x86_64}
  3169. result:=taicpu.op_reg_ref(A_MOV,size,r,tmpref);
  3170. end;
  3171. R_MMREGISTER :
  3172. if current_settings.fputype in fpu_avx_instructionsets then
  3173. case getsubreg(r) of
  3174. R_SUBMMD:
  3175. result:=taicpu.op_reg_ref(A_VMOVSD,reg2opsize(r),r,tmpref);
  3176. R_SUBMMS:
  3177. result:=taicpu.op_reg_ref(A_VMOVSS,reg2opsize(r),r,tmpref);
  3178. R_SUBQ,
  3179. R_SUBMMWHOLE:
  3180. result:=taicpu.op_reg_ref(A_VMOVQ,S_NO,r,tmpref);
  3181. else
  3182. internalerror(200506042);
  3183. end
  3184. else
  3185. case getsubreg(r) of
  3186. R_SUBMMD:
  3187. result:=taicpu.op_reg_ref(A_MOVSD,reg2opsize(r),r,tmpref);
  3188. R_SUBMMS:
  3189. result:=taicpu.op_reg_ref(A_MOVSS,reg2opsize(r),r,tmpref);
  3190. R_SUBQ,
  3191. R_SUBMMWHOLE:
  3192. result:=taicpu.op_reg_ref(A_MOVQ,S_NO,r,tmpref);
  3193. else
  3194. internalerror(200506042);
  3195. end;
  3196. else
  3197. internalerror(200401041);
  3198. end;
  3199. end;
  3200. {*****************************************************************************
  3201. Instruction table
  3202. *****************************************************************************}
  3203. procedure BuildInsTabCache;
  3204. var
  3205. i : longint;
  3206. begin
  3207. new(instabcache);
  3208. FillChar(instabcache^,sizeof(tinstabcache),$ff);
  3209. i:=0;
  3210. while (i<InsTabEntries) do
  3211. begin
  3212. if InsTabCache^[InsTab[i].OPcode]=-1 then
  3213. InsTabCache^[InsTab[i].OPcode]:=i;
  3214. inc(i);
  3215. end;
  3216. end;
  3217. procedure BuildInsTabMemRefSizeInfoCache;
  3218. var
  3219. AsmOp: TasmOp;
  3220. i,j: longint;
  3221. insentry : PInsEntry;
  3222. MRefInfo: TMemRefSizeInfo;
  3223. SConstInfo: TConstSizeInfo;
  3224. actRegSize: int64;
  3225. actMemSize: int64;
  3226. actConstSize: int64;
  3227. actRegCount: integer;
  3228. actMemCount: integer;
  3229. actConstCount: integer;
  3230. actRegTypes : int64;
  3231. actRegMemTypes: int64;
  3232. NewRegSize: int64;
  3233. actVMemCount : integer;
  3234. actVMemTypes : int64;
  3235. RegMMXSizeMask: int64;
  3236. RegXMMSizeMask: int64;
  3237. RegYMMSizeMask: int64;
  3238. bitcount: integer;
  3239. function bitcnt(aValue: int64): integer;
  3240. var
  3241. i: integer;
  3242. begin
  3243. result := 0;
  3244. for i := 0 to 63 do
  3245. begin
  3246. if (aValue mod 2) = 1 then
  3247. begin
  3248. inc(result);
  3249. end;
  3250. aValue := aValue shr 1;
  3251. end;
  3252. end;
  3253. begin
  3254. new(InsTabMemRefSizeInfoCache);
  3255. FillChar(InsTabMemRefSizeInfoCache^,sizeof(TInsTabMemRefSizeInfoCache),0);
  3256. for AsmOp := low(TAsmOp) to high(TAsmOp) do
  3257. begin
  3258. i := InsTabCache^[AsmOp];
  3259. if i >= 0 then
  3260. begin
  3261. InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiUnkown;
  3262. InsTabMemRefSizeInfoCache^[AsmOp].ConstSize := csiUnkown;
  3263. InsTabMemRefSizeInfoCache^[AsmOp].ExistsSSEAVX := false;
  3264. insentry:=@instab[i];
  3265. RegMMXSizeMask := 0;
  3266. RegXMMSizeMask := 0;
  3267. RegYMMSizeMask := 0;
  3268. while (insentry^.opcode=AsmOp) do
  3269. begin
  3270. MRefInfo := msiUnkown;
  3271. actRegSize := 0;
  3272. actRegCount := 0;
  3273. actRegTypes := 0;
  3274. NewRegSize := 0;
  3275. actMemSize := 0;
  3276. actMemCount := 0;
  3277. actRegMemTypes := 0;
