Browse Source

Merge pull request #53850 from Calinou/gles2-remove-unused-shaders

Rémi Verschelde 3 years ago
parent
commit
22219e2e35

+ 0 - 9
drivers/gles2/shaders/SCsub

@@ -4,20 +4,11 @@ Import("env")
 
 if "GLES2_GLSL" in env["BUILDERS"]:
     env.GLES2_GLSL("copy.glsl")
-    # env.GLES2_GLSL('resolve.glsl');
     env.GLES2_GLSL("canvas.glsl")
     env.GLES2_GLSL("canvas_shadow.glsl")
     env.GLES2_GLSL("scene.glsl")
     env.GLES2_GLSL("cubemap_filter.glsl")
     env.GLES2_GLSL("cube_to_dp.glsl")
-    # env.GLES2_GLSL('blend_shape.glsl');
-    # env.GLES2_GLSL('screen_space_reflection.glsl');
     env.GLES2_GLSL("effect_blur.glsl")
-    # env.GLES2_GLSL('subsurf_scattering.glsl');
-    # env.GLES2_GLSL('ssao.glsl');
-    # env.GLES2_GLSL('ssao_minify.glsl');
-    # env.GLES2_GLSL('ssao_blur.glsl');
-    # env.GLES2_GLSL('exposure.glsl');
     env.GLES2_GLSL("tonemap.glsl")
-    # env.GLES2_GLSL('particles.glsl');
     env.GLES2_GLSL("lens_distorted.glsl")

+ 0 - 193
drivers/gles2/shaders/blend_shape.glsl

@@ -1,193 +0,0 @@
-/* clang-format off */
-[vertex]
-
-/*
-from VisualServer:
-
-ARRAY_VERTEX=0,
-ARRAY_NORMAL=1,
-ARRAY_TANGENT=2,
-ARRAY_COLOR=3,
-ARRAY_TEX_UV=4,
-ARRAY_TEX_UV2=5,
-ARRAY_BONES=6,
-ARRAY_WEIGHTS=7,
-ARRAY_INDEX=8,
-*/
-
-#ifdef USE_2D_VERTEX
-#define VFORMAT vec2
-#else
-#define VFORMAT vec3
-#endif
-
-/* INPUT ATTRIBS */
-
-layout(location = 0) in highp VFORMAT vertex_attrib;
-/* clang-format on */
-layout(location = 1) in vec3 normal_attrib;
-
-#ifdef ENABLE_TANGENT
-layout(location = 2) in vec4 tangent_attrib;
-#endif
-
-#ifdef ENABLE_COLOR
-layout(location = 3) in vec4 color_attrib;
-#endif
-
-#ifdef ENABLE_UV
-layout(location = 4) in vec2 uv_attrib;
-#endif
-
-#ifdef ENABLE_UV2
-layout(location = 5) in vec2 uv2_attrib;
-#endif
-
-#ifdef ENABLE_SKELETON
-layout(location = 6) in ivec4 bone_attrib;
-layout(location = 7) in vec4 weight_attrib;
-#endif
-
-/* BLEND ATTRIBS */
-
-#ifdef ENABLE_BLEND
-
-layout(location = 8) in highp VFORMAT vertex_attrib_blend;
-layout(location = 9) in vec3 normal_attrib_blend;
-
-#ifdef ENABLE_TANGENT
-layout(location = 10) in vec4 tangent_attrib_blend;
-#endif
-
-#ifdef ENABLE_COLOR
-layout(location = 11) in vec4 color_attrib_blend;
-#endif
-
-#ifdef ENABLE_UV
-layout(location = 12) in vec2 uv_attrib_blend;
-#endif
-
-#ifdef ENABLE_UV2
-layout(location = 13) in vec2 uv2_attrib_blend;
-#endif
-
-#ifdef ENABLE_SKELETON
-layout(location = 14) in ivec4 bone_attrib_blend;
-layout(location = 15) in vec4 weight_attrib_blend;
-#endif
-
-#endif
-
-/* OUTPUTS */
-
-out VFORMAT vertex_out; //tfb:
-
-#ifdef ENABLE_NORMAL
-out vec3 normal_out; //tfb:ENABLE_NORMAL
-#endif
-
-#ifdef ENABLE_TANGENT
-out vec4 tangent_out; //tfb:ENABLE_TANGENT
-#endif
-
-#ifdef ENABLE_COLOR
-out vec4 color_out; //tfb:ENABLE_COLOR
-#endif
-
-#ifdef ENABLE_UV
-out vec2 uv_out; //tfb:ENABLE_UV
-#endif
-
-#ifdef ENABLE_UV2
-out vec2 uv2_out; //tfb:ENABLE_UV2
-#endif
-
-#ifdef ENABLE_SKELETON
-out ivec4 bone_out; //tfb:ENABLE_SKELETON
-out vec4 weight_out; //tfb:ENABLE_SKELETON
-#endif
-
-uniform float blend_amount;
-
-void main() {
-#ifdef ENABLE_BLEND
-
-	vertex_out = vertex_attrib_blend + vertex_attrib * blend_amount;
-
-#ifdef ENABLE_NORMAL
-	normal_out = normal_attrib_blend + normal_attrib * blend_amount;
-#endif
-
-#ifdef ENABLE_TANGENT
-
-	tangent_out.xyz = tangent_attrib_blend.xyz + tangent_attrib.xyz * blend_amount;
-	tangent_out.w = tangent_attrib_blend.w; //just copy, no point in blending his
-#endif
-
-#ifdef ENABLE_COLOR
-
-	color_out = color_attrib_blend + color_attrib * blend_amount;
-#endif
-
-#ifdef ENABLE_UV
-
-	uv_out = uv_attrib_blend + uv_attrib * blend_amount;
-#endif
-
-#ifdef ENABLE_UV2
-
-	uv2_out = uv2_attrib_blend + uv2_attrib * blend_amount;
-#endif
-
-#ifdef ENABLE_SKELETON
-
-	bone_out = bone_attrib_blend;
-	weight_out = weight_attrib_blend + weight_attrib * blend_amount;
-#endif
-
-#else //ENABLE_BLEND
-
-	vertex_out = vertex_attrib * blend_amount;
-
-#ifdef ENABLE_NORMAL
-	normal_out = normal_attrib * blend_amount;
-#endif
-
-#ifdef ENABLE_TANGENT
-
-	tangent_out.xyz = tangent_attrib.xyz * blend_amount;
-	tangent_out.w = tangent_attrib.w; //just copy, no point in blending his
-#endif
-
-#ifdef ENABLE_COLOR
-
-	color_out = color_attrib * blend_amount;
-#endif
-
-#ifdef ENABLE_UV
-
-	uv_out = uv_attrib * blend_amount;
-#endif
-
-#ifdef ENABLE_UV2
-
-	uv2_out = uv2_attrib * blend_amount;
-#endif
-
-#ifdef ENABLE_SKELETON
-
-	bone_out = bone_attrib;
-	weight_out = weight_attrib * blend_amount;
-#endif
-
-#endif
-	gl_Position = vec4(0.0);
-}
-
-/* clang-format off */
-[fragment]
-
-void main() {
-
-}
-/* clang-format on */

