volumetric_fog.glsl 9.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303
  1. #[compute]
  2. #version 450
  3. #VERSION_DEFINES
  4. #ifdef USE_VULKAN_MEMORY_MODEL
  5. #pragma use_vulkan_memory_model
  6. #endif
  7. layout(local_size_x = 4, local_size_y = 4, local_size_z = 4) in;
  8. #define DENSITY_SCALE 1024.0
  9. #include "../cluster_data_inc.glsl"
  10. #include "../light_data_inc.glsl"
  11. #define M_PI 3.14159265359
  12. #include "../samplers_inc.glsl"
  13. layout(set = 0, binding = 2, std430) restrict readonly buffer GlobalShaderUniformData {
  14. vec4 data[];
  15. }
  16. global_shader_uniforms;
  17. layout(push_constant, std430) uniform Params {
  18. vec3 position;
  19. float pad;
  20. vec3 size;
  21. float pad2;
  22. ivec3 corner;
  23. uint shape;
  24. mat4 transform;
  25. }
  26. params;
  27. #ifdef NO_IMAGE_ATOMICS
  28. layout(set = 1, binding = 1) volatile buffer emissive_only_map_buffer {
  29. uint emissive_only_map[];
  30. };
  31. #else
  32. layout(r32ui, set = 1, binding = 1) uniform volatile uimage3D emissive_only_map;
  33. #endif
  34. layout(set = 1, binding = 2, std140) uniform SceneParams {
  35. vec2 fog_frustum_size_begin;
  36. vec2 fog_frustum_size_end;
  37. float fog_frustum_end;
  38. float z_near; //
  39. float z_far; //
  40. float time;
  41. ivec3 fog_volume_size;
  42. uint directional_light_count; //
  43. bool use_temporal_reprojection;
  44. uint temporal_frame;
  45. float detail_spread;
  46. float temporal_blend;
  47. mat4 to_prev_view;
  48. mat4 transform;
  49. }
  50. scene_params;
  51. #ifdef NO_IMAGE_ATOMICS
  52. layout(set = 1, binding = 3) volatile buffer density_only_map_buffer {
  53. uint density_only_map[];
  54. };
  55. layout(set = 1, binding = 4) volatile buffer light_only_map_buffer {
  56. uint light_only_map[];
  57. };
  58. #else
  59. layout(r32ui, set = 1, binding = 3) uniform volatile uimage3D density_only_map;
  60. layout(r32ui, set = 1, binding = 4) uniform volatile uimage3D light_only_map;
  61. #endif
  62. #ifdef MATERIAL_UNIFORMS_USED
  63. /* clang-format off */
  64. layout(set = 2, binding = 0, std140) uniform MaterialUniforms {
  65. #MATERIAL_UNIFORMS
  66. } material;
  67. /* clang-format on */
  68. #endif
  69. #GLOBALS
  70. float get_depth_at_pos(float cell_depth_size, int z) {
  71. float d = float(z) * cell_depth_size + cell_depth_size * 0.5; //center of voxels
  72. d = pow(d, scene_params.detail_spread);
  73. return scene_params.fog_frustum_end * d;
  74. }
  75. #define TEMPORAL_FRAMES 16
  76. const vec3 halton_map[TEMPORAL_FRAMES] = vec3[](
  77. vec3(0.5, 0.33333333, 0.2),
  78. vec3(0.25, 0.66666667, 0.4),
  79. vec3(0.75, 0.11111111, 0.6),
  80. vec3(0.125, 0.44444444, 0.8),
  81. vec3(0.625, 0.77777778, 0.04),
  82. vec3(0.375, 0.22222222, 0.24),
  83. vec3(0.875, 0.55555556, 0.44),
  84. vec3(0.0625, 0.88888889, 0.64),
  85. vec3(0.5625, 0.03703704, 0.84),
  86. vec3(0.3125, 0.37037037, 0.08),
  87. vec3(0.8125, 0.7037037, 0.28),
  88. vec3(0.1875, 0.14814815, 0.48),
  89. vec3(0.6875, 0.48148148, 0.68),
  90. vec3(0.4375, 0.81481481, 0.88),
  91. vec3(0.9375, 0.25925926, 0.12),
  92. vec3(0.03125, 0.59259259, 0.32));
