mesh_storage.cpp 73 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183
  1. /**************************************************************************/
  2. /* mesh_storage.cpp */
  3. /**************************************************************************/
  4. /* This file is part of: */
  5. /* GODOT ENGINE */
  6. /* https://godotengine.org */
  7. /**************************************************************************/
  8. /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
  9. /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
  10. /* */
  11. /* Permission is hereby granted, free of charge, to any person obtaining */
  12. /* a copy of this software and associated documentation files (the */
  13. /* "Software"), to deal in the Software without restriction, including */
  14. /* without limitation the rights to use, copy, modify, merge, publish, */
  15. /* distribute, sublicense, and/or sell copies of the Software, and to */
  16. /* permit persons to whom the Software is furnished to do so, subject to */
  17. /* the following conditions: */
  18. /* */
  19. /* The above copyright notice and this permission notice shall be */
  20. /* included in all copies or substantial portions of the Software. */
  21. /* */
  22. /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
  23. /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
  24. /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
  25. /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
  26. /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
  27. /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
  28. /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
  29. /**************************************************************************/
  30. #include "mesh_storage.h"
  31. using namespace RendererRD;
  32. MeshStorage *MeshStorage::singleton = nullptr;
  33. MeshStorage *MeshStorage::get_singleton() {
  34. return singleton;
  35. }
  36. MeshStorage::MeshStorage() {
  37. singleton = this;
  38. default_rd_storage_buffer = RD::get_singleton()->storage_buffer_create(sizeof(uint32_t) * 4);
  39. //default rd buffers
  40. {
  41. Vector<uint8_t> buffer;
  42. {
  43. buffer.resize(sizeof(float) * 3);
  44. {
  45. uint8_t *w = buffer.ptrw();
  46. float *fptr = reinterpret_cast<float *>(w);
  47. fptr[0] = 0.0;
  48. fptr[1] = 0.0;
  49. fptr[2] = 0.0;
  50. }
  51. mesh_default_rd_buffers[DEFAULT_RD_BUFFER_VERTEX] = RD::get_singleton()->vertex_buffer_create(buffer.size(), buffer);
  52. }
  53. { //normal
  54. buffer.resize(sizeof(float) * 3);
  55. {
  56. uint8_t *w = buffer.ptrw();
  57. float *fptr = reinterpret_cast<float *>(w);
  58. fptr[0] = 1.0;
  59. fptr[1] = 0.0;
  60. fptr[2] = 0.0;
  61. }
  62. mesh_default_rd_buffers[DEFAULT_RD_BUFFER_NORMAL] = RD::get_singleton()->vertex_buffer_create(buffer.size(), buffer);
  63. }
  64. { //tangent
  65. buffer.resize(sizeof(float) * 4);
  66. {
  67. uint8_t *w = buffer.ptrw();
  68. float *fptr = reinterpret_cast<float *>(w);
  69. fptr[0] = 1.0;
  70. fptr[1] = 0.0;
  71. fptr[2] = 0.0;
  72. fptr[3] = 0.0;
  73. }
  74. mesh_default_rd_buffers[DEFAULT_RD_BUFFER_TANGENT] = RD::get_singleton()->vertex_buffer_create(buffer.size(), buffer);
  75. }
  76. { //color
  77. buffer.resize(sizeof(float) * 4);
  78. {
  79. uint8_t *w = buffer.ptrw();
  80. float *fptr = reinterpret_cast<float *>(w);
  81. fptr[0] = 1.0;
  82. fptr[1] = 1.0;
  83. fptr[2] = 1.0;
  84. fptr[3] = 1.0;
  85. }
  86. mesh_default_rd_buffers[DEFAULT_RD_BUFFER_COLOR] = RD::get_singleton()->vertex_buffer_create(buffer.size(), buffer);
  87. }
  88. { //tex uv 1
  89. buffer.resize(sizeof(float) * 2);
  90. {
  91. uint8_t *w = buffer.ptrw();
  92. float *fptr = reinterpret_cast<float *>(w);
  93. fptr[0] = 0.0;
  94. fptr[1] = 0.0;
  95. }
  96. mesh_default_rd_buffers[DEFAULT_RD_BUFFER_TEX_UV] = RD::get_singleton()->vertex_buffer_create(buffer.size(), buffer);
  97. }
  98. { //tex uv 2
  99. buffer.resize(sizeof(float) * 2);
  100. {
  101. uint8_t *w = buffer.ptrw();
  102. float *fptr = reinterpret_cast<float *>(w);
  103. fptr[0] = 0.0;
  104. fptr[1] = 0.0;
  105. }
  106. mesh_default_rd_buffers[DEFAULT_RD_BUFFER_TEX_UV2] = RD::get_singleton()->vertex_buffer_create(buffer.size(), buffer);
  107. }
  108. for (int i = 0; i < RS::ARRAY_CUSTOM_COUNT; i++) {
  109. buffer.resize(sizeof(float) * 4);
  110. {
  111. uint8_t *w = buffer.ptrw();
  112. float *fptr = reinterpret_cast<float *>(w);
  113. fptr[0] = 0.0;
  114. fptr[1] = 0.0;
  115. fptr[2] = 0.0;
  116. fptr[3] = 0.0;
  117. }
  118. mesh_default_rd_buffers[DEFAULT_RD_BUFFER_CUSTOM0 + i] = RD::get_singleton()->vertex_buffer_create(buffer.size(), buffer);
  119. }
  120. { //bones
  121. buffer.resize(sizeof(uint32_t) * 4);
  122. {
  123. uint8_t *w = buffer.ptrw();
  124. uint32_t *fptr = reinterpret_cast<uint32_t *>(w);
  125. fptr[0] = 0;
  126. fptr[1] = 0;
  127. fptr[2] = 0;
  128. fptr[3] = 0;
  129. }
  130. mesh_default_rd_buffers[DEFAULT_RD_BUFFER_BONES] = RD::get_singleton()->vertex_buffer_create(buffer.size(), buffer);
  131. }
  132. { //weights
  133. buffer.resize(sizeof(float) * 4);
  134. {
  135. uint8_t *w = buffer.ptrw();
  136. float *fptr = reinterpret_cast<float *>(w);
  137. fptr[0] = 0.0;
  138. fptr[1] = 0.0;
  139. fptr[2] = 0.0;
  140. fptr[3] = 0.0;
  141. }
  142. mesh_default_rd_buffers[DEFAULT_RD_BUFFER_WEIGHTS] = RD::get_singleton()->vertex_buffer_create(buffer.size(), buffer);
  143. }
  144. }
  145. {
  146. Vector<String> skeleton_modes;
  147. skeleton_modes.push_back("\n#define MODE_2D\n");
  148. skeleton_modes.push_back("");
  149. skeleton_shader.shader.initialize(skeleton_modes);
  150. skeleton_shader.version = skeleton_shader.shader.version_create();
  151. for (int i = 0; i < SkeletonShader::SHADER_MODE_MAX; i++) {
  152. skeleton_shader.version_shader[i] = skeleton_shader.shader.version_get_shader(skeleton_shader.version, i);
  153. skeleton_shader.pipeline[i] = RD::get_singleton()->compute_pipeline_create(skeleton_shader.version_shader[i]);
  154. }
  155. {
  156. Vector<RD::Uniform> uniforms;
  157. {
  158. RD::Uniform u;
  159. u.binding = 0;
  160. u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  161. u.append_id(default_rd_storage_buffer);
  162. uniforms.push_back(u);
  163. }
  164. skeleton_shader.default_skeleton_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, skeleton_shader.version_shader[0], SkeletonShader::UNIFORM_SET_SKELETON);
  165. }
  166. }
  167. }
  168. MeshStorage::~MeshStorage() {
  169. //def buffers
  170. for (int i = 0; i < DEFAULT_RD_BUFFER_MAX; i++) {
  171. RD::get_singleton()->free(mesh_default_rd_buffers[i]);
  172. }
  173. skeleton_shader.shader.version_free(skeleton_shader.version);
  174. RD::get_singleton()->free(default_rd_storage_buffer);
  175. singleton = nullptr;
  176. }
  177. bool MeshStorage::free(RID p_rid) {
  178. if (owns_mesh(p_rid)) {
  179. mesh_free(p_rid);
  180. return true;
  181. } else if (owns_mesh_instance(p_rid)) {
  182. mesh_instance_free(p_rid);
  183. return true;
  184. } else if (owns_multimesh(p_rid)) {
  185. multimesh_free(p_rid);
  186. return true;
  187. } else if (owns_skeleton(p_rid)) {
  188. skeleton_free(p_rid);
  189. return true;
  190. }
  191. return false;
  192. }
  193. /* MESH API */
  194. RID MeshStorage::mesh_allocate() {
  195. return mesh_owner.allocate_rid();
  196. }
  197. void MeshStorage::mesh_initialize(RID p_rid) {
  198. mesh_owner.initialize_rid(p_rid, Mesh());
  199. }
  200. void MeshStorage::mesh_free(RID p_rid) {
  201. mesh_clear(p_rid);
  202. mesh_set_shadow_mesh(p_rid, RID());
  203. Mesh *mesh = mesh_owner.get_or_null(p_rid);
  204. ERR_FAIL_COND(!mesh);
  205. mesh->dependency.deleted_notify(p_rid);
  206. if (mesh->instances.size()) {
  207. ERR_PRINT("deleting mesh with active instances");
  208. }
  209. if (mesh->shadow_owners.size()) {
  210. for (Mesh *E : mesh->shadow_owners) {
  211. Mesh *shadow_owner = E;
  212. shadow_owner->shadow_mesh = RID();
  213. shadow_owner->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MESH);
  214. }
  215. }
  216. mesh_owner.free(p_rid);
  217. }
  218. void MeshStorage::mesh_set_blend_shape_count(RID p_mesh, int p_blend_shape_count) {
  219. ERR_FAIL_COND(p_blend_shape_count < 0);
  220. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  221. ERR_FAIL_COND(!mesh);
  222. ERR_FAIL_COND(mesh->surface_count > 0); //surfaces already exist
  223. mesh->blend_shape_count = p_blend_shape_count;
  224. }
  225. /// Returns stride
  226. void MeshStorage::mesh_add_surface(RID p_mesh, const RS::SurfaceData &p_surface) {
  227. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  228. ERR_FAIL_COND(!mesh);
  229. ERR_FAIL_COND(mesh->surface_count == RS::MAX_MESH_SURFACES);
  230. #ifdef DEBUG_ENABLED
  231. //do a validation, to catch errors first
  232. {
  233. uint32_t stride = 0;
  234. uint32_t attrib_stride = 0;
  235. uint32_t skin_stride = 0;
  236. for (int i = 0; i < RS::ARRAY_WEIGHTS; i++) {
  237. if ((p_surface.format & (1 << i))) {
  238. switch (i) {
  239. case RS::ARRAY_VERTEX: {
  240. if (p_surface.format & RS::ARRAY_FLAG_USE_2D_VERTICES) {
  241. stride += sizeof(float) * 2;
  242. } else {
  243. stride += sizeof(float) * 3;
  244. }
  245. } break;
  246. case RS::ARRAY_NORMAL: {
  247. stride += sizeof(int32_t);
  248. } break;
  249. case RS::ARRAY_TANGENT: {
  250. stride += sizeof(int32_t);
  251. } break;
  252. case RS::ARRAY_COLOR: {
  253. attrib_stride += sizeof(uint32_t);
  254. } break;
  255. case RS::ARRAY_TEX_UV: {
  256. attrib_stride += sizeof(float) * 2;
  257. } break;
  258. case RS::ARRAY_TEX_UV2: {
  259. attrib_stride += sizeof(float) * 2;
  260. } break;
  261. case RS::ARRAY_CUSTOM0:
  262. case RS::ARRAY_CUSTOM1:
  263. case RS::ARRAY_CUSTOM2:
  264. case RS::ARRAY_CUSTOM3: {
  265. int idx = i - RS::ARRAY_CUSTOM0;
  266. const uint32_t fmt_shift[RS::ARRAY_CUSTOM_COUNT] = { RS::ARRAY_FORMAT_CUSTOM0_SHIFT, RS::ARRAY_FORMAT_CUSTOM1_SHIFT, RS::ARRAY_FORMAT_CUSTOM2_SHIFT, RS::ARRAY_FORMAT_CUSTOM3_SHIFT };
  267. uint32_t fmt = (p_surface.format >> fmt_shift[idx]) & RS::ARRAY_FORMAT_CUSTOM_MASK;
  268. const uint32_t fmtsize[RS::ARRAY_CUSTOM_MAX] = { 4, 4, 4, 8, 4, 8, 12, 16 };