+ 0 - 86
drivers/gles2/shaders/exposure.glsl

@@ -1,86 +0,0 @@
-/* clang-format off */
-[vertex]
-
-layout(location = 0) in highp vec4 vertex_attrib;
-/* clang-format on */
-
-void main() {
-	gl_Position = vertex_attrib;
-}
-
-/* clang-format off */
-[fragment]
-
-uniform highp sampler2D source_exposure; //texunit:0
-/* clang-format on */
-
-#ifdef EXPOSURE_BEGIN
-
-uniform highp ivec2 source_render_size;
-uniform highp ivec2 target_size;
-
-#endif
-
-#ifdef EXPOSURE_END
-
-uniform highp sampler2D prev_exposure; //texunit:1
-uniform highp float exposure_adjust;
-uniform highp float min_luminance;
-uniform highp float max_luminance;
-
-#endif
-
-layout(location = 0) out highp float exposure;
-
-void main() {
-#ifdef EXPOSURE_BEGIN
-
-	ivec2 src_pos = ivec2(gl_FragCoord.xy) * source_render_size / target_size;
-
-#if 1
-	//more precise and expensive, but less jittery
-	ivec2 next_pos = ivec2(gl_FragCoord.xy + ivec2(1)) * source_render_size / target_size;
-	next_pos = max(next_pos, src_pos + ivec2(1)); //so it at least reads one pixel
-	highp vec3 source_color = vec3(0.0);
-	for (int i = src_pos.x; i < next_pos.x; i++) {
-		for (int j = src_pos.y; j < next_pos.y; j++) {
-			source_color += texelFetch(source_exposure, ivec2(i, j), 0).rgb;
-		}
-	}
-
-	source_color /= float((next_pos.x - src_pos.x) * (next_pos.y - src_pos.y));
-#else
-	highp vec3 source_color = texelFetch(source_exposure, src_pos, 0).rgb;
-
-#endif
-
-	exposure = max(source_color.r, max(source_color.g, source_color.b));
-
-#else
-
-	ivec2 coord = ivec2(gl_FragCoord.xy);
-	exposure = texelFetch(source_exposure, coord * 3 + ivec2(0, 0), 0).r;
-	exposure += texelFetch(source_exposure, coord * 3 + ivec2(1, 0), 0).r;
-	exposure += texelFetch(source_exposure, coord * 3 + ivec2(2, 0), 0).r;
-	exposure += texelFetch(source_exposure, coord * 3 + ivec2(0, 1), 0).r;
-	exposure += texelFetch(source_exposure, coord * 3 + ivec2(1, 1), 0).r;
-	exposure += texelFetch(source_exposure, coord * 3 + ivec2(2, 1), 0).r;
-	exposure += texelFetch(source_exposure, coord * 3 + ivec2(0, 2), 0).r;
-	exposure += texelFetch(source_exposure, coord * 3 + ivec2(1, 2), 0).r;
-	exposure += texelFetch(source_exposure, coord * 3 + ivec2(2, 2), 0).r;
-	exposure *= (1.0 / 9.0);
-
-#ifdef EXPOSURE_END
-
-#ifdef EXPOSURE_FORCE_SET
-	//will stay as is
-#else
-	highp float prev_lum = texelFetch(prev_exposure, ivec2(0, 0), 0).r; //1 pixel previous exposure
-	exposure = clamp(prev_lum + (exposure - prev_lum) * exposure_adjust, min_luminance, max_luminance);
-
-#endif //EXPOSURE_FORCE_SET
-
-#endif //EXPOSURE_END
-
-#endif //EXPOSURE_BEGIN
-}