  93. void main() {
  94. vec3 fog_cell_size = 1.0 / vec3(scene_params.fog_volume_size);
  95. ivec3 pos = ivec3(gl_GlobalInvocationID.xyz) + params.corner;
  96. if (any(greaterThanEqual(pos, scene_params.fog_volume_size))) {
  97. return; //do not compute
  98. }
  99. #ifdef NO_IMAGE_ATOMICS
  100. uint lpos = pos.z * scene_params.fog_volume_size.x * scene_params.fog_volume_size.y + pos.y * scene_params.fog_volume_size.x + pos.x;
  101. #endif
  102. vec3 posf = vec3(pos);
  103. vec3 fog_unit_pos = posf * fog_cell_size + fog_cell_size * 0.5; //center of voxels
  104. fog_unit_pos.z = pow(fog_unit_pos.z, scene_params.detail_spread);
  105. vec3 view_pos;
  106. view_pos.xy = (fog_unit_pos.xy * 2.0 - 1.0) * mix(scene_params.fog_frustum_size_begin, scene_params.fog_frustum_size_end, vec2(fog_unit_pos.z));
  107. view_pos.z = -scene_params.fog_frustum_end * fog_unit_pos.z;
  108. view_pos.y = -view_pos.y;
  109. if (scene_params.use_temporal_reprojection) {
  110. vec3 prev_view = (scene_params.to_prev_view * vec4(view_pos, 1.0)).xyz;
  111. //undo transform into prev view
  112. prev_view.y = -prev_view.y;
  113. //z back to unit size
  114. prev_view.z /= -scene_params.fog_frustum_end;
  115. //xy back to unit size
  116. prev_view.xy /= mix(scene_params.fog_frustum_size_begin, scene_params.fog_frustum_size_end, vec2(prev_view.z));
  117. prev_view.xy = prev_view.xy * 0.5 + 0.5;
  118. //z back to unspread value
  119. prev_view.z = pow(prev_view.z, 1.0 / scene_params.detail_spread);
  120. if (all(greaterThan(prev_view, vec3(0.0))) && all(lessThan(prev_view, vec3(1.0)))) {
  121. //reprojectinon fits
  122. // Since we can reproject, now we must jitter the current view pos.
  123. // This is done here because cells that can't reproject should not jitter.
  124. fog_unit_pos = posf * fog_cell_size + fog_cell_size * halton_map[scene_params.temporal_frame]; //center of voxels, offset by halton table
  125. fog_unit_pos.z = pow(fog_unit_pos.z, scene_params.detail_spread);
  126. view_pos.xy = (fog_unit_pos.xy * 2.0 - 1.0) * mix(scene_params.fog_frustum_size_begin, scene_params.fog_frustum_size_end, vec2(fog_unit_pos.z));
  127. view_pos.z = -scene_params.fog_frustum_end * fog_unit_pos.z;
  128. view_pos.y = -view_pos.y;
  129. }
  130. }
  131. float density = 0.0;
  132. vec3 emission = vec3(0.0);
  133. vec3 albedo = vec3(0.0);
  134. float cell_depth_size = abs(view_pos.z - get_depth_at_pos(fog_cell_size.z, pos.z + 1));
  135. vec4 world = scene_params.transform * vec4(view_pos, 1.0);
  136. world.xyz /= world.w;
  137. vec3 uvw = fog_unit_pos;
  138. vec4 local_pos = params.transform * world;
  139. local_pos.xyz /= local_pos.w;
  140. vec3 half_size = params.size / 2.0;
  141. float sdf = -1.0;
  142. if (params.shape == 0) {
  143. // Ellipsoid
  144. // https://www.shadertoy.com/view/tdS3DG
  145. float k0 = length(local_pos.xyz / half_size);
  146. float k1 = length(local_pos.xyz / (half_size * half_size));
  147. sdf = k0 * (k0 - 1.0) / k1;
  148. } else if (params.shape == 1) {
  149. // Cone
  150. // https://iquilezles.org/www/articles/distfunctions/distfunctions.htm
  151. // Compute the cone angle automatically to fit within the volume's size.