  269. attrib_stride += fmtsize[fmt];
  270. } break;
  271. case RS::ARRAY_WEIGHTS:
  272. case RS::ARRAY_BONES: {
  273. //uses a separate array
  274. bool use_8 = p_surface.format & RS::ARRAY_FLAG_USE_8_BONE_WEIGHTS;
  275. skin_stride += sizeof(int16_t) * (use_8 ? 16 : 8);
  276. } break;
  277. }
  278. }
  279. }
  280. int expected_size = stride * p_surface.vertex_count;
  281. ERR_FAIL_COND_MSG(expected_size != p_surface.vertex_data.size(), "Size of vertex data provided (" + itos(p_surface.vertex_data.size()) + ") does not match expected (" + itos(expected_size) + ")");
  282. int bs_expected_size = expected_size * mesh->blend_shape_count;
  283. ERR_FAIL_COND_MSG(bs_expected_size != p_surface.blend_shape_data.size(), "Size of blend shape data provided (" + itos(p_surface.blend_shape_data.size()) + ") does not match expected (" + itos(bs_expected_size) + ")");
  284. int expected_attrib_size = attrib_stride * p_surface.vertex_count;
  285. ERR_FAIL_COND_MSG(expected_attrib_size != p_surface.attribute_data.size(), "Size of attribute data provided (" + itos(p_surface.attribute_data.size()) + ") does not match expected (" + itos(expected_attrib_size) + ")");
  286. if ((p_surface.format & RS::ARRAY_FORMAT_WEIGHTS) && (p_surface.format & RS::ARRAY_FORMAT_BONES)) {
  287. expected_size = skin_stride * p_surface.vertex_count;
  288. ERR_FAIL_COND_MSG(expected_size != p_surface.skin_data.size(), "Size of skin data provided (" + itos(p_surface.skin_data.size()) + ") does not match expected (" + itos(expected_size) + ")");
  289. }
  290. }
  291. #endif
  292. Mesh::Surface *s = memnew(Mesh::Surface);
  293. s->format = p_surface.format;
  294. s->primitive = p_surface.primitive;
  295. bool use_as_storage = (p_surface.skin_data.size() || mesh->blend_shape_count > 0);
  296. if (p_surface.vertex_data.size()) {
  297. s->vertex_buffer = RD::get_singleton()->vertex_buffer_create(p_surface.vertex_data.size(), p_surface.vertex_data, use_as_storage);
  298. s->vertex_buffer_size = p_surface.vertex_data.size();
  299. }
  300. if (p_surface.attribute_data.size()) {
  301. s->attribute_buffer = RD::get_singleton()->vertex_buffer_create(p_surface.attribute_data.size(), p_surface.attribute_data);
  302. }
  303. if (p_surface.skin_data.size()) {
  304. s->skin_buffer = RD::get_singleton()->vertex_buffer_create(p_surface.skin_data.size(), p_surface.skin_data, use_as_storage);
  305. s->skin_buffer_size = p_surface.skin_data.size();
  306. }
  307. s->vertex_count = p_surface.vertex_count;
  308. if (p_surface.format & RS::ARRAY_FORMAT_BONES) {
  309. mesh->has_bone_weights = true;
  310. }
  311. if (p_surface.index_count) {
  312. bool is_index_16 = p_surface.vertex_count <= 65536 && p_surface.vertex_count > 0;
  313. s->index_buffer = RD::get_singleton()->index_buffer_create(p_surface.index_count, is_index_16 ? RD::INDEX_BUFFER_FORMAT_UINT16 : RD::INDEX_BUFFER_FORMAT_UINT32, p_surface.index_data, false);
  314. s->index_count = p_surface.index_count;
  315. s->index_array = RD::get_singleton()->index_array_create(s->index_buffer, 0, s->index_count);
  316. if (p_surface.lods.size()) {
  317. s->lods = memnew_arr(Mesh::Surface::LOD, p_surface.lods.size());
  318. s->lod_count = p_surface.lods.size();
  319. for (int i = 0; i < p_surface.lods.size(); i++) {
  320. uint32_t indices = p_surface.lods[i].index_data.size() / (is_index_16 ? 2 : 4);
  321. s->lods[i].index_buffer = RD::get_singleton()->index_buffer_create(indices, is_index_16 ? RD::INDEX_BUFFER_FORMAT_UINT16 : RD::INDEX_BUFFER_FORMAT_UINT32, p_surface.lods[i].index_data);
  322. s->lods[i].index_array = RD::get_singleton()->index_array_create(s->lods[i].index_buffer, 0, indices);
  323. s->lods[i].edge_length = p_surface.lods[i].edge_length;
  324. s->lods[i].index_count = indices;
  325. }
  326. }
  327. }
  328. ERR_FAIL_COND_MSG(!p_surface.index_count && !p_surface.vertex_count, "Meshes must contain a vertex array, an index array, or both");
  329. s->aabb = p_surface.aabb;
  330. s->bone_aabbs = p_surface.bone_aabbs; //only really useful for returning them.
  331. if (mesh->blend_shape_count > 0) {
  332. s->blend_shape_buffer = RD::get_singleton()->storage_buffer_create(p_surface.blend_shape_data.size(), p_surface.blend_shape_data);
  333. }
  334. if (use_as_storage) {
  335. Vector<RD::Uniform> uniforms;
  336. {
  337. RD::Uniform u;
  338. u.binding = 0;
  339. u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  340. if (s->vertex_buffer.is_valid()) {
  341. u.append_id(s->vertex_buffer);
  342. } else {
  343. u.append_id(default_rd_storage_buffer);
  344. }
  345. uniforms.push_back(u);
  346. }
  347. {
  348. RD::Uniform u;
  349. u.binding = 1;
  350. u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  351. if (s->skin_buffer.is_valid()) {
  352. u.append_id(s->skin_buffer);
  353. } else {
  354. u.append_id(default_rd_storage_buffer);
  355. }
  356. uniforms.push_back(u);
  357. }
  358. {
  359. RD::Uniform u;
  360. u.binding = 2;
  361. u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  362. if (s->blend_shape_buffer.is_valid()) {
  363. u.append_id(s->blend_shape_buffer);
  364. } else {
  365. u.append_id(default_rd_storage_buffer);
  366. }
  367. uniforms.push_back(u);
  368. }
  369. s->uniform_set = RD::get_singleton()->uniform_set_create(uniforms, skeleton_shader.version_shader[0], SkeletonShader::UNIFORM_SET_SURFACE);
  370. }
  371. if (mesh->surface_count == 0) {
  372. mesh->aabb = p_surface.aabb;
  373. } else {
  374. mesh->aabb.merge_with(p_surface.aabb);
  375. }
  376. mesh->skeleton_aabb_version = 0;
  377. s->material = p_surface.material;
  378. mesh->surfaces = (Mesh::Surface **)memrealloc(mesh->surfaces, sizeof(Mesh::Surface *) * (mesh->surface_count + 1));
  379. mesh->surfaces[mesh->surface_count] = s;
  380. mesh->surface_count++;
  381. for (MeshInstance *mi : mesh->instances) {
  382. _mesh_instance_add_surface(mi, mesh, mesh->surface_count - 1);
  383. }
  384. mesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MESH);
  385. for (Mesh *E : mesh->shadow_owners) {
  386. Mesh *shadow_owner = E;
  387. shadow_owner->shadow_mesh = RID();
  388. shadow_owner->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MESH);
  389. }
  390. mesh->material_cache.clear();
  391. }
  392. int MeshStorage::mesh_get_blend_shape_count(RID p_mesh) const {
  393. const Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  394. ERR_FAIL_COND_V(!mesh, -1);
  395. return mesh->blend_shape_count;
  396. }
  397. void MeshStorage::mesh_set_blend_shape_mode(RID p_mesh, RS::BlendShapeMode p_mode) {
  398. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  399. ERR_FAIL_COND(!mesh);
  400. ERR_FAIL_INDEX((int)p_mode, 2);
  401. mesh->blend_shape_mode = p_mode;
  402. }
  403. RS::BlendShapeMode MeshStorage::mesh_get_blend_shape_mode(RID p_mesh) const {
  404. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  405. ERR_FAIL_COND_V(!mesh, RS::BLEND_SHAPE_MODE_NORMALIZED);
  406. return mesh->blend_shape_mode;
  407. }
  408. void MeshStorage::mesh_surface_update_vertex_region(RID p_mesh, int p_surface, int p_offset, const Vector<uint8_t> &p_data) {
  409. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  410. ERR_FAIL_COND(!mesh);
  411. ERR_FAIL_UNSIGNED_INDEX((uint32_t)p_surface, mesh->surface_count);
  412. ERR_FAIL_COND(p_data.size() == 0);
  413. ERR_FAIL_COND(mesh->surfaces[p_surface]->vertex_buffer.is_null());
  414. uint64_t data_size = p_data.size();
  415. const uint8_t *r = p_data.ptr();
  416. RD::get_singleton()->buffer_update(mesh->surfaces[p_surface]->vertex_buffer, p_offset, data_size, r);
  417. }
  418. void MeshStorage::mesh_surface_update_attribute_region(RID p_mesh, int p_surface, int p_offset, const Vector<uint8_t> &p_data) {
  419. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  420. ERR_FAIL_COND(!mesh);
  421. ERR_FAIL_UNSIGNED_INDEX((uint32_t)p_surface, mesh->surface_count);
  422. ERR_FAIL_COND(p_data.size() == 0);
  423. ERR_FAIL_COND(mesh->surfaces[p_surface]->attribute_buffer.is_null());
  424. uint64_t data_size = p_data.size();
  425. const uint8_t *r = p_data.ptr();
  426. RD::get_singleton()->buffer_update(mesh->surfaces[p_surface]->attribute_buffer, p_offset, data_size, r);
  427. }
  428. void MeshStorage::mesh_surface_update_skin_region(RID p_mesh, int p_surface, int p_offset, const Vector<uint8_t> &p_data) {
  429. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  430. ERR_FAIL_COND(!mesh);
  431. ERR_FAIL_UNSIGNED_INDEX((uint32_t)p_surface, mesh->surface_count);
  432. ERR_FAIL_COND(p_data.size() == 0);
  433. ERR_FAIL_COND(mesh->surfaces[p_surface]->skin_buffer.is_null());
  434. uint64_t data_size = p_data.size();
  435. const uint8_t *r = p_data.ptr();
  436. RD::get_singleton()->buffer_update(mesh->surfaces[p_surface]->skin_buffer, p_offset, data_size, r);
  437. }
  438. void MeshStorage::mesh_surface_set_material(RID p_mesh, int p_surface, RID p_material) {
  439. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  440. ERR_FAIL_COND(!mesh);
  441. ERR_FAIL_UNSIGNED_INDEX((uint32_t)p_surface, mesh->surface_count);
  442. mesh->surfaces[p_surface]->material = p_material;
  443. mesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MATERIAL);
  444. mesh->material_cache.clear();
  445. }
  446. RID MeshStorage::mesh_surface_get_material(RID p_mesh, int p_surface) const {
  447. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  448. ERR_FAIL_COND_V(!mesh, RID());
  449. ERR_FAIL_UNSIGNED_INDEX_V((uint32_t)p_surface, mesh->surface_count, RID());
  450. return mesh->surfaces[p_surface]->material;
  451. }
  452. RS::SurfaceData MeshStorage::mesh_get_surface(RID p_mesh, int p_surface) const {
  453. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  454. ERR_FAIL_COND_V(!mesh, RS::SurfaceData());
  455. ERR_FAIL_UNSIGNED_INDEX_V((uint32_t)p_surface, mesh->surface_count, RS::SurfaceData());
  456. Mesh::Surface &s = *mesh->surfaces[p_surface];
  457. RS::SurfaceData sd;
  458. sd.format = s.format;
  459. if (s.vertex_buffer.is_valid()) {
  460. sd.vertex_data = RD::get_singleton()->buffer_get_data(s.vertex_buffer);
  461. }
  462. if (s.attribute_buffer.is_valid()) {
  463. sd.attribute_data = RD::get_singleton()->buffer_get_data(s.attribute_buffer);