+ 0 - 260
drivers/gles2/shaders/particles.glsl

@@ -1,260 +0,0 @@
-/* clang-format off */
-[vertex]
-
-layout(location = 0) in highp vec4 color;
-/* clang-format on */
-layout(location = 1) in highp vec4 velocity_active;
-layout(location = 2) in highp vec4 custom;
-layout(location = 3) in highp vec4 xform_1;
-layout(location = 4) in highp vec4 xform_2;
-layout(location = 5) in highp vec4 xform_3;
-
-struct Attractor {
-	vec3 pos;
-	vec3 dir;
-	float radius;
-	float eat_radius;
-	float strength;
-	float attenuation;
-};
-
-#define MAX_ATTRACTORS 64
-
-uniform bool emitting;
-uniform float system_phase;
-uniform float prev_system_phase;
-uniform int total_particles;
-uniform float explosiveness;
-uniform float randomness;
-uniform float time;
-uniform float delta;
-
-uniform int attractor_count;
-uniform Attractor attractors[MAX_ATTRACTORS];
-uniform bool clear;
-uniform uint cycle;
-uniform float lifetime;
-uniform mat4 emission_transform;
-uniform uint random_seed;
-
-out highp vec4 out_color; //tfb:
-out highp vec4 out_velocity_active; //tfb:
-out highp vec4 out_custom; //tfb:
-out highp vec4 out_xform_1; //tfb:
-out highp vec4 out_xform_2; //tfb:
-out highp vec4 out_xform_3; //tfb:
-
-#if defined(USE_MATERIAL)
-
-/* clang-format off */
-layout(std140) uniform UniformData { //ubo:0
-
-MATERIAL_UNIFORMS
-
-};
-/* clang-format on */
-
-#endif
-
-/* clang-format off */
-
-VERTEX_SHADER_GLOBALS
-
-/* clang-format on */
-
-uint hash(uint x) {
-	x = ((x >> uint(16)) ^ x) * uint(0x45d9f3b);
-	x = ((x >> uint(16)) ^ x) * uint(0x45d9f3b);
-	x = (x >> uint(16)) ^ x;
-	return x;
-}
-
-void main() {
-#ifdef PARTICLES_COPY
-
-	out_color = color;
-	out_velocity_active = velocity_active;
-	out_custom = custom;
-	out_xform_1 = xform_1;
-	out_xform_2 = xform_2;
-	out_xform_3 = xform_3;
-
-#else
-
-	bool apply_forces = true;
-	bool apply_velocity = true;
-	float local_delta = delta;
-
-	float mass = 1.0;
-
-	float restart_phase = float(gl_VertexID) / float(total_particles);
-
-	if (randomness > 0.0) {
-		uint seed = cycle;
-		if (restart_phase >= system_phase) {
-			seed -= uint(1);
-		}
-		seed *= uint(total_particles);
-		seed += uint(gl_VertexID);
-		float random = float(hash(seed) % uint(65536)) / 65536.0;
-		restart_phase += randomness * random * 1.0 / float(total_particles);
-	}
-
-	restart_phase *= (1.0 - explosiveness);
-	bool restart = false;
-	bool shader_active = velocity_active.a > 0.5;
-
-	if (system_phase > prev_system_phase) {
-		// restart_phase >= prev_system_phase is used so particles emit in the first frame they are processed
-
-		if (restart_phase >= prev_system_phase && restart_phase < system_phase) {
-			restart = true;
-#ifdef USE_FRACTIONAL_DELTA
-			local_delta = (system_phase - restart_phase) * lifetime;
-#endif
-		}
-
-	} else {
-		if (restart_phase >= prev_system_phase) {
-			restart = true;
-#ifdef USE_FRACTIONAL_DELTA
-			local_delta = (1.0 - restart_phase + system_phase) * lifetime;
-#endif
-		} else if (restart_phase < system_phase) {
-			restart = true;
-#ifdef USE_FRACTIONAL_DELTA
-			local_delta = (system_phase - restart_phase) * lifetime;
-#endif
-		}
-	}
-
-	uint current_cycle = cycle;
-
-	if (system_phase < restart_phase) {
-		current_cycle -= uint(1);
-	}
-
-	uint particle_number = current_cycle * uint(total_particles) + uint(gl_VertexID);
-	int index = int(gl_VertexID);
-
-	if (restart) {
-		shader_active = emitting;
-	}
-
-	mat4 xform;
-
-#if defined(ENABLE_KEEP_DATA)
-	if (clear) {
-#else
-	if (clear || restart) {
-#endif
-		out_color = vec4(1.0);
-		out_velocity_active = vec4(0.0);
-		out_custom = vec4(0.0);
-		if (!restart)
-			shader_active = false;
-
-		xform = mat4(
-				vec4(1.0, 0.0, 0.0, 0.0),
-				vec4(0.0, 1.0, 0.0, 0.0),
-				vec4(0.0, 0.0, 1.0, 0.0),
-				vec4(0.0, 0.0, 0.0, 1.0));
-	} else {
-		out_color = color;
-		out_velocity_active = velocity_active;
-		out_custom = custom;
-		xform = transpose(mat4(xform_1, xform_2, xform_3, vec4(vec3(0.0), 1.0)));
-	}
-
-	if (shader_active) {
-		//execute shader
-
-		{
-			/* clang-format off */
-
-VERTEX_SHADER_CODE
-
-			/* clang-format on */
-		}
-
-#if !defined(DISABLE_FORCE)
-
-		if (false) {
-			vec3 force = vec3(0.0);
-			for (int i = 0; i < attractor_count; i++) {
-				vec3 rel_vec = xform[3].xyz - attractors[i].pos;
-				float dist = length(rel_vec);
-				if (attractors[i].radius < dist)
-					continue;
-				if (attractors[i].eat_radius > 0.0 && attractors[i].eat_radius > dist) {
-					out_velocity_active.a = 0.0;
-				}
-
-				rel_vec = normalize(rel_vec);
-
-				float attenuation = pow(dist / attractors[i].radius, attractors[i].attenuation);
-
-				if (attractors[i].dir == vec3(0.0)) {
-					//towards center
-					force += attractors[i].strength * rel_vec * attenuation * mass;
-				} else {
-					force += attractors[i].strength * attractors[i].dir * attenuation * mass;
-				}
-			}
-
-			out_velocity_active.xyz += force * local_delta;
-		}
-#endif
-
-#if !defined(DISABLE_VELOCITY)
-
-		if (true) {
-			xform[3].xyz += out_velocity_active.xyz * local_delta;
-		}
-#endif
-	} else {
-		xform = mat4(0.0);
-	}
-
-	xform = transpose(xform);
-
-	out_velocity_active.a = mix(0.0, 1.0, shader_active);
-
-	out_xform_1 = xform[0];
-	out_xform_2 = xform[1];
-	out_xform_3 = xform[2];
-
-#endif //PARTICLES_COPY
-}
-
-/* clang-format off */
-[fragment]
-
-//any code here is never executed, stuff is filled just so it works
-
-#if defined(USE_MATERIAL)
-
-layout(std140) uniform UniformData {
-
-MATERIAL_UNIFORMS
-
-};
-
-#endif
-
-FRAGMENT_SHADER_GLOBALS
-
-void main() {
-	{
-
-LIGHT_SHADER_CODE
-
-	}
-
-	{
-
-FRAGMENT_SHADER_CODE
-
-	}
-}
-/* clang-format on */

+ 0 - 42
drivers/gles2/shaders/resolve.glsl

@@ -1,42 +0,0 @@
-/* clang-format off */
-[vertex]
-
-layout(location = 0) in highp vec4 vertex_attrib;
-/* clang-format on */
-layout(location = 4) in vec2 uv_in;
-
-out vec2 uv_interp;
-
-void main() {
-	uv_interp = uv_in;
-	gl_Position = vertex_attrib;
-}
-
-/* clang-format off */
-[fragment]
-
-#if !defined(GLES_OVER_GL)
-precision mediump float;
-#endif
-
-in vec2 uv_interp;
-/* clang-format on */
-uniform sampler2D source_specular; //texunit:0
-uniform sampler2D source_ssr; //texunit:1
-
-uniform vec2 pixel_size;
-
-in vec2 uv2_interp;
-
-layout(location = 0) out vec4 frag_color;
-
-void main() {
-	vec4 specular = texture(source_specular, uv_interp);
-
-#ifdef USE_SSR
-	vec4 ssr = textureLod(source_ssr, uv_interp, 0.0);
-	specular.rgb = mix(specular.rgb, ssr.rgb * specular.a, ssr.a);
-#endif
-
-	frag_color = vec4(specular.rgb, 1.0);
-}