  152. float inv_height = 1.0 / max(0.001, half_size.y);
  153. float radius = 1.0 / max(0.001, (min(half_size.x, half_size.z) * 0.5));
  154. float hypotenuse = sqrt(radius * radius + inv_height * inv_height);
  155. float rsin = radius / hypotenuse;
  156. float rcos = inv_height / hypotenuse;
  157. vec2 c = vec2(rsin, rcos);
  158. float q = length(local_pos.xz);
  159. sdf = max(dot(c, vec2(q, local_pos.y - half_size.y)), -half_size.y - local_pos.y);
  160. } else if (params.shape == 2) {
  161. // Cylinder
  162. // https://iquilezles.org/www/articles/distfunctions/distfunctions.htm
  163. vec2 d = abs(vec2(length(local_pos.xz), local_pos.y)) - vec2(min(half_size.x, half_size.z), half_size.y);
  164. sdf = min(max(d.x, d.y), 0.0) + length(max(d, 0.0));
  165. } else if (params.shape == 3) {
  166. // Box
  167. // https://iquilezles.org/www/articles/distfunctions/distfunctions.htm
  168. vec3 q = abs(local_pos.xyz) - half_size;
  169. sdf = length(max(q, 0.0)) + min(max(q.x, max(q.y, q.z)), 0.0);
  170. }
  171. float cull_mask = 1.0; //used to cull cells that do not contribute
  172. if (params.shape <= 3) {
  173. #ifndef SDF_USED
  174. cull_mask = 1.0 - smoothstep(-0.1, 0.0, sdf);
  175. #endif
  176. uvw = clamp((local_pos.xyz + half_size) / params.size, 0.0, 1.0);
  177. }
  178. if (cull_mask > 0.0) {
  179. {
  180. #CODE : FOG
  181. }
  182. #ifdef DENSITY_USED
  183. density *= cull_mask;
  184. if (abs(density) > 0.001) {
  185. int final_density = int(density * DENSITY_SCALE);
  186. #ifdef NO_IMAGE_ATOMICS
  187. atomicAdd(density_only_map[lpos], uint(final_density));
  188. #else
  189. imageAtomicAdd(density_only_map, pos, uint(final_density));
  190. #endif
  191. #ifdef EMISSION_USED
  192. {
  193. emission *= clamp(density, 0.0, 1.0);
  194. emission = clamp(emission, vec3(0.0), vec3(4.0));
  195. // Scale to fit into R11G11B10 with a range of 0-4
  196. uvec3 emission_u = uvec3(emission.r * 511.0, emission.g * 511.0, emission.b * 255.0);
  197. // R and G have 11 bits each and B has 10. Then pack them into a 32 bit uint
  198. uint final_emission = emission_u.r << 21 | emission_u.g << 10 | emission_u.b;
  199. #ifdef NO_IMAGE_ATOMICS
  200. uint prev_emission = atomicAdd(emissive_only_map[lpos], final_emission);
  201. #else
  202. uint prev_emission = imageAtomicAdd(emissive_only_map, pos, final_emission);
  203. #endif
  204. // Adding can lead to colors overflowing, so validate
  205. uvec3 prev_emission_u = uvec3(prev_emission >> 21, (prev_emission << 11) >> 21, prev_emission % 1024);
  206. uint add_emission = final_emission + prev_emission;
  207. uvec3 add_emission_u = uvec3(add_emission >> 21, (add_emission << 11) >> 21, add_emission % 1024);
  208. bvec3 overflowing = lessThan(add_emission_u, prev_emission_u + emission_u);
  209. if (any(overflowing)) {
  210. uvec3 overflow_factor = mix(uvec3(0), uvec3(2047 << 21, 2047 << 10, 1023), overflowing);
  211. uint force_max = overflow_factor.r | overflow_factor.g | overflow_factor.b;
  212. #ifdef NO_IMAGE_ATOMICS
  213. atomicOr(emissive_only_map[lpos], force_max);
  214. #else
  215. imageAtomicOr(emissive_only_map, pos, force_max);
  216. #endif
  217. }
  218. }
  219. #endif
  220. #ifdef ALBEDO_USED
  221. {
  222. vec3 scattering = albedo * clamp(density, 0.0, 1.0);
  223. scattering = clamp(scattering, vec3(0.0), vec3(1.0));
  224. uvec3 scattering_u = uvec3(scattering.r * 2047.0, scattering.g * 2047.0, scattering.b * 1023.0);
  225. // R and G have 11 bits each and B has 10. Then pack them into a 32 bit uint
  226. uint final_scattering = scattering_u.r << 21 | scattering_u.g << 10 | scattering_u.b;
  227. #ifdef NO_IMAGE_ATOMICS
  228. uint prev_scattering = atomicAdd(light_only_map[lpos], final_scattering);
  229. #else
  230. uint prev_scattering = imageAtomicAdd(light_only_map, pos, final_scattering);
  231. #endif
  232. // Adding can lead to colors overflowing, so validate
  233. uvec3 prev_scattering_u = uvec3(prev_scattering >> 21, (prev_scattering << 11) >> 21, prev_scattering % 1024);
  234. uint add_scattering = final_scattering + prev_scattering;
  235. uvec3 add_scattering_u = uvec3(add_scattering >> 21, (add_scattering << 11) >> 21, add_scattering % 1024);
  236. bvec3 overflowing = lessThan(add_scattering_u, prev_scattering_u + scattering_u);
  237. if (any(overflowing)) {
  238. uvec3 overflow_factor = mix(uvec3(0), uvec3(2047 << 21, 2047 << 10, 1023), overflowing);
  239. uint force_max = overflow_factor.r | overflow_factor.g | overflow_factor.b;
  240. #ifdef NO_IMAGE_ATOMICS
  241. atomicOr(light_only_map[lpos], force_max);
  242. #else
  243. imageAtomicOr(light_only_map, pos, force_max);
  244. #endif
  245. }
  246. }
  247. #endif // ALBEDO_USED
  248. }
  249. #endif // DENSITY_USED
  250. }
  251. }