  3278. actVMemCount := 0;
  3279. actVMemTypes := 0;
  3280. actConstSize := 0;
  3281. actConstCount := 0;
  3282. for j := 0 to insentry^.ops -1 do
  3283. begin
  3284. if ((insentry^.optypes[j] and OT_XMEM32) = OT_XMEM32) OR
  3285. ((insentry^.optypes[j] and OT_XMEM64) = OT_XMEM64) OR
  3286. ((insentry^.optypes[j] and OT_YMEM32) = OT_YMEM32) OR
  3287. ((insentry^.optypes[j] and OT_YMEM64) = OT_YMEM64) then
  3288. begin
  3289. inc(actVMemCount);
  3290. case insentry^.optypes[j] and (OT_XMEM32 OR OT_XMEM64 OR OT_YMEM32 OR OT_YMEM64) of
  3291. OT_XMEM32: actVMemTypes := actVMemTypes or OT_XMEM32;
  3292. OT_XMEM64: actVMemTypes := actVMemTypes or OT_XMEM64;
  3293. OT_YMEM32: actVMemTypes := actVMemTypes or OT_YMEM32;
  3294. OT_YMEM64: actVMemTypes := actVMemTypes or OT_YMEM64;
  3295. else InternalError(777206);
  3296. end;
  3297. end
  3298. else if (insentry^.optypes[j] and OT_REGISTER) = OT_REGISTER then
  3299. begin
  3300. inc(actRegCount);
  3301. NewRegSize := (insentry^.optypes[j] and OT_SIZE_MASK);
  3302. if NewRegSize = 0 then
  3303. begin
  3304. case insentry^.optypes[j] and (OT_MMXREG OR OT_XMMREG OR OT_YMMREG) of
  3305. OT_MMXREG: begin
  3306. NewRegSize := OT_BITS64;
  3307. end;
  3308. OT_XMMREG: begin
  3309. NewRegSize := OT_BITS128;
  3310. InsTabMemRefSizeInfoCache^[AsmOp].ExistsSSEAVX := true;
  3311. end;
  3312. OT_YMMREG: begin
  3313. NewRegSize := OT_BITS256;
  3314. InsTabMemRefSizeInfoCache^[AsmOp].ExistsSSEAVX := true;
  3315. end;
  3316. else NewRegSize := not(0);
  3317. end;
  3318. end;
  3319. actRegSize := actRegSize or NewRegSize;
  3320. actRegTypes := actRegTypes or (insentry^.optypes[j] and (OT_MMXREG OR OT_XMMREG OR OT_YMMREG));
  3321. end
  3322. else if ((insentry^.optypes[j] and OT_MEMORY) <> 0) then
  3323. begin
  3324. inc(actMemCount);
  3325. actMemSize:=actMemSize or (insentry^.optypes[j] and OT_SIZE_MASK);
  3326. if (insentry^.optypes[j] and OT_REGMEM) = OT_REGMEM then
  3327. begin
  3328. actRegMemTypes := actRegMemTypes or insentry^.optypes[j];
  3329. end;
  3330. end
  3331. else if ((insentry^.optypes[j] and OT_IMMEDIATE) = OT_IMMEDIATE) then
  3332. begin
  3333. inc(actConstCount);
  3334. actConstSize := actConstSize or (insentry^.optypes[j] and OT_SIZE_MASK);
  3335. end
  3336. end;
  3337. if actConstCount > 0 then
  3338. begin
  3339. case actConstSize of
  3340. 0: SConstInfo := csiNoSize;
  3341. OT_BITS8: SConstInfo := csiMem8;
  3342. OT_BITS16: SConstInfo := csiMem16;
  3343. OT_BITS32: SConstInfo := csiMem32;
  3344. OT_BITS64: SConstInfo := csiMem64;
  3345. else SConstInfo := csiMultiple;
  3346. end;
  3347. if InsTabMemRefSizeInfoCache^[AsmOp].ConstSize = csiUnkown then
  3348. begin
  3349. InsTabMemRefSizeInfoCache^[AsmOp].ConstSize := SConstInfo;
  3350. end
  3351. else if InsTabMemRefSizeInfoCache^[AsmOp].ConstSize <> SConstInfo then
  3352. begin
  3353. InsTabMemRefSizeInfoCache^[AsmOp].ConstSize := csiMultiple;
  3354. end;
  3355. end;
  3356. if actVMemCount > 0 then
  3357. begin
  3358. if actVMemCount = 1 then
  3359. begin
  3360. if actVMemTypes > 0 then
  3361. begin
  3362. case actVMemTypes of
  3363. OT_XMEM32: MRefInfo := msiXMem32;
  3364. OT_XMEM64: MRefInfo := msiXMem64;
  3365. OT_YMEM32: MRefInfo := msiYMem32;
  3366. OT_YMEM64: MRefInfo := msiYMem64;