+ 0 - 284
drivers/gles2/shaders/screen_space_reflection.glsl

@@ -1,284 +0,0 @@
-/* clang-format off */
-[vertex]
-
-layout(location = 0) in highp vec4 vertex_attrib;
-/* clang-format on */
-layout(location = 4) in vec2 uv_in;
-
-out vec2 uv_interp;
-out vec2 pos_interp;
-
-void main() {
-	uv_interp = uv_in;
-	gl_Position = vertex_attrib;
-	pos_interp.xy = gl_Position.xy;
-}
-
-/* clang-format off */
-[fragment]
-
-in vec2 uv_interp;
-/* clang-format on */
-in vec2 pos_interp;
-
-uniform sampler2D source_diffuse; //texunit:0
-uniform sampler2D source_normal_roughness; //texunit:1
-uniform sampler2D source_depth; //texunit:2
-
-uniform float camera_z_near;
-uniform float camera_z_far;
-
-uniform vec2 viewport_size;
-uniform vec2 pixel_size;
-
-uniform float filter_mipmap_levels;
-
-uniform mat4 inverse_projection;
-uniform mat4 projection;
-
-uniform int num_steps;
-uniform float depth_tolerance;
-uniform float distance_fade;
-uniform float curve_fade_in;
-
-layout(location = 0) out vec4 frag_color;
-
-vec2 view_to_screen(vec3 view_pos, out float w) {
-	vec4 projected = projection * vec4(view_pos, 1.0);
-	projected.xyz /= projected.w;
-	projected.xy = projected.xy * 0.5 + 0.5;
-	w = projected.w;
-	return projected.xy;
-}
-
-#define M_PI 3.14159265359
-
-void main() {
-	vec4 diffuse = texture(source_diffuse, uv_interp);
-	vec4 normal_roughness = texture(source_normal_roughness, uv_interp);
-
-	vec3 normal;
-
-	normal = normal_roughness.xyz * 2.0 - 1.0;
-
-	float roughness = normal_roughness.w;
-
-	float depth_tex = texture(source_depth, uv_interp).r;
-
-	vec4 world_pos = inverse_projection * vec4(uv_interp * 2.0 - 1.0, depth_tex * 2.0 - 1.0, 1.0);
-	vec3 vertex = world_pos.xyz / world_pos.w;
-
-	vec3 view_dir = normalize(vertex);
-	vec3 ray_dir = normalize(reflect(view_dir, normal));
-
-	if (dot(ray_dir, normal) < 0.001) {
-		frag_color = vec4(0.0);
-		return;
-	}
-	//ray_dir = normalize(view_dir - normal * dot(normal,view_dir) * 2.0);
-
-	//ray_dir = normalize(vec3(1,1,-1));
-
-	////////////////
-
-	//make ray length and clip it against the near plane (don't want to trace beyond visible)
-	float ray_len = (vertex.z + ray_dir.z * camera_z_far) > -camera_z_near ? (-camera_z_near - vertex.z) / ray_dir.z : camera_z_far;
-	vec3 ray_end = vertex + ray_dir * ray_len;
-
-	float w_begin;
-	vec2 vp_line_begin = view_to_screen(vertex, w_begin);
-	float w_end;
-	vec2 vp_line_end = view_to_screen(ray_end, w_end);
-	vec2 vp_line_dir = vp_line_end - vp_line_begin;
-
-	//we need to interpolate w along the ray, to generate perspective correct reflections
-
-	w_begin = 1.0 / w_begin;
-	w_end = 1.0 / w_end;
-
-	float z_begin = vertex.z * w_begin;
-	float z_end = ray_end.z * w_end;
-
-	vec2 line_begin = vp_line_begin / pixel_size;
-	vec2 line_dir = vp_line_dir / pixel_size;
-	float z_dir = z_end - z_begin;
-	float w_dir = w_end - w_begin;
-
-	// clip the line to the viewport edges
-
-	float scale_max_x = min(1.0, 0.99 * (1.0 - vp_line_begin.x) / max(1e-5, vp_line_dir.x));
-	float scale_max_y = min(1.0, 0.99 * (1.0 - vp_line_begin.y) / max(1e-5, vp_line_dir.y));
-	float scale_min_x = min(1.0, 0.99 * vp_line_begin.x / max(1e-5, -vp_line_dir.x));
-	float scale_min_y = min(1.0, 0.99 * vp_line_begin.y / max(1e-5, -vp_line_dir.y));
-	float line_clip = min(scale_max_x, scale_max_y) * min(scale_min_x, scale_min_y);
-	line_dir *= line_clip;
-	z_dir *= line_clip;
-	w_dir *= line_clip;
-
-	//clip z and w advance to line advance
-	vec2 line_advance = normalize(line_dir); //down to pixel
-	float step_size = length(line_advance) / length(line_dir);
-	float z_advance = z_dir * step_size; // adapt z advance to line advance
-	float w_advance = w_dir * step_size; // adapt w advance to line advance
-
-	//make line advance faster if direction is closer to pixel edges (this avoids sampling the same pixel twice)
-	float advance_angle_adj = 1.0 / max(abs(line_advance.x), abs(line_advance.y));
-	line_advance *= advance_angle_adj; // adapt z advance to line advance
-	z_advance *= advance_angle_adj;
-	w_advance *= advance_angle_adj;
-
-	vec2 pos = line_begin;
-	float z = z_begin;
-	float w = w_begin;
-	float z_from = z / w;
-	float z_to = z_from;
-	float depth;
-	vec2 prev_pos = pos;
-
-	bool found = false;
-
-	float steps_taken = 0.0;
-
-	for (int i = 0; i < num_steps; i++) {
-		pos += line_advance;
-		z += z_advance;
-		w += w_advance;
-
-		//convert to linear depth
-
-		depth = texture(source_depth, pos * pixel_size).r * 2.0 - 1.0;
-#ifdef USE_ORTHOGONAL_PROJECTION
-		depth = ((depth + (camera_z_far + camera_z_near) / (camera_z_far - camera_z_near)) * (camera_z_far - camera_z_near)) / 2.0;
-#else
-		depth = 2.0 * camera_z_near * camera_z_far / (camera_z_far + camera_z_near - depth * (camera_z_far - camera_z_near));
-#endif
-		depth = -depth;
-
-		z_from = z_to;
-		z_to = z / w;
-
-		if (depth > z_to) {
-			//if depth was surpassed
-			if (depth <= max(z_to, z_from) + depth_tolerance) {
-				//check the depth tolerance
-				found = true;
-			}
-			break;
-		}
-
-		steps_taken += 1.0;
-		prev_pos = pos;
-	}
-
-	if (found) {
-		float margin_blend = 1.0;
-
-		vec2 margin = vec2((viewport_size.x + viewport_size.y) * 0.5 * 0.05); //make a uniform margin
-		if (any(bvec4(lessThan(pos, -margin), greaterThan(pos, viewport_size + margin)))) {
-			//clip outside screen + margin
-			frag_color = vec4(0.0);
-			return;
-		}
-
-		{
-			//blend fading out towards external margin
-			vec2 margin_grad = mix(pos - viewport_size, -pos, lessThan(pos, vec2(0.0)));
-			margin_blend = 1.0 - smoothstep(0.0, margin.x, max(margin_grad.x, margin_grad.y));
-			//margin_blend=1.0;
-		}
-
-		vec2 final_pos;
-		float grad;
-		grad = steps_taken / float(num_steps);
-		float initial_fade = curve_fade_in == 0.0 ? 1.0 : pow(clamp(grad, 0.0, 1.0), curve_fade_in);
-		float fade = pow(clamp(1.0 - grad, 0.0, 1.0), distance_fade) * initial_fade;
-		final_pos = pos;
-
-#ifdef REFLECT_ROUGHNESS
-
-		vec4 final_color;
-		//if roughness is enabled, do screen space cone tracing
-		if (roughness > 0.001) {
-			///////////////////////////////////////////////////////////////////////////////////////
-			//use a blurred version (in consecutive mipmaps) of the screen to simulate roughness
-
-			float gloss = 1.0 - roughness;
-			float cone_angle = roughness * M_PI * 0.5;
-			vec2 cone_dir = final_pos - line_begin;
-			float cone_len = length(cone_dir);
-			cone_dir = normalize(cone_dir); //will be used normalized from now on
-			float max_mipmap = filter_mipmap_levels - 1.0;
-			float gloss_mult = gloss;
-
-			float rem_alpha = 1.0;
-			final_color = vec4(0.0);
-
-			for (int i = 0; i < 7; i++) {
-				float op_len = 2.0 * tan(cone_angle) * cone_len; //opposite side of iso triangle
-				float radius;
-				{
-					//fit to sphere inside cone (sphere ends at end of cone), something like this:
-					// ___
-					// \O/
-					//  V
-					//
-					// as it avoids bleeding from beyond the reflection as much as possible. As a plus
-					// it also makes the rough reflection more elongated.
-					float a = op_len;
-					float h = cone_len;
-					float a2 = a * a;
-					float fh2 = 4.0f * h * h;
-					radius = (a * (sqrt(a2 + fh2) - a)) / (4.0f * h);
-				}
-
-				//find the place where screen must be sampled
-				vec2 sample_pos = (line_begin + cone_dir * (cone_len - radius)) * pixel_size;
-				//radius is in pixels, so it's natural that log2(radius) maps to the right mipmap for the amount of pixels
-				float mipmap = clamp(log2(radius), 0.0, max_mipmap);
-
-				//mipmap = max(mipmap-1.0,0.0);
-				//do sampling
-
-				vec4 sample_color;
-				{
-					sample_color = textureLod(source_diffuse, sample_pos, mipmap);
-				}
-
-				//multiply by gloss
-				sample_color.rgb *= gloss_mult;
-				sample_color.a = gloss_mult;
-
-				rem_alpha -= sample_color.a;
-				if (rem_alpha < 0.0) {
-					sample_color.rgb *= (1.0 - abs(rem_alpha));
-				}
-
-				final_color += sample_color;
-
-				if (final_color.a >= 0.95) {
-					// This code of accumulating gloss and aborting on near one
-					// makes sense when you think of cone tracing.
-					// Think of it as if roughness was 0, then we could abort on the first
-					// iteration. For lesser roughness values, we need more iterations, but
-					// each needs to have less influence given the sphere is smaller
-					break;
-				}
-
-				cone_len -= radius * 2.0; //go to next (smaller) circle.
-
-				gloss_mult *= gloss;
-			}
-		} else {
-			final_color = textureLod(source_diffuse, final_pos * pixel_size, 0.0);
-		}
-
-		frag_color = vec4(final_color.rgb, fade * margin_blend);
-
-#else
-		frag_color = vec4(textureLod(source_diffuse, final_pos * pixel_size, 0.0).rgb, fade * margin_blend);
-#endif
-
-	} else {
-		frag_color = vec4(0.0, 0.0, 0.0, 0.0);
-	}
-}