  464. }
  465. if (s.skin_buffer.is_valid()) {
  466. sd.skin_data = RD::get_singleton()->buffer_get_data(s.skin_buffer);
  467. }
  468. sd.vertex_count = s.vertex_count;
  469. sd.index_count = s.index_count;
  470. sd.primitive = s.primitive;
  471. if (sd.index_count) {
  472. sd.index_data = RD::get_singleton()->buffer_get_data(s.index_buffer);
  473. }
  474. sd.aabb = s.aabb;
  475. for (uint32_t i = 0; i < s.lod_count; i++) {
  476. RS::SurfaceData::LOD lod;
  477. lod.edge_length = s.lods[i].edge_length;
  478. lod.index_data = RD::get_singleton()->buffer_get_data(s.lods[i].index_buffer);
  479. sd.lods.push_back(lod);
  480. }
  481. sd.bone_aabbs = s.bone_aabbs;
  482. if (s.blend_shape_buffer.is_valid()) {
  483. sd.blend_shape_data = RD::get_singleton()->buffer_get_data(s.blend_shape_buffer);
  484. }
  485. return sd;
  486. }
  487. int MeshStorage::mesh_get_surface_count(RID p_mesh) const {
  488. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  489. ERR_FAIL_COND_V(!mesh, 0);
  490. return mesh->surface_count;
  491. }
  492. void MeshStorage::mesh_set_custom_aabb(RID p_mesh, const AABB &p_aabb) {
  493. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  494. ERR_FAIL_COND(!mesh);
  495. mesh->custom_aabb = p_aabb;
  496. mesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_AABB);
  497. }
  498. AABB MeshStorage::mesh_get_custom_aabb(RID p_mesh) const {
  499. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  500. ERR_FAIL_COND_V(!mesh, AABB());
  501. return mesh->custom_aabb;
  502. }
  503. AABB MeshStorage::mesh_get_aabb(RID p_mesh, RID p_skeleton) {
  504. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  505. ERR_FAIL_COND_V(!mesh, AABB());
  506. if (mesh->custom_aabb != AABB()) {
  507. return mesh->custom_aabb;
  508. }
  509. Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton);
  510. if (!skeleton || skeleton->size == 0 || mesh->skeleton_aabb_version == skeleton->version) {
  511. return mesh->aabb;
  512. }
  513. AABB aabb;
  514. for (uint32_t i = 0; i < mesh->surface_count; i++) {
  515. AABB laabb;
  516. if ((mesh->surfaces[i]->format & RS::ARRAY_FORMAT_BONES) && mesh->surfaces[i]->bone_aabbs.size()) {
  517. int bs = mesh->surfaces[i]->bone_aabbs.size();
  518. const AABB *skbones = mesh->surfaces[i]->bone_aabbs.ptr();
  519. int sbs = skeleton->size;
  520. ERR_CONTINUE(bs > sbs);
  521. const float *baseptr = skeleton->data.ptr();
  522. bool first = true;
  523. if (skeleton->use_2d) {
  524. for (int j = 0; j < bs; j++) {
  525. if (skbones[j].size == Vector3(-1, -1, -1)) {
  526. continue; //bone is unused
  527. }
  528. const float *dataptr = baseptr + j * 8;
  529. Transform3D mtx;
  530. mtx.basis.rows[0][0] = dataptr[0];
  531. mtx.basis.rows[0][1] = dataptr[1];
  532. mtx.origin.x = dataptr[3];
  533. mtx.basis.rows[1][0] = dataptr[4];
  534. mtx.basis.rows[1][1] = dataptr[5];
  535. mtx.origin.y = dataptr[7];
  536. AABB baabb = mtx.xform(skbones[j]);
  537. if (first) {
  538. laabb = baabb;
  539. first = false;
  540. } else {
  541. laabb.merge_with(baabb);
  542. }
  543. }
  544. } else {
  545. for (int j = 0; j < bs; j++) {
  546. if (skbones[j].size == Vector3(-1, -1, -1)) {
  547. continue; //bone is unused
  548. }
  549. const float *dataptr = baseptr + j * 12;
  550. Transform3D mtx;
  551. mtx.basis.rows[0][0] = dataptr[0];
  552. mtx.basis.rows[0][1] = dataptr[1];
  553. mtx.basis.rows[0][2] = dataptr[2];
  554. mtx.origin.x = dataptr[3];
  555. mtx.basis.rows[1][0] = dataptr[4];
  556. mtx.basis.rows[1][1] = dataptr[5];
  557. mtx.basis.rows[1][2] = dataptr[6];
  558. mtx.origin.y = dataptr[7];
  559. mtx.basis.rows[2][0] = dataptr[8];
  560. mtx.basis.rows[2][1] = dataptr[9];
  561. mtx.basis.rows[2][2] = dataptr[10];
  562. mtx.origin.z = dataptr[11];
  563. AABB baabb = mtx.xform(skbones[j]);
  564. if (first) {
  565. laabb = baabb;
  566. first = false;
  567. } else {
  568. laabb.merge_with(baabb);
  569. }
  570. }
  571. }
  572. if (laabb.size == Vector3()) {
  573. laabb = mesh->surfaces[i]->aabb;
  574. }
  575. } else {
  576. laabb = mesh->surfaces[i]->aabb;
  577. }
  578. if (i == 0) {
  579. aabb = laabb;
  580. } else {
  581. aabb.merge_with(laabb);
  582. }
  583. }
  584. mesh->aabb = aabb;
  585. mesh->skeleton_aabb_version = skeleton->version;
  586. return aabb;
  587. }
  588. void MeshStorage::mesh_set_shadow_mesh(RID p_mesh, RID p_shadow_mesh) {
  589. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  590. ERR_FAIL_COND(!mesh);
  591. Mesh *shadow_mesh = mesh_owner.get_or_null(mesh->shadow_mesh);
  592. if (shadow_mesh) {
  593. shadow_mesh->shadow_owners.erase(mesh);
  594. }
  595. mesh->shadow_mesh = p_shadow_mesh;
  596. shadow_mesh = mesh_owner.get_or_null(mesh->shadow_mesh);
  597. if (shadow_mesh) {
  598. shadow_mesh->shadow_owners.insert(mesh);
  599. }
  600. mesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MESH);
  601. }
  602. void MeshStorage::mesh_clear(RID p_mesh) {
  603. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  604. ERR_FAIL_COND(!mesh);
  605. // Clear instance data before mesh data.
  606. for (MeshInstance *mi : mesh->instances) {
  607. _mesh_instance_clear(mi);
  608. }
  609. for (uint32_t i = 0; i < mesh->surface_count; i++) {
  610. Mesh::Surface &s = *mesh->surfaces[i];
  611. if (s.vertex_buffer.is_valid()) {
  612. RD::get_singleton()->free(s.vertex_buffer); //clears arrays as dependency automatically, including all versions
  613. }
  614. if (s.attribute_buffer.is_valid()) {
  615. RD::get_singleton()->free(s.attribute_buffer);
  616. }
  617. if (s.skin_buffer.is_valid()) {
  618. RD::get_singleton()->free(s.skin_buffer);
  619. }
  620. if (s.versions) {
  621. memfree(s.versions); //reallocs, so free with memfree.
  622. }
  623. if (s.index_buffer.is_valid()) {
  624. RD::get_singleton()->free(s.index_buffer);
  625. }
  626. if (s.lod_count) {
  627. for (uint32_t j = 0; j < s.lod_count; j++) {
  628. RD::get_singleton()->free(s.lods[j].index_buffer);
  629. }
  630. memdelete_arr(s.lods);
  631. }
  632. if (s.blend_shape_buffer.is_valid()) {
  633. RD::get_singleton()->free(s.blend_shape_buffer);
  634. }
  635. memdelete(mesh->surfaces[i]);
  636. }
  637. if (mesh->surfaces) {
  638. memfree(mesh->surfaces);
  639. }
  640. mesh->surfaces = nullptr;
  641. mesh->surface_count = 0;
  642. mesh->material_cache.clear();
  643. mesh->has_bone_weights = false;
  644. mesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MESH);
  645. for (Mesh *E : mesh->shadow_owners) {
  646. Mesh *shadow_owner = E;
  647. shadow_owner->shadow_mesh = RID();
  648. shadow_owner->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MESH);
  649. }
  650. }
  651. bool MeshStorage::mesh_needs_instance(RID p_mesh, bool p_has_skeleton) {
  652. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  653. ERR_FAIL_COND_V(!mesh, false);
  654. return mesh->blend_shape_count > 0 || (mesh->has_bone_weights && p_has_skeleton);
  655. }
  656. Dependency *MeshStorage::mesh_get_dependency(RID p_mesh) const {
  657. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  658. ERR_FAIL_COND_V(!mesh, nullptr);
  659. return &mesh->dependency;
  660. }
  661. /* MESH INSTANCE */
  662. RID MeshStorage::mesh_instance_create(RID p_base) {
  663. Mesh *mesh = mesh_owner.get_or_null(p_base);
  664. ERR_FAIL_COND_V(!mesh, RID());
  665. RID rid = mesh_instance_owner.make_rid();
  666. MeshInstance *mi = mesh_instance_owner.get_or_null(rid);
  667. mi->mesh = mesh;
  668. for (uint32_t i = 0; i < mesh->surface_count; i++) {
  669. _mesh_instance_add_surface(mi, mesh, i);
  670. }
  671. mi->I = mesh->instances.push_back(mi);
  672. mi->dirty = true;
  673. return rid;
  674. }
  675. void MeshStorage::mesh_instance_free(RID p_rid) {
  676. MeshInstance *mi = mesh_instance_owner.get_or_null(p_rid);
  677. _mesh_instance_clear(mi);
  678. mi->mesh->instances.erase(mi->I);
  679. mi->I = nullptr;
  680. mesh_instance_owner.free(p_rid);
  681. }
  682. void MeshStorage::mesh_instance_set_skeleton(RID p_mesh_instance, RID p_skeleton) {
  683. MeshInstance *mi = mesh_instance_owner.get_or_null(p_mesh_instance);
  684. if (mi->skeleton == p_skeleton) {
  685. return;
  686. }
  687. mi->skeleton = p_skeleton;
  688. mi->skeleton_version = 0;
  689. mi->dirty = true;
  690. }
  691. void MeshStorage::mesh_instance_set_blend_shape_weight(RID p_mesh_instance, int p_shape, float p_weight) {
  692. MeshInstance *mi = mesh_instance_owner.get_or_null(p_mesh_instance);
  693. ERR_FAIL_COND(!mi);
  694. ERR_FAIL_INDEX(p_shape, (int)mi->blend_weights.size());
  695. mi->blend_weights[p_shape] = p_weight;
  696. mi->weights_dirty = true;
  697. //will be eventually updated
  698. }
  699. void MeshStorage::_mesh_instance_clear(MeshInstance *mi) {
  700. for (const RendererRD::MeshStorage::MeshInstance::Surface &surface : mi->surfaces) {
  701. if (surface.versions) {
  702. for (uint32_t j = 0; j < surface.version_count; j++) {
  703. RD::get_singleton()->free(surface.versions[j].vertex_array);
  704. }
  705. memfree(surface.versions);
  706. }
  707. for (uint32_t i = 0; i < 2; i++) {
  708. if (surface.vertex_buffer[i].is_valid()) {
  709. RD::get_singleton()->free(surface.vertex_buffer[i]);
  710. }
  711. }
  712. }
  713. mi->surfaces.clear();
  714. if (mi->blend_weights_buffer.is_valid()) {
  715. RD::get_singleton()->free(mi->blend_weights_buffer);
  716. mi->blend_weights_buffer = RID();
  717. }
  718. mi->blend_weights.clear();
  719. mi->weights_dirty = false;
  720. mi->skeleton_version = 0;
  721. }
  722. void MeshStorage::_mesh_instance_add_surface(MeshInstance *mi, Mesh *mesh, uint32_t p_surface) {
  723. if (mesh->blend_shape_count > 0 && mi->blend_weights_buffer.is_null()) {
  724. mi->blend_weights.resize(mesh->blend_shape_count);
  725. for (float &weight : mi->blend_weights) {
  726. weight = 0;
  727. }
  728. mi->blend_weights_buffer = RD::get_singleton()->storage_buffer_create(sizeof(float) * mi->blend_weights.size(), mi->blend_weights.to_byte_array());
  729. mi->weights_dirty = true;
  730. }
  731. MeshInstance::Surface s;
  732. if ((mesh->blend_shape_count > 0 || (mesh->surfaces[p_surface]->format & RS::ARRAY_FORMAT_BONES)) && mesh->surfaces[p_surface]->vertex_buffer_size > 0) {