  3367. else InternalError(777208);
  3368. end;
  3369. case actRegTypes of
  3370. OT_XMMREG: case MRefInfo of
  3371. msiXMem32,
  3372. msiXMem64: RegXMMSizeMask := RegXMMSizeMask or OT_BITS128;
  3373. msiYMem32,
  3374. msiYMem64: RegXMMSizeMask := RegXMMSizeMask or OT_BITS256;
  3375. else InternalError(777210);
  3376. end;
  3377. OT_YMMREG: case MRefInfo of
  3378. msiXMem32,
  3379. msiXMem64: RegYMMSizeMask := RegYMMSizeMask or OT_BITS128;
  3380. msiYMem32,
  3381. msiYMem64: RegYMMSizeMask := RegYMMSizeMask or OT_BITS256;
  3382. else InternalError(777211);
  3383. end;
  3384. //else InternalError(777209);
  3385. end;
  3386. if InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize = msiUnkown then
  3387. begin
  3388. InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := MRefInfo;
  3389. end
  3390. else if InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize <> MRefInfo then
  3391. begin
  3392. if InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize in [msiXMem32, msiXMem64, msiYMem32, msiYMem64] then
  3393. begin
  3394. InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiVMemMultiple;
  3395. end
  3396. else InternalError(777212);
  3397. end;
  3398. end;
  3399. end
  3400. else InternalError(777207);
  3401. end
  3402. else
  3403. case actMemCount of
  3404. 0: ; // nothing todo
  3405. 1: begin
  3406. MRefInfo := msiUnkown;
  3407. case actRegMemTypes and (OT_MMXRM OR OT_XMMRM OR OT_YMMRM) of
  3408. OT_MMXRM: actMemSize := actMemSize or OT_BITS64;
  3409. OT_XMMRM: actMemSize := actMemSize or OT_BITS128;
  3410. OT_YMMRM: actMemSize := actMemSize or OT_BITS256;
  3411. end;
  3412. case actMemSize of
  3413. 0: MRefInfo := msiNoSize;
  3414. OT_BITS8: MRefInfo := msiMem8;
  3415. OT_BITS16: MRefInfo := msiMem16;
  3416. OT_BITS32: MRefInfo := msiMem32;
  3417. OT_BITS64: MRefInfo := msiMem64;
  3418. OT_BITS128: MRefInfo := msiMem128;
  3419. OT_BITS256: MRefInfo := msiMem256;
  3420. OT_BITS80,
  3421. OT_FAR,
  3422. OT_NEAR,
  3423. OT_SHORT: ; // ignore
  3424. else
  3425. begin
  3426. bitcount := bitcnt(actMemSize);
  3427. if bitcount > 1 then MRefInfo := msiMultiple
  3428. else InternalError(777203);
  3429. end;
  3430. end;
  3431. if InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize = msiUnkown then
  3432. begin
  3433. InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := MRefInfo;
  3434. end
  3435. else if InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize <> MRefInfo then
  3436. begin
  3437. with InsTabMemRefSizeInfoCache^[AsmOp] do
  3438. begin
  3439. if ((MemRefSize = msiMem8) OR (MRefInfo = msiMem8)) then MemRefSize := msiMultiple8
  3440. else if ((MemRefSize = msiMem16) OR (MRefInfo = msiMem16)) then MemRefSize := msiMultiple16
  3441. else if ((MemRefSize = msiMem32) OR (MRefInfo = msiMem32)) then MemRefSize := msiMultiple32
  3442. else if ((MemRefSize = msiMem64) OR (MRefInfo = msiMem64)) then MemRefSize := msiMultiple64
  3443. else if ((MemRefSize = msiMem128) OR (MRefInfo = msiMem128)) then MemRefSize := msiMultiple128
  3444. else if ((MemRefSize = msiMem256) OR (MRefInfo = msiMem256)) then MemRefSize := msiMultiple256
  3445. else MemRefSize := msiMultiple;
  3446. end;
  3447. end;
  3448. if actRegCount > 0 then
  3449. begin
  3450. case actRegTypes and (OT_MMXREG or OT_XMMREG or OT_YMMREG) of