+ 0 - 283
drivers/gles2/shaders/ssao.glsl

@@ -1,283 +0,0 @@
-/* clang-format off */
-[vertex]
-
-layout(location = 0) in highp vec4 vertex_attrib;
-/* clang-format on */
-
-void main() {
-	gl_Position = vertex_attrib;
-	gl_Position.z = 1.0;
-}
-
-/* clang-format off */
-[fragment]
-
-#define TWO_PI 6.283185307179586476925286766559
-
-#ifdef SSAO_QUALITY_HIGH
-
-#define NUM_SAMPLES (80)
-
-#endif
-
-#ifdef SSAO_QUALITY_LOW
-
-#define NUM_SAMPLES (15)
-
-#endif
-
-#if !defined(SSAO_QUALITY_LOW) && !defined(SSAO_QUALITY_HIGH)
-
-#define NUM_SAMPLES (40)
-
-#endif
-
-// If using depth mip levels, the log of the maximum pixel offset before we need to switch to a lower
-// miplevel to maintain reasonable spatial locality in the cache
-// If this number is too small (< 3), too many taps will land in the same pixel, and we'll get bad variance that manifests as flashing.
-// If it is too high (> 5), we'll get bad performance because we're not using the MIP levels effectively
-#define LOG_MAX_OFFSET (3)
-
-// This must be less than or equal to the MAX_MIP_LEVEL defined in SSAO.cpp
-#define MAX_MIP_LEVEL (4)
-
-// This is the number of turns around the circle that the spiral pattern makes.  This should be prime to prevent
-// taps from lining up.  This particular choice was tuned for NUM_SAMPLES == 9
-
-const int ROTATIONS[] = int[](
-		1, 1, 2, 3, 2, 5, 2, 3, 2,
-		3, 3, 5, 5, 3, 4, 7, 5, 5, 7,
-		9, 8, 5, 5, 7, 7, 7, 8, 5, 8,
-		11, 12, 7, 10, 13, 8, 11, 8, 7, 14,
-		11, 11, 13, 12, 13, 19, 17, 13, 11, 18,
-		19, 11, 11, 14, 17, 21, 15, 16, 17, 18,
-		13, 17, 11, 17, 19, 18, 25, 18, 19, 19,
-		29, 21, 19, 27, 31, 29, 21, 18, 17, 29,
-		31, 31, 23, 18, 25, 26, 25, 23, 19, 34,
-		19, 27, 21, 25, 39, 29, 17, 21, 27);
-/* clang-format on */
-
-//#define NUM_SPIRAL_TURNS (7)
-const int NUM_SPIRAL_TURNS = ROTATIONS[NUM_SAMPLES - 1];
-
-uniform sampler2D source_depth; //texunit:0
-uniform highp usampler2D source_depth_mipmaps; //texunit:1
-uniform sampler2D source_normal; //texunit:2
-
-uniform ivec2 screen_size;
-uniform float camera_z_far;
-uniform float camera_z_near;
-
-uniform float intensity_div_r6;
-uniform float radius;
-
-#ifdef ENABLE_RADIUS2
-uniform float intensity_div_r62;
-uniform float radius2;
-#endif
-
-uniform float bias;
-uniform float proj_scale;
-
-layout(location = 0) out float visibility;
-
-uniform vec4 proj_info;
-
-vec3 reconstructCSPosition(vec2 S, float z) {
-#ifdef USE_ORTHOGONAL_PROJECTION
-	return vec3((S.xy * proj_info.xy + proj_info.zw), z);
-#else
-	return vec3((S.xy * proj_info.xy + proj_info.zw) * z, z);
-
-#endif
-}
-
-vec3 getPosition(ivec2 ssP) {
-	vec3 P;
-	P.z = texelFetch(source_depth, ssP, 0).r;
-
-	P.z = P.z * 2.0 - 1.0;
-#ifdef USE_ORTHOGONAL_PROJECTION
-	P.z = ((P.z + (camera_z_far + camera_z_near) / (camera_z_far - camera_z_near)) * (camera_z_far - camera_z_near)) / 2.0;
-#else
-	P.z = 2.0 * camera_z_near * camera_z_far / (camera_z_far + camera_z_near - P.z * (camera_z_far - camera_z_near));
-#endif
-	P.z = -P.z;
-
-	// Offset to pixel center
-	P = reconstructCSPosition(vec2(ssP) + vec2(0.5), P.z);
-	return P;
-}
-
-/** Reconstructs screen-space unit normal from screen-space position */
-vec3 reconstructCSFaceNormal(vec3 C) {
-	return normalize(cross(dFdy(C), dFdx(C)));
-}
-
-/** Returns a unit vector and a screen-space radius for the tap on a unit disk (the caller should scale by the actual disk radius) */
-vec2 tapLocation(int sampleNumber, float spinAngle, out float ssR) {
-	// Radius relative to ssR
-	float alpha = (float(sampleNumber) + 0.5) * (1.0 / float(NUM_SAMPLES));
-	float angle = alpha * (float(NUM_SPIRAL_TURNS) * 6.28) + spinAngle;
-
-	ssR = alpha;
-	return vec2(cos(angle), sin(angle));
-}
-
-/** Read the camera-space position of the point at screen-space pixel ssP + unitOffset * ssR.  Assumes length(unitOffset) == 1 */
-vec3 getOffsetPosition(ivec2 ssC, vec2 unitOffset, float ssR) {
-	// Derivation:
-	//  mipLevel = floor(log(ssR / MAX_OFFSET));
-	int mipLevel = clamp(int(floor(log2(ssR))) - LOG_MAX_OFFSET, 0, MAX_MIP_LEVEL);
-
-	ivec2 ssP = ivec2(ssR * unitOffset) + ssC;
-
-	vec3 P;
-
-	// We need to divide by 2^mipLevel to read the appropriately scaled coordinate from a MIP-map.
-	// Manually clamp to the texture size because texelFetch bypasses the texture unit
-	ivec2 mipP = clamp(ssP >> mipLevel, ivec2(0), (screen_size >> mipLevel) - ivec2(1));
-
-	if (mipLevel < 1) {
-		//read from depth buffer
-		P.z = texelFetch(source_depth, mipP, 0).r;
-		P.z = P.z * 2.0 - 1.0;
-#ifdef USE_ORTHOGONAL_PROJECTION
-		P.z = ((P.z + (camera_z_far + camera_z_near) / (camera_z_far - camera_z_near)) * (camera_z_far - camera_z_near)) / 2.0;