  733. _mesh_instance_add_surface_buffer(mi, mesh, &s, p_surface, 0);
  734. }
  735. mi->surfaces.push_back(s);
  736. mi->dirty = true;
  737. }
  738. void MeshStorage::_mesh_instance_add_surface_buffer(MeshInstance *mi, Mesh *mesh, MeshInstance::Surface *s, uint32_t p_surface, uint32_t p_buffer_index) {
  739. s->vertex_buffer[p_buffer_index] = RD::get_singleton()->vertex_buffer_create(mesh->surfaces[p_surface]->vertex_buffer_size, Vector<uint8_t>(), true);
  740. Vector<RD::Uniform> uniforms;
  741. {
  742. RD::Uniform u;
  743. u.binding = 1;
  744. u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  745. u.append_id(s->vertex_buffer[p_buffer_index]);
  746. uniforms.push_back(u);
  747. }
  748. {
  749. RD::Uniform u;
  750. u.binding = 2;
  751. u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  752. if (mi->blend_weights_buffer.is_valid()) {
  753. u.append_id(mi->blend_weights_buffer);
  754. } else {
  755. u.append_id(default_rd_storage_buffer);
  756. }
  757. uniforms.push_back(u);
  758. }
  759. s->uniform_set[p_buffer_index] = RD::get_singleton()->uniform_set_create(uniforms, skeleton_shader.version_shader[0], SkeletonShader::UNIFORM_SET_INSTANCE);
  760. }
  761. void MeshStorage::mesh_instance_check_for_update(RID p_mesh_instance) {
  762. MeshInstance *mi = mesh_instance_owner.get_or_null(p_mesh_instance);
  763. bool needs_update = mi->dirty;
  764. if (mi->weights_dirty && !mi->weight_update_list.in_list()) {
  765. dirty_mesh_instance_weights.add(&mi->weight_update_list);
  766. needs_update = true;
  767. }
  768. if (mi->array_update_list.in_list()) {
  769. return;
  770. }
  771. if (!needs_update && mi->skeleton.is_valid()) {
  772. Skeleton *sk = skeleton_owner.get_or_null(mi->skeleton);
  773. if (sk && sk->version != mi->skeleton_version) {
  774. needs_update = true;
  775. }
  776. }
  777. if (needs_update) {
  778. dirty_mesh_instance_arrays.add(&mi->array_update_list);
  779. }
  780. }
  781. void MeshStorage::mesh_instance_set_canvas_item_transform(RID p_mesh_instance, const Transform2D &p_transform) {
  782. MeshInstance *mi = mesh_instance_owner.get_or_null(p_mesh_instance);
  783. mi->canvas_item_transform_2d = p_transform;
  784. }
  785. void MeshStorage::update_mesh_instances() {
  786. while (dirty_mesh_instance_weights.first()) {
  787. MeshInstance *mi = dirty_mesh_instance_weights.first()->self();
  788. if (mi->blend_weights_buffer.is_valid()) {
  789. RD::get_singleton()->buffer_update(mi->blend_weights_buffer, 0, mi->blend_weights.size() * sizeof(float), mi->blend_weights.ptr());
  790. }
  791. dirty_mesh_instance_weights.remove(&mi->weight_update_list);
  792. mi->weights_dirty = false;
  793. }
  794. if (dirty_mesh_instance_arrays.first() == nullptr) {
  795. return; //nothing to do
  796. }
  797. //process skeletons and blend shapes
  798. uint64_t frame = RSG::rasterizer->get_frame_number();
  799. bool uses_motion_vectors = (RSG::viewport->get_num_viewports_with_motion_vectors() > 0);
  800. RD::ComputeListID compute_list = RD::get_singleton()->compute_list_begin();
  801. while (dirty_mesh_instance_arrays.first()) {
  802. MeshInstance *mi = dirty_mesh_instance_arrays.first()->self();
  803. Skeleton *sk = skeleton_owner.get_or_null(mi->skeleton);
  804. for (uint32_t i = 0; i < mi->surfaces.size(); i++) {
  805. if (mi->surfaces[i].uniform_set[0].is_null() || mi->mesh->surfaces[i]->uniform_set.is_null()) {
  806. // Skip over mesh instances that don't require their own uniform buffers.
  807. continue;
  808. }
  809. mi->surfaces[i].previous_buffer = mi->surfaces[i].current_buffer;
  810. if (uses_motion_vectors && (frame - mi->surfaces[i].last_change) == 1) {
  811. // Previous buffer's data can only be one frame old to be able to use motion vectors.
  812. uint32_t new_buffer_index = mi->surfaces[i].current_buffer ^ 1;
  813. if (mi->surfaces[i].uniform_set[new_buffer_index].is_null()) {
  814. // Create the new vertex buffer on demand where the result for the current frame will be stored.
  815. _mesh_instance_add_surface_buffer(mi, mi->mesh, &mi->surfaces[i], i, new_buffer_index);
  816. }
  817. mi->surfaces[i].current_buffer = new_buffer_index;
  818. }
  819. mi->surfaces[i].last_change = frame;
  820. RID mi_surface_uniform_set = mi->surfaces[i].uniform_set[mi->surfaces[i].current_buffer];
  821. if (mi_surface_uniform_set.is_null()) {
  822. continue;
  823. }
  824. bool array_is_2d = mi->mesh->surfaces[i]->format & RS::ARRAY_FLAG_USE_2D_VERTICES;
  825. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, skeleton_shader.pipeline[array_is_2d ? SkeletonShader::SHADER_MODE_2D : SkeletonShader::SHADER_MODE_3D]);
  826. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, mi_surface_uniform_set, SkeletonShader::UNIFORM_SET_INSTANCE);
  827. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, mi->mesh->surfaces[i]->uniform_set, SkeletonShader::UNIFORM_SET_SURFACE);
  828. if (sk && sk->uniform_set_mi.is_valid()) {
  829. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, sk->uniform_set_mi, SkeletonShader::UNIFORM_SET_SKELETON);
  830. } else {
  831. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, skeleton_shader.default_skeleton_uniform_set, SkeletonShader::UNIFORM_SET_SKELETON);
  832. }
  833. SkeletonShader::PushConstant push_constant;
  834. push_constant.has_normal = mi->mesh->surfaces[i]->format & RS::ARRAY_FORMAT_NORMAL;
  835. push_constant.has_tangent = mi->mesh->surfaces[i]->format & RS::ARRAY_FORMAT_TANGENT;
  836. push_constant.has_skeleton = sk != nullptr && sk->use_2d == array_is_2d && (mi->mesh->surfaces[i]->format & RS::ARRAY_FORMAT_BONES);
  837. push_constant.has_blend_shape = mi->mesh->blend_shape_count > 0;
  838. push_constant.vertex_count = mi->mesh->surfaces[i]->vertex_count;
  839. push_constant.vertex_stride = (mi->mesh->surfaces[i]->vertex_buffer_size / mi->mesh->surfaces[i]->vertex_count) / 4;
  840. push_constant.skin_stride = (mi->mesh->surfaces[i]->skin_buffer_size / mi->mesh->surfaces[i]->vertex_count) / 4;
  841. push_constant.skin_weight_offset = (mi->mesh->surfaces[i]->format & RS::ARRAY_FLAG_USE_8_BONE_WEIGHTS) ? 4 : 2;
  842. Transform2D transform = Transform2D();
  843. if (sk && sk->use_2d) {
  844. transform = mi->canvas_item_transform_2d.affine_inverse() * sk->base_transform_2d;
  845. }
  846. push_constant.skeleton_transform_x[0] = transform.columns[0][0];
  847. push_constant.skeleton_transform_x[1] = transform.columns[0][1];
  848. push_constant.skeleton_transform_y[0] = transform.columns[1][0];
  849. push_constant.skeleton_transform_y[1] = transform.columns[1][1];
  850. push_constant.skeleton_transform_offset[0] = transform.columns[2][0];
  851. push_constant.skeleton_transform_offset[1] = transform.columns[2][1];
  852. Transform2D inverse_transform = transform.affine_inverse();
  853. push_constant.inverse_transform_x[0] = inverse_transform.columns[0][0];
  854. push_constant.inverse_transform_x[1] = inverse_transform.columns[0][1];
  855. push_constant.inverse_transform_y[0] = inverse_transform.columns[1][0];
  856. push_constant.inverse_transform_y[1] = inverse_transform.columns[1][1];
  857. push_constant.inverse_transform_offset[0] = inverse_transform.columns[2][0];
  858. push_constant.inverse_transform_offset[1] = inverse_transform.columns[2][1];
  859. push_constant.blend_shape_count = mi->mesh->blend_shape_count;
  860. push_constant.normalized_blend_shapes = mi->mesh->blend_shape_mode == RS::BLEND_SHAPE_MODE_NORMALIZED;
  861. push_constant.pad0 = 0;
  862. push_constant.pad1 = 0;
  863. RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(SkeletonShader::PushConstant));
  864. //dispatch without barrier, so all is done at the same time
  865. RD::get_singleton()->compute_list_dispatch_threads(compute_list, push_constant.vertex_count, 1, 1);
  866. }
  867. mi->dirty = false;
  868. if (sk) {
  869. mi->skeleton_version = sk->version;
  870. }
  871. dirty_mesh_instance_arrays.remove(&mi->array_update_list);
  872. }
  873. RD::get_singleton()->compute_list_end();
  874. }
  875. void MeshStorage::_mesh_surface_generate_version_for_input_mask(Mesh::Surface::Version &v, Mesh::Surface *s, uint32_t p_input_mask, bool p_input_motion_vectors, MeshInstance::Surface *mis) {
  876. Vector<RD::VertexAttribute> attributes;
  877. Vector<RID> buffers;
  878. uint32_t stride = 0;
  879. uint32_t attribute_stride = 0;
  880. uint32_t skin_stride = 0;
  881. for (int i = 0; i < RS::ARRAY_INDEX; i++) {
  882. RD::VertexAttribute vd;
  883. RID buffer;
  884. vd.location = i;
  885. if (!(s->format & (1 << i))) {
  886. // Not supplied by surface, use default value
  887. buffer = mesh_default_rd_buffers[i];
  888. vd.stride = 0;
  889. switch (i) {
  890. case RS::ARRAY_VERTEX: {
  891. vd.format = RD::DATA_FORMAT_R32G32B32_SFLOAT;
  892. } break;
  893. case RS::ARRAY_NORMAL: {
  894. vd.format = RD::DATA_FORMAT_R32G32B32_SFLOAT;
  895. } break;
  896. case RS::ARRAY_TANGENT: {
  897. vd.format = RD::DATA_FORMAT_R32G32B32A32_SFLOAT;
  898. } break;
  899. case RS::ARRAY_COLOR: {
  900. vd.format = RD::DATA_FORMAT_R32G32B32A32_SFLOAT;
  901. } break;
  902. case RS::ARRAY_TEX_UV: {
  903. vd.format = RD::DATA_FORMAT_R32G32_SFLOAT;
  904. } break;
  905. case RS::ARRAY_TEX_UV2: {
  906. vd.format = RD::DATA_FORMAT_R32G32_SFLOAT;
  907. } break;
  908. case RS::ARRAY_CUSTOM0:
  909. case RS::ARRAY_CUSTOM1:
  910. case RS::ARRAY_CUSTOM2:
  911. case RS::ARRAY_CUSTOM3: {
  912. //assumed weights too
  913. vd.format = RD::DATA_FORMAT_R32G32B32A32_SFLOAT;
  914. } break;
  915. case RS::ARRAY_BONES: {
  916. //assumed weights too
  917. vd.format = RD::DATA_FORMAT_R32G32B32A32_UINT;
  918. } break;
  919. case RS::ARRAY_WEIGHTS: {
  920. //assumed weights too
  921. vd.format = RD::DATA_FORMAT_R32G32B32A32_SFLOAT;
  922. } break;
  923. }
  924. } else {
  925. //Supplied, use it
  926. vd.stride = 1; //mark that it needs a stride set (default uses 0)
  927. switch (i) {
  928. case RS::ARRAY_VERTEX: {
  929. vd.offset = stride;
  930. if (s->format & RS::ARRAY_FLAG_USE_2D_VERTICES) {
  931. vd.format = RD::DATA_FORMAT_R32G32_SFLOAT;
  932. stride += sizeof(float) * 2;
  933. } else {
  934. vd.format = RD::DATA_FORMAT_R32G32B32_SFLOAT;
  935. stride += sizeof(float) * 3;