  3451. OT_MMXREG: RegMMXSizeMask := RegMMXSizeMask or actMemSize;
  3452. OT_XMMREG: RegXMMSizeMask := RegXMMSizeMask or actMemSize;
  3453. OT_YMMREG: RegYMMSizeMask := RegYMMSizeMask or actMemSize;
  3454. else begin
  3455. RegMMXSizeMask := not(0);
  3456. RegXMMSizeMask := not(0);
  3457. RegYMMSizeMask := not(0);
  3458. end;
  3459. end;
  3460. end;
  3461. end;
  3462. else InternalError(777202);
  3463. end;
  3464. inc(insentry);
  3465. end;
  3466. if (InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize in MemRefMultiples) and
  3467. (InsTabMemRefSizeInfoCache^[AsmOp].ExistsSSEAVX)then
  3468. begin
  3469. case RegXMMSizeMask of
  3470. OT_BITS16: case RegYMMSizeMask of
  3471. OT_BITS32: InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiMemRegx16y32;
  3472. end;
  3473. OT_BITS32: case RegYMMSizeMask of
  3474. OT_BITS64: InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiMemRegx32y64;
  3475. end;
  3476. OT_BITS64: case RegYMMSizeMask of
  3477. OT_BITS128: InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiMemRegx64y128;
  3478. OT_BITS256: InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiMemRegx64y256;
  3479. end;
  3480. OT_BITS128: begin
  3481. if InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize = msiVMemMultiple then
  3482. begin
  3483. // vector-memory-operand AVX2 (e.g. VGATHER..)
  3484. case RegYMMSizeMask of
  3485. OT_BITS256: InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiVMemRegSize;
  3486. end;
  3487. end
  3488. else if RegMMXSizeMask = 0 then
  3489. begin
  3490. case RegYMMSizeMask of
  3491. OT_BITS128: InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiMemRegx64y128;
  3492. OT_BITS256: InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiMemRegSize;
  3493. end;
  3494. end
  3495. else if RegYMMSizeMask = 0 then
  3496. begin
  3497. case RegMMXSizeMask of
  3498. OT_BITS64: InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiMemRegSize;
  3499. end;
  3500. end
  3501. else InternalError(777205);
  3502. end;
  3503. end;
  3504. end;
  3505. end;
  3506. end;
  3507. for AsmOp := low(TAsmOp) to high(TAsmOp) do
  3508. begin
  3509. // only supported intructiones with SSE- or AVX-operands
  3510. if not(InsTabMemRefSizeInfoCache^[AsmOp].ExistsSSEAVX) then
  3511. begin
  3512. InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiUnkown;
  3513. InsTabMemRefSizeInfoCache^[AsmOp].ConstSize := csiUnkown;
  3514. end;
  3515. end;
  3516. end;
  3517. procedure InitAsm;
  3518. begin
  3519. build_spilling_operation_type_table;
  3520. if not assigned(instabcache) then
  3521. BuildInsTabCache;
  3522. if not assigned(InsTabMemRefSizeInfoCache) then
  3523. BuildInsTabMemRefSizeInfoCache;
  3524. end;
  3525. procedure DoneAsm;
  3526. begin
  3527. if assigned(operation_type_table) then
  3528. begin
  3529. dispose(operation_type_table);
  3530. operation_type_table:=nil;
  3531. end;
  3532. if assigned(instabcache) then
  3533. begin
  3534. dispose(instabcache);
  3535. instabcache:=nil;
  3536. end;
  3537. if assigned(InsTabMemRefSizeInfoCache) then
  3538. begin
  3539. dispose(InsTabMemRefSizeInfoCache);
  3540. InsTabMemRefSizeInfoCache:=nil;
  3541. end;
  3542. end;
  3543. begin
  3544. cai_align:=tai_align;
  3545. cai_cpu:=taicpu;
  3546. end.