-#else
-		P.z = 2.0 * camera_z_near * camera_z_far / (camera_z_far + camera_z_near - P.z * (camera_z_far - camera_z_near));
-
-#endif
-		P.z = -P.z;
-
-	} else {
-		//read from mipmaps
-		uint d = texelFetch(source_depth_mipmaps, mipP, mipLevel - 1).r;
-		P.z = -(float(d) / 65535.0) * camera_z_far;
-	}
-
-	// Offset to pixel center
-	P = reconstructCSPosition(vec2(ssP) + vec2(0.5), P.z);
-
-	return P;
-}
-
-/** Compute the occlusion due to sample with index \a i about the pixel at \a ssC that corresponds
-	to camera-space point \a C with unit normal \a n_C, using maximum screen-space sampling radius \a ssDiskRadius
-
-	Note that units of H() in the HPG12 paper are meters, not
-	unitless.  The whole falloff/sampling function is therefore
-	unitless.  In this implementation, we factor out (9 / radius).
-
-	Four versions of the falloff function are implemented below
-*/
-float sampleAO(in ivec2 ssC, in vec3 C, in vec3 n_C, in float ssDiskRadius, in float p_radius, in int tapIndex, in float randomPatternRotationAngle) {
-	// Offset on the unit disk, spun for this pixel
-	float ssR;
-	vec2 unitOffset = tapLocation(tapIndex, randomPatternRotationAngle, ssR);
-	ssR *= ssDiskRadius;
-
-	// The occluding point in camera space
-	vec3 Q = getOffsetPosition(ssC, unitOffset, ssR);
-
-	vec3 v = Q - C;
-
-	float vv = dot(v, v);
-	float vn = dot(v, n_C);
-
-	const float epsilon = 0.01;
-	float radius2 = p_radius * p_radius;
-
-	// A: From the HPG12 paper
-	// Note large epsilon to avoid overdarkening within cracks
-	//return float(vv < radius2) * max((vn - bias) / (epsilon + vv), 0.0) * radius2 * 0.6;
-
-	// B: Smoother transition to zero (lowers contrast, smoothing out corners). [Recommended]
-	float f = max(radius2 - vv, 0.0);
-	return f * f * f * max((vn - bias) / (epsilon + vv), 0.0);
-
-	// C: Medium contrast (which looks better at high radii), no division.  Note that the
-	// contribution still falls off with radius^2, but we've adjusted the rate in a way that is
-	// more computationally efficient and happens to be aesthetically pleasing.
-	// return 4.0 * max(1.0 - vv * invRadius2, 0.0) * max(vn - bias, 0.0);
-
-	// D: Low contrast, no division operation
-	// return 2.0 * float(vv < radius * radius) * max(vn - bias, 0.0);
-}
-
-void main() {
-	// Pixel being shaded
-	ivec2 ssC = ivec2(gl_FragCoord.xy);
-
-	// World space point being shaded
-	vec3 C = getPosition(ssC);
-
-	/*
-	if (C.z <= -camera_z_far*0.999) {
-		// We're on the skybox
-		visibility=1.0;
-		return;
-	}
-	*/
-
-	//visibility=-C.z/camera_z_far;
-	//return;
-#if 0
-	vec3 n_C = texelFetch(source_normal,ssC,0).rgb * 2.0 - 1.0;
-#else
-	vec3 n_C = reconstructCSFaceNormal(C);
-	n_C = -n_C;
-#endif
-
-	// Hash function used in the HPG12 AlchemyAO paper
-	float randomPatternRotationAngle = mod(float((3 * ssC.x ^ ssC.y + ssC.x * ssC.y) * 10), TWO_PI);
-
-	// Reconstruct normals from positions. These will lead to 1-pixel black lines
-	// at depth discontinuities, however the blur will wipe those out so they are not visible
-	// in the final image.
-
-	// Choose the screen-space sample radius
-	// proportional to the projected area of the sphere
-#ifdef USE_ORTHOGONAL_PROJECTION
-	float ssDiskRadius = -proj_scale * radius;
-#else
-	float ssDiskRadius = -proj_scale * radius / C.z;
-#endif
-	float sum = 0.0;
-	for (int i = 0; i < NUM_SAMPLES; ++i) {
-		sum += sampleAO(ssC, C, n_C, ssDiskRadius, radius, i, randomPatternRotationAngle);
-	}
-
-	float A = max(0.0, 1.0 - sum * intensity_div_r6 * (5.0 / float(NUM_SAMPLES)));
-
-#ifdef ENABLE_RADIUS2
-
-	//go again for radius2
-	randomPatternRotationAngle = mod(float((5 * ssC.x ^ ssC.y + ssC.x * ssC.y) * 11), TWO_PI);
-
-	// Reconstruct normals from positions. These will lead to 1-pixel black lines
-	// at depth discontinuities, however the blur will wipe those out so they are not visible
-	// in the final image.
-
-	// Choose the screen-space sample radius
-	// proportional to the projected area of the sphere
-	ssDiskRadius = -proj_scale * radius2 / C.z;
-
-	sum = 0.0;
-	for (int i = 0; i < NUM_SAMPLES; ++i) {
-		sum += sampleAO(ssC, C, n_C, ssDiskRadius, radius2, i, randomPatternRotationAngle);
-	}
-
-	A = min(A, max(0.0, 1.0 - sum * intensity_div_r62 * (5.0 / float(NUM_SAMPLES))));
-#endif
-	// Bilateral box-filter over a quad for free, respecting depth edges
-	// (the difference that this makes is subtle)
-	if (abs(dFdx(C.z)) < 0.02) {
-		A -= dFdx(A) * (float(ssC.x & 1) - 0.5);
-	}
-	if (abs(dFdy(C.z)) < 0.02) {
-		A -= dFdy(A) * (float(ssC.y & 1) - 0.5);
-	}
-
-	visibility = A;
-}