  936. }
  937. if (mis) {
  938. buffer = mis->vertex_buffer[mis->current_buffer];
  939. } else {
  940. buffer = s->vertex_buffer;
  941. }
  942. } break;
  943. case RS::ARRAY_NORMAL: {
  944. vd.offset = stride;
  945. vd.format = RD::DATA_FORMAT_R16G16_UNORM;
  946. stride += sizeof(uint16_t) * 2;
  947. if (mis) {
  948. buffer = mis->vertex_buffer[mis->current_buffer];
  949. } else {
  950. buffer = s->vertex_buffer;
  951. }
  952. } break;
  953. case RS::ARRAY_TANGENT: {
  954. vd.offset = stride;
  955. vd.format = RD::DATA_FORMAT_R16G16_UNORM;
  956. stride += sizeof(uint16_t) * 2;
  957. if (mis) {
  958. buffer = mis->vertex_buffer[mis->current_buffer];
  959. } else {
  960. buffer = s->vertex_buffer;
  961. }
  962. } break;
  963. case RS::ARRAY_COLOR: {
  964. vd.offset = attribute_stride;
  965. vd.format = RD::DATA_FORMAT_R8G8B8A8_UNORM;
  966. attribute_stride += sizeof(int8_t) * 4;
  967. buffer = s->attribute_buffer;
  968. } break;
  969. case RS::ARRAY_TEX_UV: {
  970. vd.offset = attribute_stride;
  971. vd.format = RD::DATA_FORMAT_R32G32_SFLOAT;
  972. attribute_stride += sizeof(float) * 2;
  973. buffer = s->attribute_buffer;
  974. } break;
  975. case RS::ARRAY_TEX_UV2: {
  976. vd.offset = attribute_stride;
  977. vd.format = RD::DATA_FORMAT_R32G32_SFLOAT;
  978. attribute_stride += sizeof(float) * 2;
  979. buffer = s->attribute_buffer;
  980. } break;
  981. case RS::ARRAY_CUSTOM0:
  982. case RS::ARRAY_CUSTOM1:
  983. case RS::ARRAY_CUSTOM2:
  984. case RS::ARRAY_CUSTOM3: {
  985. vd.offset = attribute_stride;
  986. int idx = i - RS::ARRAY_CUSTOM0;
  987. const uint32_t fmt_shift[RS::ARRAY_CUSTOM_COUNT] = { RS::ARRAY_FORMAT_CUSTOM0_SHIFT, RS::ARRAY_FORMAT_CUSTOM1_SHIFT, RS::ARRAY_FORMAT_CUSTOM2_SHIFT, RS::ARRAY_FORMAT_CUSTOM3_SHIFT };
  988. uint32_t fmt = (s->format >> fmt_shift[idx]) & RS::ARRAY_FORMAT_CUSTOM_MASK;
  989. const uint32_t fmtsize[RS::ARRAY_CUSTOM_MAX] = { 4, 4, 4, 8, 4, 8, 12, 16 };
  990. const RD::DataFormat fmtrd[RS::ARRAY_CUSTOM_MAX] = { RD::DATA_FORMAT_R8G8B8A8_UNORM, RD::DATA_FORMAT_R8G8B8A8_SNORM, RD::DATA_FORMAT_R16G16_SFLOAT, RD::DATA_FORMAT_R16G16B16A16_SFLOAT, RD::DATA_FORMAT_R32_SFLOAT, RD::DATA_FORMAT_R32G32_SFLOAT, RD::DATA_FORMAT_R32G32B32_SFLOAT, RD::DATA_FORMAT_R32G32B32A32_SFLOAT };
  991. vd.format = fmtrd[fmt];
  992. attribute_stride += fmtsize[fmt];
  993. buffer = s->attribute_buffer;
  994. } break;
  995. case RS::ARRAY_BONES: {
  996. vd.offset = skin_stride;
  997. vd.format = RD::DATA_FORMAT_R16G16B16A16_UINT;
  998. skin_stride += sizeof(int16_t) * 4;
  999. buffer = s->skin_buffer;
  1000. } break;
  1001. case RS::ARRAY_WEIGHTS: {
  1002. vd.offset = skin_stride;
  1003. vd.format = RD::DATA_FORMAT_R16G16B16A16_UNORM;
  1004. skin_stride += sizeof(int16_t) * 4;
  1005. buffer = s->skin_buffer;
  1006. } break;
  1007. }
  1008. }
  1009. if (!(p_input_mask & (1 << i))) {
  1010. continue; // Shader does not need this, skip it (but computing stride was important anyway)
  1011. }
  1012. attributes.push_back(vd);
  1013. buffers.push_back(buffer);
  1014. if (p_input_motion_vectors) {
  1015. // Since the previous vertex, normal and tangent can't be part of the vertex format but they are required when motion
  1016. // vectors are enabled, we opt to push a copy of the vertex attribute with a different location and buffer (if it's
  1017. // part of an instance that has one).
  1018. switch (i) {
  1019. case RS::ARRAY_VERTEX: {
  1020. vd.location = ATTRIBUTE_LOCATION_PREV_VERTEX;
  1021. } break;
  1022. case RS::ARRAY_NORMAL: {
  1023. vd.location = ATTRIBUTE_LOCATION_PREV_NORMAL;
  1024. } break;
  1025. case RS::ARRAY_TANGENT: {
  1026. vd.location = ATTRIBUTE_LOCATION_PREV_TANGENT;
  1027. } break;
  1028. }
  1029. if (int(vd.location) != i) {
  1030. if (mis && buffer != mesh_default_rd_buffers[i]) {
  1031. buffer = mis->vertex_buffer[mis->previous_buffer];
  1032. }
  1033. attributes.push_back(vd);
  1034. buffers.push_back(buffer);
  1035. }
  1036. }
  1037. }
  1038. //update final stride
  1039. for (int i = 0; i < attributes.size(); i++) {
  1040. if (attributes[i].stride == 0) {
  1041. continue; //default location
  1042. }
  1043. int loc = attributes[i].location;
  1044. if ((loc < RS::ARRAY_COLOR) || ((loc >= ATTRIBUTE_LOCATION_PREV_VERTEX) && (loc <= ATTRIBUTE_LOCATION_PREV_TANGENT))) {
  1045. attributes.write[i].stride = stride;
  1046. } else if (loc < RS::ARRAY_BONES) {
  1047. attributes.write[i].stride = attribute_stride;
  1048. } else {
  1049. attributes.write[i].stride = skin_stride;
  1050. }
  1051. }
  1052. v.input_mask = p_input_mask;
  1053. v.current_buffer = mis ? mis->current_buffer : 0;
  1054. v.previous_buffer = mis ? mis->previous_buffer : 0;
  1055. v.input_motion_vectors = p_input_motion_vectors;
  1056. v.vertex_format = RD::get_singleton()->vertex_format_create(attributes);
  1057. v.vertex_array = RD::get_singleton()->vertex_array_create(s->vertex_count, v.vertex_format, buffers);
  1058. }
  1059. ////////////////// MULTIMESH
  1060. RID MeshStorage::multimesh_allocate() {
  1061. return multimesh_owner.allocate_rid();
  1062. }
  1063. void MeshStorage::multimesh_initialize(RID p_rid) {
  1064. multimesh_owner.initialize_rid(p_rid, MultiMesh());
  1065. }
  1066. void MeshStorage::multimesh_free(RID p_rid) {
  1067. _update_dirty_multimeshes();
  1068. multimesh_allocate_data(p_rid, 0, RS::MULTIMESH_TRANSFORM_2D);
  1069. MultiMesh *multimesh = multimesh_owner.get_or_null(p_rid);
  1070. multimesh->dependency.deleted_notify(p_rid);
  1071. multimesh_owner.free(p_rid);
  1072. }
  1073. void MeshStorage::multimesh_allocate_data(RID p_multimesh, int p_instances, RS::MultimeshTransformFormat p_transform_format, bool p_use_colors, bool p_use_custom_data) {
  1074. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1075. ERR_FAIL_COND(!multimesh);
  1076. if (multimesh->instances == p_instances && multimesh->xform_format == p_transform_format && multimesh->uses_colors == p_use_colors && multimesh->uses_custom_data == p_use_custom_data) {
  1077. return;
  1078. }
  1079. if (multimesh->buffer.is_valid()) {
  1080. RD::get_singleton()->free(multimesh->buffer);
  1081. multimesh->buffer = RID();
  1082. multimesh->uniform_set_2d = RID(); //cleared by dependency
  1083. multimesh->uniform_set_3d = RID(); //cleared by dependency
  1084. }
  1085. if (multimesh->data_cache_dirty_regions) {
  1086. memdelete_arr(multimesh->data_cache_dirty_regions);
  1087. multimesh->data_cache_dirty_regions = nullptr;
  1088. multimesh->data_cache_dirty_region_count = 0;
  1089. }
  1090. if (multimesh->previous_data_cache_dirty_regions) {
  1091. memdelete_arr(multimesh->previous_data_cache_dirty_regions);
  1092. multimesh->previous_data_cache_dirty_regions = nullptr;
  1093. multimesh->previous_data_cache_dirty_region_count = 0;
  1094. }
  1095. multimesh->instances = p_instances;
  1096. multimesh->xform_format = p_transform_format;
  1097. multimesh->uses_colors = p_use_colors;
  1098. multimesh->color_offset_cache = p_transform_format == RS::MULTIMESH_TRANSFORM_2D ? 8 : 12;
  1099. multimesh->uses_custom_data = p_use_custom_data;
  1100. multimesh->custom_data_offset_cache = multimesh->color_offset_cache + (p_use_colors ? 4 : 0);
  1101. multimesh->stride_cache = multimesh->custom_data_offset_cache + (p_use_custom_data ? 4 : 0);
  1102. multimesh->buffer_set = false;
  1103. //print_line("allocate, elements: " + itos(p_instances) + " 2D: " + itos(p_transform_format == RS::MULTIMESH_TRANSFORM_2D) + " colors " + itos(multimesh->uses_colors) + " data " + itos(multimesh->uses_custom_data) + " stride " + itos(multimesh->stride_cache) + " total size " + itos(multimesh->stride_cache * multimesh->instances));
  1104. multimesh->data_cache = Vector<float>();
  1105. multimesh->aabb = AABB();
  1106. multimesh->aabb_dirty = false;
  1107. multimesh->visible_instances = MIN(multimesh->visible_instances, multimesh->instances);
  1108. multimesh->motion_vectors_current_offset = 0;
  1109. multimesh->motion_vectors_previous_offset = 0;
  1110. multimesh->motion_vectors_last_change = -1;
  1111. if (multimesh->instances) {
  1112. uint32_t buffer_size = multimesh->instances * multimesh->stride_cache * sizeof(float);
  1113. if (multimesh->motion_vectors_enabled) {
  1114. buffer_size *= 2;
  1115. }
  1116. multimesh->buffer = RD::get_singleton()->storage_buffer_create(buffer_size);
  1117. }
  1118. multimesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MULTIMESH);
  1119. }
  1120. void MeshStorage::_multimesh_enable_motion_vectors(MultiMesh *multimesh) {
  1121. if (multimesh->motion_vectors_enabled) {
  1122. return;
  1123. }
  1124. multimesh->motion_vectors_enabled = true;
  1125. multimesh->motion_vectors_current_offset = 0;
  1126. multimesh->motion_vectors_previous_offset = 0;
  1127. multimesh->motion_vectors_last_change = -1;
  1128. if (!multimesh->data_cache.is_empty()) {
  1129. multimesh->data_cache.append_array(multimesh->data_cache);
  1130. }
  1131. uint32_t buffer_size = multimesh->instances * multimesh->stride_cache * sizeof(float);
  1132. uint32_t new_buffer_size = buffer_size * 2;
  1133. RID new_buffer = RD::get_singleton()->storage_buffer_create(new_buffer_size);
  1134. if (multimesh->buffer_set && multimesh->data_cache.is_empty()) {
  1135. // If the buffer was set but there's no data cached in the CPU, we copy the buffer directly on the GPU.
  1136. RD::get_singleton()->barrier();
  1137. RD::get_singleton()->buffer_copy(multimesh->buffer, new_buffer, 0, 0, buffer_size, RD::BARRIER_MASK_NO_BARRIER);
  1138. RD::get_singleton()->buffer_copy(multimesh->buffer, new_buffer, 0, buffer_size, buffer_size);
  1139. } else if (!multimesh->data_cache.is_empty()) {
  1140. // Simply upload the data cached in the CPU, which should already be doubled in size.
  1141. ERR_FAIL_COND(multimesh->data_cache.size() * sizeof(float) != size_t(new_buffer_size));
  1142. RD::get_singleton()->buffer_update(new_buffer, 0, new_buffer_size, multimesh->data_cache.ptr());
  1143. }
  1144. if (multimesh->buffer.is_valid()) {
  1145. RD::get_singleton()->free(multimesh->buffer);
  1146. }
  1147. multimesh->buffer = new_buffer;
  1148. multimesh->uniform_set_3d = RID(); // Cleared by dependency.
