|
@@ -338,7 +338,7 @@ void Basis::set_rotation_axis_angle(const Vector3 &p_axis, real_t p_angle) {
|
|
|
rotate(p_axis, p_angle);
|
|
|
}
|
|
|
|
|
|
-// get_euler returns a vector containing the Euler angles in the format
|
|
|
+// get_euler_xyz returns a vector containing the Euler angles in the format
|
|
|
// (a1,a2,a3), where a3 is the angle of the first rotation, and a1 is the last
|
|
|
// (following the convention they are commonly defined in the literature).
|
|
|
//
|
|
@@ -348,7 +348,7 @@ void Basis::set_rotation_axis_angle(const Vector3 &p_axis, real_t p_angle) {
|
|
|
// And thus, assuming the matrix is a rotation matrix, this function returns
|
|
|
// the angles in the decomposition R = X(a1).Y(a2).Z(a3) where Z(a) rotates
|
|
|
// around the z-axis by a and so on.
|
|
|
-Vector3 Basis::get_euler() const {
|
|
|
+Vector3 Basis::get_euler_xyz() const {
|
|
|
|
|
|
// Euler angles in XYZ convention.
|
|
|
// See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix
|
|
@@ -366,6 +366,9 @@ Vector3 Basis::get_euler() const {
|
|
|
if (euler.y > -Math_PI * 0.5) {
|
|
|
//if rotation is Y-only, return a proper -pi,pi range like in x or z for the same case.
|
|
|
if (elements[1][0] == 0.0 && elements[0][1] == 0.0 && elements[0][0] < 0.0) {
|
|
|
+ euler.x = 0;
|
|
|
+ euler.z = 0;
|
|
|
+
|
|
|
if (euler.y > 0.0)
|
|
|
euler.y = Math_PI - euler.y;
|
|
|
else
|
|
@@ -389,10 +392,11 @@ Vector3 Basis::get_euler() const {
|
|
|
return euler;
|
|
|
}
|
|
|
|
|
|
-// set_euler expects a vector containing the Euler angles in the format
|
|
|
-// (c,b,a), where a is the angle of the first rotation, and c is the last.
|
|
|
+// set_euler_xyz expects a vector containing the Euler angles in the format
|
|
|
+// (ax,ay,az), where ax is the angle of rotation around x axis,
|
|
|
+// and similar for other axes.
|
|
|
// The current implementation uses XYZ convention (Z is the first rotation).
|
|
|
-void Basis::set_euler(const Vector3 &p_euler) {
|
|
|
+void Basis::set_euler_xyz(const Vector3 &p_euler) {
|
|
|
|
|
|
real_t c, s;
|
|
|
|
|
@@ -412,6 +416,78 @@ void Basis::set_euler(const Vector3 &p_euler) {
|
|
|
*this = xmat * (ymat * zmat);
|
|
|
}
|
|
|
|
|
|
+// get_euler_yxz returns a vector containing the Euler angles in the YXZ convention,
|
|
|
+// as in first-Z, then-X, last-Y. The angles for X, Y, and Z rotations are returned
|
|
|
+// as the x, y, and z components of a Vector3 respectively.
|
|
|
+Vector3 Basis::get_euler_yxz() const {
|
|
|
+
|
|
|
+ // Euler angles in YXZ convention.
|
|
|
+ // See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix
|
|
|
+ //
|
|
|
+ // rot = cy*cz+sy*sx*sz cz*sy*sx-cy*sz cx*sy
|
|
|
+ // cx*sz cx*cz -sx
|
|
|
+ // cy*sx*sz-cz*sy cy*cz*sx+sy*sz cy*cx
|
|
|
+
|
|
|
+ Vector3 euler;
|
|
|
+#ifdef MATH_CHECKS
|
|
|
+ ERR_FAIL_COND_V(is_rotation() == false, euler);
|
|
|
+#endif
|
|
|
+ real_t m12 = elements[1][2];
|
|
|
+
|
|
|
+ if (m12 < 1) {
|
|
|
+ if (m12 > -1) {
|
|
|
+ if (elements[1][0] == 0 && elements[0][1] == 0 && elements[2][2] < 0) { // use pure x rotation
|
|
|
+ real_t x = asin(-m12);
|
|
|
+ euler.y = 0;
|
|
|
+ euler.z = 0;
|
|
|
+
|
|
|
+ if (x > 0.0)
|
|
|
+ euler.x = Math_PI - x;
|
|
|
+ else
|
|
|
+ euler.x = -(Math_PI + x);
|
|
|
+ } else {
|
|
|
+ euler.x = asin(-m12);
|
|
|
+ euler.y = atan2(elements[0][2], elements[2][2]);
|
|
|
+ euler.z = atan2(elements[1][0], elements[1][1]);
|
|
|
+ }
|
|
|
+ } else { // m12 == -1
|
|
|
+ euler.x = Math_PI * 0.5;
|
|
|
+ euler.y = -atan2(-elements[0][1], elements[0][0]);
|
|
|
+ euler.z = 0;
|
|
|
+ }
|
|
|
+ } else { // m12 == 1
|
|
|
+ euler.x = -Math_PI * 0.5;
|
|
|
+ euler.y = -atan2(-elements[0][1], elements[0][0]);
|
|
|
+ euler.z = 0;
|
|
|
+ }
|
|
|
+
|
|
|
+ return euler;
|
|
|
+}
|
|
|
+
|
|
|
+// set_euler_yxz expects a vector containing the Euler angles in the format
|
|
|
+// (ax,ay,az), where ax is the angle of rotation around x axis,
|
|
|
+// and similar for other axes.
|
|
|
+// The current implementation uses YXZ convention (Z is the first rotation).
|
|
|
+void Basis::set_euler_yxz(const Vector3 &p_euler) {
|
|
|
+
|
|
|
+ real_t c, s;
|
|
|
+
|
|
|
+ c = Math::cos(p_euler.x);
|
|
|
+ s = Math::sin(p_euler.x);
|
|
|
+ Basis xmat(1.0, 0.0, 0.0, 0.0, c, -s, 0.0, s, c);
|
|
|
+
|
|
|
+ c = Math::cos(p_euler.y);
|
|
|
+ s = Math::sin(p_euler.y);
|
|
|
+ Basis ymat(c, 0.0, s, 0.0, 1.0, 0.0, -s, 0.0, c);
|
|
|
+
|
|
|
+ c = Math::cos(p_euler.z);
|
|
|
+ s = Math::sin(p_euler.z);
|
|
|
+ Basis zmat(c, -s, 0.0, s, c, 0.0, 0.0, 0.0, 1.0);
|
|
|
+
|
|
|
+ //optimizer will optimize away all this anyway
|
|
|
+ *this = ymat * xmat * zmat;
|
|
|
+}
|
|
|
+
|
|
|
bool Basis::is_equal_approx(const Basis &a, const Basis &b) const {
|
|
|
|
|
|
for (int i = 0; i < 3; i++) {
|