+ 0 - 116
drivers/gles2/shaders/ssao_blur.glsl

@@ -1,116 +0,0 @@
-/* clang-format off */
-[vertex]
-
-layout(location = 0) in highp vec4 vertex_attrib;
-/* clang-format on */
-
-void main() {
-	gl_Position = vertex_attrib;
-	gl_Position.z = 1.0;
-}
-
-/* clang-format off */
-[fragment]
-
-uniform sampler2D source_ssao; //texunit:0
-/* clang-format on */
-uniform sampler2D source_depth; //texunit:1
-uniform sampler2D source_normal; //texunit:3
-
-layout(location = 0) out float visibility;
-
-//////////////////////////////////////////////////////////////////////////////////////////////
-// Tunable Parameters:
-
-/** Increase to make depth edges crisper. Decrease to reduce flicker. */
-uniform float edge_sharpness;
-
-/** Step in 2-pixel intervals since we already blurred against neighbors in the
-	first AO pass.  This constant can be increased while R decreases to improve
-	performance at the expense of some dithering artifacts.
-
-	Morgan found that a scale of 3 left a 1-pixel checkerboard grid that was
-	unobjectionable after shading was applied but eliminated most temporal incoherence
-	from using small numbers of sample taps.
-	*/
-
-uniform int filter_scale;
-
-/** Filter radius in pixels. This will be multiplied by SCALE. */
-#define R (4)
-
-//////////////////////////////////////////////////////////////////////////////////////////////
-
-// Gaussian coefficients
-const float gaussian[R + 1] =
-		//float[](0.356642, 0.239400, 0.072410, 0.009869);
-		//float[](0.398943, 0.241971, 0.053991, 0.004432, 0.000134);  // stddev = 1.0
-		float[](0.153170, 0.144893, 0.122649, 0.092902, 0.062970); // stddev = 2.0
-//float[](0.111220, 0.107798, 0.098151, 0.083953, 0.067458, 0.050920, 0.036108); // stddev = 3.0
-
-/** (1, 0) or (0, 1)*/
-uniform ivec2 axis;
-
-uniform float camera_z_far;
-uniform float camera_z_near;
-
-uniform ivec2 screen_size;
-
-void main() {
-	ivec2 ssC = ivec2(gl_FragCoord.xy);
-
-	float depth = texelFetch(source_depth, ssC, 0).r;
-	//vec3 normal = texelFetch(source_normal,ssC,0).rgb * 2.0 - 1.0;
-
-	depth = depth * 2.0 - 1.0;
-	depth = 2.0 * camera_z_near * camera_z_far / (camera_z_far + camera_z_near - depth * (camera_z_far - camera_z_near));
-
-	float depth_divide = 1.0 / camera_z_far;
-
-	//depth *= depth_divide;
-
-	/*
-	if (depth > camera_z_far * 0.999) {
-		discard; //skybox
-	}
-	*/
-
-	float sum = texelFetch(source_ssao, ssC, 0).r;
-
-	// Base weight for depth falloff.  Increase this for more blurriness,
-	// decrease it for better edge discrimination
-	float BASE = gaussian[0];
-	float totalWeight = BASE;
-	sum *= totalWeight;
-
-	ivec2 clamp_limit = screen_size - ivec2(1);
-
-	for (int r = -R; r <= R; ++r) {
-		// We already handled the zero case above.  This loop should be unrolled and the static branch optimized out,
-		// so the IF statement has no runtime cost
-		if (r != 0) {
-			ivec2 ppos = ssC + axis * (r * filter_scale);
-			float value = texelFetch(source_ssao, clamp(ppos, ivec2(0), clamp_limit), 0).r;
-			ivec2 rpos = clamp(ppos, ivec2(0), clamp_limit);
-			float temp_depth = texelFetch(source_depth, rpos, 0).r;
-			//vec3 temp_normal = texelFetch(source_normal, rpos, 0).rgb * 2.0 - 1.0;
-
-			temp_depth = temp_depth * 2.0 - 1.0;
-			temp_depth = 2.0 * camera_z_near * camera_z_far / (camera_z_far + camera_z_near - temp_depth * (camera_z_far - camera_z_near));
-			//			temp_depth *= depth_divide;
-
-			// spatial domain: offset gaussian tap
-			float weight = 0.3 + gaussian[abs(r)];
-			//weight *= max(0.0,dot(temp_normal,normal));
-
-			// range domain (the "bilateral" weight). As depth difference increases, decrease weight.
-			weight *= max(0.0, 1.0 - edge_sharpness * abs(temp_depth - depth));
-
-			sum += value * weight;
-			totalWeight += weight;
-		}
-	}
-
-	const float epsilon = 0.0001;
-	visibility = sum / (totalWeight + epsilon);
-}

+ 0 - 54
drivers/gles2/shaders/ssao_minify.glsl

@@ -1,54 +0,0 @@
-/* clang-format off */
-[vertex]
-
-layout(location = 0) in highp vec4 vertex_attrib;
-/* clang-format on */
-
-void main() {
-	gl_Position = vertex_attrib;
-}
-
-/* clang-format off */
-[fragment]
-
-#ifdef MINIFY_START
-
-#define SDEPTH_TYPE highp sampler2D
-uniform float camera_z_far;
-uniform float camera_z_near;
-/* clang-format on */
-
-#else
-
-#define SDEPTH_TYPE mediump usampler2D
-
-#endif
-
-uniform SDEPTH_TYPE source_depth; //texunit:0
-
-uniform ivec2 from_size;
-uniform int source_mipmap;
-
-layout(location = 0) out mediump uint depth;
-
-void main() {
-	ivec2 ssP = ivec2(gl_FragCoord.xy);
-
-	// Rotated grid subsampling to avoid XY directional bias or Z precision bias while downsampling.
-	// On DX9, the bit-and can be implemented with floating-point modulo
-
-#ifdef MINIFY_START
-	float fdepth = texelFetch(source_depth, clamp(ssP * 2 + ivec2(ssP.y & 1, ssP.x & 1), ivec2(0), from_size - ivec2(1)), source_mipmap).r;
-	fdepth = fdepth * 2.0 - 1.0;
-#ifdef USE_ORTHOGONAL_PROJECTION
-	fdepth = ((fdepth + (camera_z_far + camera_z_near) / (camera_z_far - camera_z_near)) * (camera_z_far - camera_z_near)) / 2.0;
-#else
-	fdepth = 2.0 * camera_z_near * camera_z_far / (camera_z_far + camera_z_near - fdepth * (camera_z_far - camera_z_near));
-#endif
-	fdepth /= camera_z_far;
-	depth = uint(clamp(fdepth * 65535.0, 0.0, 65535.0));
-
-#else
-	depth = texelFetch(source_depth, clamp(ssP * 2 + ivec2(ssP.y & 1, ssP.x & 1), ivec2(0), from_size - ivec2(1)), source_mipmap).r;
-#endif
-}