  1149. // Invalidate any references to the buffer that was released and the uniform set that was pointing to it.
  1150. multimesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MULTIMESH);
  1151. }
  1152. void MeshStorage::_multimesh_get_motion_vectors_offsets(RID p_multimesh, uint32_t &r_current_offset, uint32_t &r_prev_offset) {
  1153. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1154. ERR_FAIL_COND(!multimesh);
  1155. r_current_offset = multimesh->motion_vectors_current_offset;
  1156. if (!_multimesh_uses_motion_vectors(multimesh)) {
  1157. multimesh->motion_vectors_previous_offset = multimesh->motion_vectors_current_offset;
  1158. }
  1159. r_prev_offset = multimesh->motion_vectors_previous_offset;
  1160. }
  1161. bool MeshStorage::_multimesh_uses_motion_vectors_offsets(RID p_multimesh) {
  1162. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1163. ERR_FAIL_NULL_V(multimesh, false);
  1164. return _multimesh_uses_motion_vectors(multimesh);
  1165. }
  1166. int MeshStorage::multimesh_get_instance_count(RID p_multimesh) const {
  1167. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1168. ERR_FAIL_COND_V(!multimesh, 0);
  1169. return multimesh->instances;
  1170. }
  1171. void MeshStorage::multimesh_set_mesh(RID p_multimesh, RID p_mesh) {
  1172. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1173. ERR_FAIL_COND(!multimesh);
  1174. if (multimesh->mesh == p_mesh) {
  1175. return;
  1176. }
  1177. multimesh->mesh = p_mesh;
  1178. if (multimesh->instances == 0) {
  1179. return;
  1180. }
  1181. if (multimesh->data_cache.size()) {
  1182. //we have a data cache, just mark it dirt
  1183. _multimesh_mark_all_dirty(multimesh, false, true);
  1184. } else if (multimesh->instances) {
  1185. //need to re-create AABB unfortunately, calling this has a penalty
  1186. if (multimesh->buffer_set) {
  1187. Vector<uint8_t> buffer = RD::get_singleton()->buffer_get_data(multimesh->buffer);
  1188. const uint8_t *r = buffer.ptr() + multimesh->motion_vectors_current_offset * multimesh->stride_cache * sizeof(float);
  1189. const float *data = reinterpret_cast<const float *>(r);
  1190. _multimesh_re_create_aabb(multimesh, data, multimesh->instances);
  1191. }
  1192. }
  1193. multimesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MESH);
  1194. }
  1195. #define MULTIMESH_DIRTY_REGION_SIZE 512
  1196. void MeshStorage::_multimesh_make_local(MultiMesh *multimesh) const {
  1197. if (multimesh->data_cache.size() > 0) {
  1198. return; //already local
  1199. }
  1200. // this means that the user wants to load/save individual elements,
  1201. // for this, the data must reside on CPU, so just copy it there.
  1202. uint32_t buffer_size = multimesh->instances * multimesh->stride_cache;
  1203. if (multimesh->motion_vectors_enabled) {
  1204. buffer_size *= 2;
  1205. }
  1206. multimesh->data_cache.resize(buffer_size);
  1207. {
  1208. float *w = multimesh->data_cache.ptrw();
  1209. if (multimesh->buffer_set) {
  1210. Vector<uint8_t> buffer = RD::get_singleton()->buffer_get_data(multimesh->buffer);
  1211. {
  1212. const uint8_t *r = buffer.ptr();
  1213. memcpy(w, r, buffer.size());
  1214. }
  1215. } else {
  1216. memset(w, 0, buffer_size * sizeof(float));
  1217. }
  1218. }
  1219. uint32_t data_cache_dirty_region_count = (multimesh->instances - 1) / MULTIMESH_DIRTY_REGION_SIZE + 1;
  1220. multimesh->data_cache_dirty_regions = memnew_arr(bool, data_cache_dirty_region_count);
  1221. memset(multimesh->data_cache_dirty_regions, 0, data_cache_dirty_region_count * sizeof(bool));
  1222. multimesh->data_cache_dirty_region_count = 0;
  1223. multimesh->previous_data_cache_dirty_regions = memnew_arr(bool, data_cache_dirty_region_count);
  1224. memset(multimesh->previous_data_cache_dirty_regions, 0, data_cache_dirty_region_count * sizeof(bool));
  1225. multimesh->previous_data_cache_dirty_region_count = 0;
  1226. }
  1227. void MeshStorage::_multimesh_update_motion_vectors_data_cache(MultiMesh *multimesh) {
  1228. ERR_FAIL_COND(multimesh->data_cache.is_empty());
  1229. if (!multimesh->motion_vectors_enabled) {
  1230. return;
  1231. }
  1232. uint32_t frame = RSG::rasterizer->get_frame_number();
  1233. if (multimesh->motion_vectors_last_change != frame) {
  1234. multimesh->motion_vectors_previous_offset = multimesh->motion_vectors_current_offset;
  1235. multimesh->motion_vectors_current_offset = multimesh->instances - multimesh->motion_vectors_current_offset;
  1236. multimesh->motion_vectors_last_change = frame;
  1237. if (multimesh->previous_data_cache_dirty_region_count > 0) {
  1238. uint8_t *data = (uint8_t *)multimesh->data_cache.ptrw();
  1239. uint32_t current_ofs = multimesh->motion_vectors_current_offset * multimesh->stride_cache * sizeof(float);
  1240. uint32_t previous_ofs = multimesh->motion_vectors_previous_offset * multimesh->stride_cache * sizeof(float);
  1241. uint32_t visible_instances = multimesh->visible_instances >= 0 ? multimesh->visible_instances : multimesh->instances;
  1242. uint32_t visible_region_count = visible_instances == 0 ? 0 : (visible_instances - 1) / MULTIMESH_DIRTY_REGION_SIZE + 1;
  1243. uint32_t region_size = multimesh->stride_cache * MULTIMESH_DIRTY_REGION_SIZE * sizeof(float);
  1244. uint32_t size = multimesh->stride_cache * (uint32_t)multimesh->instances * (uint32_t)sizeof(float);
  1245. for (uint32_t i = 0; i < visible_region_count; i++) {
  1246. if (multimesh->previous_data_cache_dirty_regions[i]) {
  1247. uint32_t offset = i * region_size;
  1248. memcpy(data + current_ofs + offset, data + previous_ofs + offset, MIN(region_size, size - offset));
  1249. }
  1250. }
  1251. }
  1252. }
  1253. }
  1254. bool MeshStorage::_multimesh_uses_motion_vectors(MultiMesh *multimesh) {
  1255. return (RSG::rasterizer->get_frame_number() - multimesh->motion_vectors_last_change) < 2;
  1256. }
  1257. void MeshStorage::_multimesh_mark_dirty(MultiMesh *multimesh, int p_index, bool p_aabb) {
  1258. uint32_t region_index = p_index / MULTIMESH_DIRTY_REGION_SIZE;
  1259. #ifdef DEBUG_ENABLED
  1260. uint32_t data_cache_dirty_region_count = (multimesh->instances - 1) / MULTIMESH_DIRTY_REGION_SIZE + 1;
  1261. ERR_FAIL_UNSIGNED_INDEX(region_index, data_cache_dirty_region_count); //bug
  1262. #endif
  1263. if (!multimesh->data_cache_dirty_regions[region_index]) {
  1264. multimesh->data_cache_dirty_regions[region_index] = true;
  1265. multimesh->data_cache_dirty_region_count++;
  1266. }
  1267. if (p_aabb) {
  1268. multimesh->aabb_dirty = true;
  1269. }
  1270. if (!multimesh->dirty) {
  1271. multimesh->dirty_list = multimesh_dirty_list;
  1272. multimesh_dirty_list = multimesh;
  1273. multimesh->dirty = true;
  1274. }
  1275. }
  1276. void MeshStorage::_multimesh_mark_all_dirty(MultiMesh *multimesh, bool p_data, bool p_aabb) {
  1277. if (p_data) {
  1278. uint32_t data_cache_dirty_region_count = (multimesh->instances - 1) / MULTIMESH_DIRTY_REGION_SIZE + 1;
  1279. for (uint32_t i = 0; i < data_cache_dirty_region_count; i++) {
  1280. if (!multimesh->data_cache_dirty_regions[i]) {
  1281. multimesh->data_cache_dirty_regions[i] = true;
  1282. multimesh->data_cache_dirty_region_count++;
  1283. }
  1284. }
  1285. }
  1286. if (p_aabb) {
  1287. multimesh->aabb_dirty = true;
  1288. }
  1289. if (!multimesh->dirty) {
  1290. multimesh->dirty_list = multimesh_dirty_list;
  1291. multimesh_dirty_list = multimesh;
  1292. multimesh->dirty = true;
  1293. }
  1294. }
  1295. void MeshStorage::_multimesh_re_create_aabb(MultiMesh *multimesh, const float *p_data, int p_instances) {
  1296. ERR_FAIL_COND(multimesh->mesh.is_null());
  1297. AABB aabb;
  1298. AABB mesh_aabb = mesh_get_aabb(multimesh->mesh);
  1299. for (int i = 0; i < p_instances; i++) {
  1300. const float *data = p_data + multimesh->stride_cache * i;
  1301. Transform3D t;
  1302. if (multimesh->xform_format == RS::MULTIMESH_TRANSFORM_3D) {
  1303. t.basis.rows[0][0] = data[0];
  1304. t.basis.rows[0][1] = data[1];
  1305. t.basis.rows[0][2] = data[2];
  1306. t.origin.x = data[3];
  1307. t.basis.rows[1][0] = data[4];
  1308. t.basis.rows[1][1] = data[5];
  1309. t.basis.rows[1][2] = data[6];
  1310. t.origin.y = data[7];
  1311. t.basis.rows[2][0] = data[8];
  1312. t.basis.rows[2][1] = data[9];
  1313. t.basis.rows[2][2] = data[10];
  1314. t.origin.z = data[11];
  1315. } else {
  1316. t.basis.rows[0][0] = data[0];
  1317. t.basis.rows[0][1] = data[1];
  1318. t.origin.x = data[3];
  1319. t.basis.rows[1][0] = data[4];
  1320. t.basis.rows[1][1] = data[5];
  1321. t.origin.y = data[7];
  1322. }
  1323. if (i == 0) {
  1324. aabb = t.xform(mesh_aabb);
  1325. } else {
  1326. aabb.merge_with(t.xform(mesh_aabb));
  1327. }
  1328. }
  1329. multimesh->aabb = aabb;
  1330. }
  1331. void MeshStorage::multimesh_instance_set_transform(RID p_multimesh, int p_index, const Transform3D &p_transform) {
  1332. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1333. ERR_FAIL_COND(!multimesh);
  1334. ERR_FAIL_INDEX(p_index, multimesh->instances);
  1335. ERR_FAIL_COND(multimesh->xform_format != RS::MULTIMESH_TRANSFORM_3D);
  1336. _multimesh_make_local(multimesh);
  1337. bool uses_motion_vectors = (RSG::viewport->get_num_viewports_with_motion_vectors() > 0);
  1338. if (uses_motion_vectors) {
  1339. _multimesh_enable_motion_vectors(multimesh);
  1340. }
  1341. _multimesh_update_motion_vectors_data_cache(multimesh);
  1342. {
  1343. float *w = multimesh->data_cache.ptrw();
  1344. float *dataptr = w + (multimesh->motion_vectors_current_offset + p_index) * multimesh->stride_cache;
  1345. dataptr[0] = p_transform.basis.rows[0][0];
  1346. dataptr[1] = p_transform.basis.rows[0][1];
  1347. dataptr[2] = p_transform.basis.rows[0][2];
  1348. dataptr[3] = p_transform.origin.x;
  1349. dataptr[4] = p_transform.basis.rows[1][0];
  1350. dataptr[5] = p_transform.basis.rows[1][1];
  1351. dataptr[6] = p_transform.basis.rows[1][2];
  1352. dataptr[7] = p_transform.origin.y;
  1353. dataptr[8] = p_transform.basis.rows[2][0];
  1354. dataptr[9] = p_transform.basis.rows[2][1];
  1355. dataptr[10] = p_transform.basis.rows[2][2];
  1356. dataptr[11] = p_transform.origin.z;
  1357. }
  1358. _multimesh_mark_dirty(multimesh, p_index, true);
  1359. }
  1360. void MeshStorage::multimesh_instance_set_transform_2d(RID p_multimesh, int p_index, const Transform2D &p_transform) {
  1361. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1362. ERR_FAIL_COND(!multimesh);
  1363. ERR_FAIL_INDEX(p_index, multimesh->instances);
  1364. ERR_FAIL_COND(multimesh->xform_format != RS::MULTIMESH_TRANSFORM_2D);
  1365. _multimesh_make_local(multimesh);
  1366. _multimesh_update_motion_vectors_data_cache(multimesh);
  1367. {
  1368. float *w = multimesh->data_cache.ptrw();
  1369. float *dataptr = w + (multimesh->motion_vectors_current_offset + p_index) * multimesh->stride_cache;
  1370. dataptr[0] = p_transform.columns[0][0];
  1371. dataptr[1] = p_transform.columns[1][0];
  1372. dataptr[2] = 0;
  1373. dataptr[3] = p_transform.columns[2][0];
  1374. dataptr[4] = p_transform.columns[0][1];
  1375. dataptr[5] = p_transform.columns[1][1];
  1376. dataptr[6] = 0;
  1377. dataptr[7] = p_transform.columns[2][1];
  1378. }
  1379. _multimesh_mark_dirty(multimesh, p_index, true);
  1380. }
  1381. void MeshStorage::multimesh_instance_set_color(RID p_multimesh, int p_index, const Color &p_color) {
  1382. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1383. ERR_FAIL_COND(!multimesh);
  1384. ERR_FAIL_INDEX(p_index, multimesh->instances);
  1385. ERR_FAIL_COND(!multimesh->uses_colors);
  1386. _multimesh_make_local(multimesh);
  1387. _multimesh_update_motion_vectors_data_cache(multimesh);
  1388. {
  1389. float *w = multimesh->data_cache.ptrw();
  1390. float *dataptr = w + (multimesh->motion_vectors_current_offset + p_index) * multimesh->stride_cache + multimesh->color_offset_cache;
  1391. dataptr[0] = p_color.r;
  1392. dataptr[1] = p_color.g;
  1393. dataptr[2] = p_color.b;
  1394. dataptr[3] = p_color.a;
  1395. }
  1396. _multimesh_mark_dirty(multimesh, p_index, false);
  1397. }
  1398. void MeshStorage::multimesh_instance_set_custom_data(RID p_multimesh, int p_index, const Color &p_color) {
  1399. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1400. ERR_FAIL_COND(!multimesh);
  1401. ERR_FAIL_INDEX(p_index, multimesh->instances);
  1402. ERR_FAIL_COND(!multimesh->uses_custom_data);
  1403. _multimesh_make_local(multimesh);
  1404. _multimesh_update_motion_vectors_data_cache(multimesh);
  1405. {
  1406. float *w = multimesh->data_cache.ptrw();
  1407. float *dataptr = w + (multimesh->motion_vectors_current_offset + p_index) * multimesh->stride_cache + multimesh->custom_data_offset_cache;
  1408. dataptr[0] = p_color.r;
  1409. dataptr[1] = p_color.g;
  1410. dataptr[2] = p_color.b;
  1411. dataptr[3] = p_color.a;
  1412. }
  1413. _multimesh_mark_dirty(multimesh, p_index, false);
  1414. }
  1415. RID MeshStorage::multimesh_get_mesh(RID p_multimesh) const {
  1416. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1417. ERR_FAIL_COND_V(!multimesh, RID());
  1418. return multimesh->mesh;
  1419. }
  1420. Dependency *MeshStorage::multimesh_get_dependency(RID p_multimesh) const {
  1421. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1422. ERR_FAIL_COND_V(!multimesh, nullptr);
  1423. return &multimesh->dependency;
  1424. }
  1425. Transform3D MeshStorage::multimesh_instance_get_transform(RID p_multimesh, int p_index) const {
  1426. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1427. ERR_FAIL_COND_V(!multimesh, Transform3D());
  1428. ERR_FAIL_INDEX_V(p_index, multimesh->instances, Transform3D());
  1429. ERR_FAIL_COND_V(multimesh->xform_format != RS::MULTIMESH_TRANSFORM_3D, Transform3D());
  1430. _multimesh_make_local(multimesh);
  1431. Transform3D t;
  1432. {
  1433. const float *r = multimesh->data_cache.ptr();
  1434. const float *dataptr = r + (multimesh->motion_vectors_current_offset + p_index) * multimesh->stride_cache;
  1435. t.basis.rows[0][0] = dataptr[0];
  1436. t.basis.rows[0][1] = dataptr[1];
  1437. t.basis.rows[0][2] = dataptr[2];
  1438. t.origin.x = dataptr[3];
  1439. t.basis.rows[1][0] = dataptr[4];
  1440. t.basis.rows[1][1] = dataptr[5];
  1441. t.basis.rows[1][2] = dataptr[6];
  1442. t.origin.y = dataptr[7];
  1443. t.basis.rows[2][0] = dataptr[8];
  1444. t.basis.rows[2][1] = dataptr[9];
  1445. t.basis.rows[2][2] = dataptr[10];
  1446. t.origin.z = dataptr[11];
  1447. }
  1448. return t;
  1449. }
  1450. Transform2D MeshStorage::multimesh_instance_get_transform_2d(RID p_multimesh, int p_index) const {
  1451. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1452. ERR_FAIL_COND_V(!multimesh, Transform2D());
  1453. ERR_FAIL_INDEX_V(p_index, multimesh->instances, Transform2D());
  1454. ERR_FAIL_COND_V(multimesh->xform_format != RS::MULTIMESH_TRANSFORM_2D, Transform2D());
  1455. _multimesh_make_local(multimesh);
  1456. Transform2D t;
  1457. {
  1458. const float *r = multimesh->data_cache.ptr();
  1459. const float *dataptr = r + (multimesh->motion_vectors_current_offset + p_index) * multimesh->stride_cache;
  1460. t.columns[0][0] = dataptr[0];
  1461. t.columns[1][0] = dataptr[1];
  1462. t.columns[2][0] = dataptr[3];
  1463. t.columns[0][1] = dataptr[4];
  1464. t.columns[1][1] = dataptr[5];
  1465. t.columns[2][1] = dataptr[7];
  1466. }
  1467. return t;
  1468. }
  1469. Color MeshStorage::multimesh_instance_get_color(RID p_multimesh, int p_index) const {
  1470. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1471. ERR_FAIL_COND_V(!multimesh, Color());
  1472. ERR_FAIL_INDEX_V(p_index, multimesh->instances, Color());
  1473. ERR_FAIL_COND_V(!multimesh->uses_colors, Color());
  1474. _multimesh_make_local(multimesh);
  1475. Color c;
  1476. {
  1477. const float *r = multimesh->data_cache.ptr();
  1478. const float *dataptr = r + (multimesh->motion_vectors_current_offset + p_index) * multimesh->stride_cache + multimesh->color_offset_cache;
  1479. c.r = dataptr[0];
  1480. c.g = dataptr[1];
  1481. c.b = dataptr[2];
  1482. c.a = dataptr[3];
  1483. }
  1484. return c;
  1485. }
  1486. Color MeshStorage::multimesh_instance_get_custom_data(RID p_multimesh, int p_index) const {
  1487. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1488. ERR_FAIL_COND_V(!multimesh, Color());
  1489. ERR_FAIL_INDEX_V(p_index, multimesh->instances, Color());
  1490. ERR_FAIL_COND_V(!multimesh->uses_custom_data, Color());
  1491. _multimesh_make_local(multimesh);
  1492. Color c;
  1493. {
  1494. const float *r = multimesh->data_cache.ptr();
  1495. const float *dataptr = r + (multimesh->motion_vectors_current_offset + p_index) * multimesh->stride_cache + multimesh->custom_data_offset_cache;
  1496. c.r = dataptr[0];
  1497. c.g = dataptr[1];
  1498. c.b = dataptr[2];
  1499. c.a = dataptr[3];
  1500. }
  1501. return c;
  1502. }
  1503. void MeshStorage::multimesh_set_buffer(RID p_multimesh, const Vector<float> &p_buffer) {
  1504. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1505. ERR_FAIL_COND(!multimesh);
  1506. ERR_FAIL_COND(p_buffer.size() != (multimesh->instances * (int)multimesh->stride_cache));
  1507. bool uses_motion_vectors = (RSG::viewport->get_num_viewports_with_motion_vectors() > 0);
  1508. if (uses_motion_vectors) {
  1509. _multimesh_enable_motion_vectors(multimesh);
  1510. }
  1511. if (multimesh->motion_vectors_enabled) {
  1512. uint32_t frame = RSG::rasterizer->get_frame_number();
  1513. if (multimesh->motion_vectors_last_change != frame) {
  1514. multimesh->motion_vectors_previous_offset = multimesh->motion_vectors_current_offset;
  1515. multimesh->motion_vectors_current_offset = multimesh->instances - multimesh->motion_vectors_current_offset;
  1516. multimesh->motion_vectors_last_change = frame;
  1517. }
  1518. }
  1519. {
  1520. const float *r = p_buffer.ptr();
  1521. RD::get_singleton()->buffer_update(multimesh->buffer, multimesh->motion_vectors_current_offset * multimesh->stride_cache * sizeof(float), p_buffer.size() * sizeof(float), r);
  1522. multimesh->buffer_set = true;
  1523. }
  1524. if (multimesh->data_cache.size()) {
  1525. float *cache_data = multimesh->data_cache.ptrw();
  1526. memcpy(cache_data + (multimesh->motion_vectors_current_offset * multimesh->stride_cache), p_buffer.ptr(), p_buffer.size() * sizeof(float));
  1527. _multimesh_mark_all_dirty(multimesh, true, true); //update AABB
  1528. } else if (multimesh->mesh.is_valid()) {
  1529. //if we have a mesh set, we need to re-generate the AABB from the new data
  1530. const float *data = p_buffer.ptr();
  1531. _multimesh_re_create_aabb(multimesh, data, multimesh->instances);
  1532. multimesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_AABB);
  1533. }
  1534. }
  1535. Vector<float> MeshStorage::multimesh_get_buffer(RID p_multimesh) const {
  1536. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1537. ERR_FAIL_COND_V(!multimesh, Vector<float>());
  1538. if (multimesh->buffer.is_null()) {
  1539. return Vector<float>();
  1540. } else {
  1541. Vector<float> ret;
  1542. ret.resize(multimesh->instances * multimesh->stride_cache);
  1543. float *w = ret.ptrw();
  1544. if (multimesh->data_cache.size()) {
  1545. const uint8_t *r = (uint8_t *)multimesh->data_cache.ptr() + multimesh->motion_vectors_current_offset * multimesh->stride_cache * sizeof(float);
  1546. memcpy(w, r, ret.size() * sizeof(float));
  1547. } else {
  1548. Vector<uint8_t> buffer = RD::get_singleton()->buffer_get_data(multimesh->buffer);
  1549. const uint8_t *r = buffer.ptr() + multimesh->motion_vectors_current_offset * multimesh->stride_cache * sizeof(float);
  1550. memcpy(w, r, ret.size() * sizeof(float));
  1551. }
  1552. return ret;
  1553. }
  1554. }
  1555. void MeshStorage::multimesh_set_visible_instances(RID p_multimesh, int p_visible) {
  1556. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1557. ERR_FAIL_COND(!multimesh);
  1558. ERR_FAIL_COND(p_visible < -1 || p_visible > multimesh->instances);
  1559. if (multimesh->visible_instances == p_visible) {
  1560. return;
  1561. }
  1562. if (multimesh->data_cache.size()) {
  1563. // There is a data cache, but we may need to update some sections.