+ 0 - 171
drivers/gles2/shaders/subsurf_scattering.glsl

@@ -1,171 +0,0 @@
-/* clang-format off */
-[vertex]
-
-layout(location = 0) in highp vec4 vertex_attrib;
-/* clang-format on */
-layout(location = 4) in vec2 uv_in;
-
-out vec2 uv_interp;
-
-void main() {
-	uv_interp = uv_in;
-	gl_Position = vertex_attrib;
-}
-
-/* clang-format off */
-[fragment]
-
-//#define QUALIFIER uniform // some guy on the interweb says it may be faster with this
-#define QUALIFIER const
-
-#ifdef USE_25_SAMPLES
-const int kernel_size = 25;
-/* clang-format on */
-QUALIFIER vec2 kernel[25] = vec2[](
-		vec2(0.530605, 0.0),
-		vec2(0.000973794, -3.0),
-		vec2(0.00333804, -2.52083),
-		vec2(0.00500364, -2.08333),
-		vec2(0.00700976, -1.6875),
-		vec2(0.0094389, -1.33333),
-		vec2(0.0128496, -1.02083),
-		vec2(0.017924, -0.75),
-		vec2(0.0263642, -0.520833),
-		vec2(0.0410172, -0.333333),
-		vec2(0.0493588, -0.1875),
-		vec2(0.0402784, -0.0833333),
-		vec2(0.0211412, -0.0208333),
-		vec2(0.0211412, 0.0208333),
-		vec2(0.0402784, 0.0833333),
-		vec2(0.0493588, 0.1875),
-		vec2(0.0410172, 0.333333),
-		vec2(0.0263642, 0.520833),
-		vec2(0.017924, 0.75),
-		vec2(0.0128496, 1.02083),
-		vec2(0.0094389, 1.33333),
-		vec2(0.00700976, 1.6875),
-		vec2(0.00500364, 2.08333),
-		vec2(0.00333804, 2.52083),
-		vec2(0.000973794, 3.0));
-#endif //USE_25_SAMPLES
-
-#ifdef USE_17_SAMPLES
-const int kernel_size = 17;
-QUALIFIER vec2 kernel[17] = vec2[](
-		vec2(0.536343, 0.0),
-		vec2(0.00317394, -2.0),
-		vec2(0.0100386, -1.53125),
-		vec2(0.0144609, -1.125),
-		vec2(0.0216301, -0.78125),
-		vec2(0.0347317, -0.5),
-		vec2(0.0571056, -0.28125),
-		vec2(0.0582416, -0.125),
-		vec2(0.0324462, -0.03125),
-		vec2(0.0324462, 0.03125),
-		vec2(0.0582416, 0.125),
-		vec2(0.0571056, 0.28125),
-		vec2(0.0347317, 0.5),
-		vec2(0.0216301, 0.78125),
-		vec2(0.0144609, 1.125),
-		vec2(0.0100386, 1.53125),
-		vec2(0.00317394, 2.0));
-#endif //USE_17_SAMPLES
-
-#ifdef USE_11_SAMPLES
-const int kernel_size = 11;
-QUALIFIER vec2 kernel[11] = vec2[](
-		vec2(0.560479, 0.0),
-		vec2(0.00471691, -2.0),
-		vec2(0.0192831, -1.28),
-		vec2(0.03639, -0.72),
-		vec2(0.0821904, -0.32),
-		vec2(0.0771802, -0.08),
-		vec2(0.0771802, 0.08),
-		vec2(0.0821904, 0.32),
-		vec2(0.03639, 0.72),
-		vec2(0.0192831, 1.28),
-		vec2(0.00471691, 2.0));
-#endif //USE_11_SAMPLES
-
-uniform float max_radius;
-uniform float camera_z_far;
-uniform float camera_z_near;
-uniform float unit_size;
-uniform vec2 dir;
-in vec2 uv_interp;
-
-uniform sampler2D source_diffuse; //texunit:0
-uniform sampler2D source_sss; //texunit:1
-uniform sampler2D source_depth; //texunit:2
-
-layout(location = 0) out vec4 frag_color;
-
-void main() {
-	float strength = texture(source_sss, uv_interp).r;
-	strength *= strength; //stored as sqrt
-
-	// Fetch color of current pixel:
-	vec4 base_color = texture(source_diffuse, uv_interp);
-
-	if (strength > 0.0) {
-		// Fetch linear depth of current pixel:
-		float depth = texture(source_depth, uv_interp).r * 2.0 - 1.0;
-#ifdef USE_ORTHOGONAL_PROJECTION
-		depth = ((depth + (camera_z_far + camera_z_near) / (camera_z_far - camera_z_near)) * (camera_z_far - camera_z_near)) / 2.0;
-		float scale = unit_size; //remember depth is negative by default in OpenGL
-#else
-		depth = 2.0 * camera_z_near * camera_z_far / (camera_z_far + camera_z_near - depth * (camera_z_far - camera_z_near));
-		float scale = unit_size / depth; //remember depth is negative by default in OpenGL
-#endif
-
-		// Calculate the final step to fetch the surrounding pixels:
-		vec2 step = max_radius * scale * dir;
-		step *= strength; // Modulate it using the alpha channel.
-		step *= 1.0 / 3.0; // Divide by 3 as the kernels range from -3 to 3.
-
-		// Accumulate the center sample:
-		vec3 color_accum = base_color.rgb;
-		color_accum *= kernel[0].x;
-#ifdef ENABLE_STRENGTH_WEIGHTING
-		float color_weight = kernel[0].x;
-#endif
-
-		// Accumulate the other samples:
-		for (int i = 1; i < kernel_size; i++) {
-			// Fetch color and depth for current sample:
-			vec2 offset = uv_interp + kernel[i].y * step;
-			vec3 color = texture(source_diffuse, offset).rgb;
-
-#ifdef ENABLE_FOLLOW_SURFACE
-			// If the difference in depth is huge, we lerp color back to "colorM":
-			float depth_cmp = texture(source_depth, offset).r * 2.0 - 1.0;
-
-#ifdef USE_ORTHOGONAL_PROJECTION
-			depth_cmp = ((depth_cmp + (camera_z_far + camera_z_near) / (camera_z_far - camera_z_near)) * (camera_z_far - camera_z_near)) / 2.0;
-#else
-			depth_cmp = 2.0 * camera_z_near * camera_z_far / (camera_z_far + camera_z_near - depth_cmp * (camera_z_far - camera_z_near));
-#endif
-
-			float s = clamp(300.0f * scale * max_radius * abs(depth - depth_cmp), 0.0, 1.0);
-			color = mix(color, base_color.rgb, s);
-#endif
-
-			// Accumulate:
-			color *= kernel[i].x;
-
-#ifdef ENABLE_STRENGTH_WEIGHTING
-			float color_s = texture(source_sss, offset).r;
-			color_weight += color_s * kernel[i].x;
-			color *= color_s;
-#endif
-			color_accum += color;
-		}
-
-#ifdef ENABLE_STRENGTH_WEIGHTING
-		color_accum /= color_weight;
-#endif
-		frag_color = vec4(color_accum, base_color.a); //keep alpha (used for SSAO)
-	} else {
-		frag_color = base_color;
-	}
-}