  1564. _multimesh_mark_all_dirty(multimesh, false, true);
  1565. int start = multimesh->visible_instances >= 0 ? multimesh->visible_instances : multimesh->instances;
  1566. for (int i = start; i < p_visible; i++) {
  1567. _multimesh_mark_dirty(multimesh, i, true);
  1568. }
  1569. }
  1570. multimesh->visible_instances = p_visible;
  1571. multimesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MULTIMESH_VISIBLE_INSTANCES);
  1572. }
  1573. int MeshStorage::multimesh_get_visible_instances(RID p_multimesh) const {
  1574. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1575. ERR_FAIL_COND_V(!multimesh, 0);
  1576. return multimesh->visible_instances;
  1577. }
  1578. AABB MeshStorage::multimesh_get_aabb(RID p_multimesh) const {
  1579. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1580. ERR_FAIL_COND_V(!multimesh, AABB());
  1581. if (multimesh->aabb_dirty) {
  1582. const_cast<MeshStorage *>(this)->_update_dirty_multimeshes();
  1583. }
  1584. return multimesh->aabb;
  1585. }
  1586. void MeshStorage::_update_dirty_multimeshes() {
  1587. while (multimesh_dirty_list) {
  1588. MultiMesh *multimesh = multimesh_dirty_list;
  1589. if (multimesh->data_cache.size()) { //may have been cleared, so only process if it exists
  1590. uint32_t visible_instances = multimesh->visible_instances >= 0 ? multimesh->visible_instances : multimesh->instances;
  1591. uint32_t buffer_offset = multimesh->motion_vectors_current_offset * multimesh->stride_cache;
  1592. const float *data = multimesh->data_cache.ptr() + buffer_offset;
  1593. uint32_t total_dirty_regions = multimesh->data_cache_dirty_region_count + multimesh->previous_data_cache_dirty_region_count;
  1594. if (total_dirty_regions != 0) {
  1595. uint32_t data_cache_dirty_region_count = (multimesh->instances - 1) / MULTIMESH_DIRTY_REGION_SIZE + 1;
  1596. uint32_t visible_region_count = visible_instances == 0 ? 0 : (visible_instances - 1) / MULTIMESH_DIRTY_REGION_SIZE + 1;
  1597. uint32_t region_size = multimesh->stride_cache * MULTIMESH_DIRTY_REGION_SIZE * sizeof(float);
  1598. if (total_dirty_regions > 32 || total_dirty_regions > visible_region_count / 2) {
  1599. //if there too many dirty regions, or represent the majority of regions, just copy all, else transfer cost piles up too much
  1600. RD::get_singleton()->buffer_update(multimesh->buffer, buffer_offset * sizeof(float), MIN(visible_region_count * region_size, multimesh->instances * (uint32_t)multimesh->stride_cache * (uint32_t)sizeof(float)), data);
  1601. } else {
  1602. //not that many regions? update them all
  1603. for (uint32_t i = 0; i < visible_region_count; i++) {
  1604. if (multimesh->data_cache_dirty_regions[i] || multimesh->previous_data_cache_dirty_regions[i]) {
  1605. uint32_t offset = i * region_size;
  1606. uint32_t size = multimesh->stride_cache * (uint32_t)multimesh->instances * (uint32_t)sizeof(float);
  1607. uint32_t region_start_index = multimesh->stride_cache * MULTIMESH_DIRTY_REGION_SIZE * i;
  1608. RD::get_singleton()->buffer_update(multimesh->buffer, buffer_offset * sizeof(float) + offset, MIN(region_size, size - offset), &data[region_start_index], RD::BARRIER_MASK_NO_BARRIER);
  1609. }
  1610. }
  1611. RD::get_singleton()->barrier(RD::BARRIER_MASK_NO_BARRIER, RD::BARRIER_MASK_ALL_BARRIERS);
  1612. }
  1613. memcpy(multimesh->previous_data_cache_dirty_regions, multimesh->data_cache_dirty_regions, data_cache_dirty_region_count * sizeof(bool));
  1614. memset(multimesh->data_cache_dirty_regions, 0, data_cache_dirty_region_count * sizeof(bool));
  1615. multimesh->previous_data_cache_dirty_region_count = multimesh->data_cache_dirty_region_count;
  1616. multimesh->data_cache_dirty_region_count = 0;
  1617. }
  1618. if (multimesh->aabb_dirty) {
  1619. //aabb is dirty..
  1620. _multimesh_re_create_aabb(multimesh, data, visible_instances);
  1621. multimesh->aabb_dirty = false;
  1622. multimesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_AABB);
  1623. }
  1624. }
  1625. multimesh_dirty_list = multimesh->dirty_list;
  1626. multimesh->dirty_list = nullptr;
  1627. multimesh->dirty = false;
  1628. }
  1629. multimesh_dirty_list = nullptr;
  1630. }
  1631. /* SKELETON API */
  1632. RID MeshStorage::skeleton_allocate() {
  1633. return skeleton_owner.allocate_rid();
  1634. }
  1635. void MeshStorage::skeleton_initialize(RID p_rid) {
  1636. skeleton_owner.initialize_rid(p_rid, Skeleton());
  1637. }
  1638. void MeshStorage::skeleton_free(RID p_rid) {
  1639. _update_dirty_skeletons();
  1640. skeleton_allocate_data(p_rid, 0);
  1641. Skeleton *skeleton = skeleton_owner.get_or_null(p_rid);
  1642. skeleton->dependency.deleted_notify(p_rid);
  1643. skeleton_owner.free(p_rid);
  1644. }
  1645. void MeshStorage::_skeleton_make_dirty(Skeleton *skeleton) {
  1646. if (!skeleton->dirty) {
  1647. skeleton->dirty = true;
  1648. skeleton->dirty_list = skeleton_dirty_list;
  1649. skeleton_dirty_list = skeleton;
  1650. }
  1651. }
  1652. void MeshStorage::skeleton_allocate_data(RID p_skeleton, int p_bones, bool p_2d_skeleton) {
  1653. Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton);
  1654. ERR_FAIL_COND(!skeleton);
  1655. ERR_FAIL_COND(p_bones < 0);
  1656. if (skeleton->size == p_bones && skeleton->use_2d == p_2d_skeleton) {
  1657. return;
  1658. }
  1659. skeleton->size = p_bones;
  1660. skeleton->use_2d = p_2d_skeleton;
  1661. skeleton->uniform_set_3d = RID();
  1662. if (skeleton->buffer.is_valid()) {
  1663. RD::get_singleton()->free(skeleton->buffer);
  1664. skeleton->buffer = RID();
  1665. skeleton->data.clear();
  1666. skeleton->uniform_set_mi = RID();
  1667. }
  1668. if (skeleton->size) {
  1669. skeleton->data.resize(skeleton->size * (skeleton->use_2d ? 8 : 12));
  1670. skeleton->buffer = RD::get_singleton()->storage_buffer_create(skeleton->data.size() * sizeof(float));
  1671. memset(skeleton->data.ptrw(), 0, skeleton->data.size() * sizeof(float));
  1672. _skeleton_make_dirty(skeleton);
  1673. {
  1674. Vector<RD::Uniform> uniforms;
  1675. {
  1676. RD::Uniform u;
  1677. u.binding = 0;
  1678. u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  1679. u.append_id(skeleton->buffer);
  1680. uniforms.push_back(u);
  1681. }
  1682. skeleton->uniform_set_mi = RD::get_singleton()->uniform_set_create(uniforms, skeleton_shader.version_shader[0], SkeletonShader::UNIFORM_SET_SKELETON);
  1683. }
  1684. }
  1685. skeleton->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_SKELETON_DATA);
  1686. }
  1687. int MeshStorage::skeleton_get_bone_count(RID p_skeleton) const {
  1688. Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton);
  1689. ERR_FAIL_COND_V(!skeleton, 0);
  1690. return skeleton->size;
  1691. }
  1692. void MeshStorage::skeleton_bone_set_transform(RID p_skeleton, int p_bone, const Transform3D &p_transform) {
  1693. Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton);
  1694. ERR_FAIL_COND(!skeleton);
  1695. ERR_FAIL_INDEX(p_bone, skeleton->size);
  1696. ERR_FAIL_COND(skeleton->use_2d);
  1697. float *dataptr = skeleton->data.ptrw() + p_bone * 12;
  1698. dataptr[0] = p_transform.basis.rows[0][0];
  1699. dataptr[1] = p_transform.basis.rows[0][1];
  1700. dataptr[2] = p_transform.basis.rows[0][2];
  1701. dataptr[3] = p_transform.origin.x;
  1702. dataptr[4] = p_transform.basis.rows[1][0];
  1703. dataptr[5] = p_transform.basis.rows[1][1];
  1704. dataptr[6] = p_transform.basis.rows[1][2];
  1705. dataptr[7] = p_transform.origin.y;
  1706. dataptr[8] = p_transform.basis.rows[2][0];
  1707. dataptr[9] = p_transform.basis.rows[2][1];
  1708. dataptr[10] = p_transform.basis.rows[2][2];
  1709. dataptr[11] = p_transform.origin.z;
  1710. _skeleton_make_dirty(skeleton);
  1711. }
  1712. Transform3D MeshStorage::skeleton_bone_get_transform(RID p_skeleton, int p_bone) const {
  1713. Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton);
  1714. ERR_FAIL_COND_V(!skeleton, Transform3D());
  1715. ERR_FAIL_INDEX_V(p_bone, skeleton->size, Transform3D());
  1716. ERR_FAIL_COND_V(skeleton->use_2d, Transform3D());
  1717. const float *dataptr = skeleton->data.ptr() + p_bone * 12;
  1718. Transform3D t;
  1719. t.basis.rows[0][0] = dataptr[0];
  1720. t.basis.rows[0][1] = dataptr[1];
  1721. t.basis.rows[0][2] = dataptr[2];
  1722. t.origin.x = dataptr[3];
  1723. t.basis.rows[1][0] = dataptr[4];
  1724. t.basis.rows[1][1] = dataptr[5];
  1725. t.basis.rows[1][2] = dataptr[6];
  1726. t.origin.y = dataptr[7];
  1727. t.basis.rows[2][0] = dataptr[8];
  1728. t.basis.rows[2][1] = dataptr[9];
  1729. t.basis.rows[2][2] = dataptr[10];
  1730. t.origin.z = dataptr[11];
  1731. return t;
  1732. }
  1733. void MeshStorage::skeleton_bone_set_transform_2d(RID p_skeleton, int p_bone, const Transform2D &p_transform) {
  1734. Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton);
  1735. ERR_FAIL_COND(!skeleton);
  1736. ERR_FAIL_INDEX(p_bone, skeleton->size);
  1737. ERR_FAIL_COND(!skeleton->use_2d);
  1738. float *dataptr = skeleton->data.ptrw() + p_bone * 8;
  1739. dataptr[0] = p_transform.columns[0][0];
  1740. dataptr[1] = p_transform.columns[1][0];
  1741. dataptr[2] = 0;
  1742. dataptr[3] = p_transform.columns[2][0];
  1743. dataptr[4] = p_transform.columns[0][1];
  1744. dataptr[5] = p_transform.columns[1][1];
  1745. dataptr[6] = 0;
  1746. dataptr[7] = p_transform.columns[2][1];
  1747. _skeleton_make_dirty(skeleton);
  1748. }
  1749. Transform2D MeshStorage::skeleton_bone_get_transform_2d(RID p_skeleton, int p_bone) const {
  1750. Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton);
  1751. ERR_FAIL_COND_V(!skeleton, Transform2D());
  1752. ERR_FAIL_INDEX_V(p_bone, skeleton->size, Transform2D());
  1753. ERR_FAIL_COND_V(!skeleton->use_2d, Transform2D());
  1754. const float *dataptr = skeleton->data.ptr() + p_bone * 8;
  1755. Transform2D t;
  1756. t.columns[0][0] = dataptr[0];
  1757. t.columns[1][0] = dataptr[1];
  1758. t.columns[2][0] = dataptr[3];
  1759. t.columns[0][1] = dataptr[4];
  1760. t.columns[1][1] = dataptr[5];
  1761. t.columns[2][1] = dataptr[7];
  1762. return t;
  1763. }
  1764. void MeshStorage::skeleton_set_base_transform_2d(RID p_skeleton, const Transform2D &p_base_transform) {
  1765. Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton);
  1766. ERR_FAIL_NULL(skeleton);
  1767. ERR_FAIL_COND(!skeleton->use_2d);
  1768. skeleton->base_transform_2d = p_base_transform;
  1769. }
  1770. void MeshStorage::_update_dirty_skeletons() {
  1771. while (skeleton_dirty_list) {
  1772. Skeleton *skeleton = skeleton_dirty_list;
  1773. if (skeleton->size) {
  1774. RD::get_singleton()->buffer_update(skeleton->buffer, 0, skeleton->data.size() * sizeof(float), skeleton->data.ptr());
  1775. }
  1776. skeleton_dirty_list = skeleton->dirty_list;
  1777. skeleton->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_SKELETON_BONES);
  1778. skeleton->version++;
  1779. skeleton->dirty = false;
  1780. skeleton->dirty_list = nullptr;
  1781. }
  1782. skeleton_dirty_list = nullptr;
  1783. }
  1784. void MeshStorage::skeleton_update_dependency(RID p_skeleton, DependencyTracker *p_instance) {
  1785. Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton);
  1786. ERR_FAIL_COND(!skeleton);
  1787. p_instance->update_dependency(&skeleton->dependency);
  1788. }