| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254 | /*************************************************************************//*  collision_solver_2d_sw.cpp                                           *//*************************************************************************//*                       This file is part of:                           *//*                           GODOT ENGINE                                *//*                      https://godotengine.org                          *//*************************************************************************//* Copyright (c) 2007-2019 Juan Linietsky, Ariel Manzur.                 *//* Copyright (c) 2014-2019 Godot Engine contributors (cf. AUTHORS.md)    *//*                                                                       *//* Permission is hereby granted, free of charge, to any person obtaining *//* a copy of this software and associated documentation files (the       *//* "Software"), to deal in the Software without restriction, including   *//* without limitation the rights to use, copy, modify, merge, publish,   *//* distribute, sublicense, and/or sell copies of the Software, and to    *//* permit persons to whom the Software is furnished to do so, subject to *//* the following conditions:                                             *//*                                                                       *//* The above copyright notice and this permission notice shall be        *//* included in all copies or substantial portions of the Software.       *//*                                                                       *//* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,       *//* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF    *//* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*//* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY  *//* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,  *//* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE     *//* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.                *//*************************************************************************/#include "collision_solver_2d_sw.h"#include "collision_solver_2d_sat.h"#define collision_solver sat_2d_calculate_penetration//#define collision_solver gjk_epa_calculate_penetrationbool CollisionSolver2DSW::solve_static_line(const Shape2DSW *p_shape_A, const Transform2D &p_transform_A, const Shape2DSW *p_shape_B, const Transform2D &p_transform_B, CallbackResult p_result_callback, void *p_userdata, bool p_swap_result) {	const LineShape2DSW *line = static_cast<const LineShape2DSW *>(p_shape_A);	if (p_shape_B->get_type() == Physics2DServer::SHAPE_LINE)		return false;	Vector2 n = p_transform_A.basis_xform(line->get_normal()).normalized();	Vector2 p = p_transform_A.xform(line->get_normal() * line->get_d());	real_t d = n.dot(p);	Vector2 supports[2];	int support_count;	p_shape_B->get_supports(p_transform_A.affine_inverse().basis_xform(-n).normalized(), supports, support_count);	bool found = false;	for (int i = 0; i < support_count; i++) {		supports[i] = p_transform_B.xform(supports[i]);		real_t pd = n.dot(supports[i]);		if (pd >= d)			continue;		found = true;		Vector2 support_A = supports[i] - n * (pd - d);		if (p_result_callback) {			if (p_swap_result)				p_result_callback(supports[i], support_A, p_userdata);			else				p_result_callback(support_A, supports[i], p_userdata);		}	}	return found;}bool CollisionSolver2DSW::solve_raycast(const Shape2DSW *p_shape_A, const Vector2 &p_motion_A, const Transform2D &p_transform_A, const Shape2DSW *p_shape_B, const Transform2D &p_transform_B, CallbackResult p_result_callback, void *p_userdata, bool p_swap_result, Vector2 *sep_axis) {	const RayShape2DSW *ray = static_cast<const RayShape2DSW *>(p_shape_A);	if (p_shape_B->get_type() == Physics2DServer::SHAPE_RAY)		return false;	Vector2 from = p_transform_A.get_origin();	Vector2 to = from + p_transform_A[1] * ray->get_length();	if (p_motion_A != Vector2()) {		//not the best but should be enough		Vector2 normal = (to - from).normalized();		to += normal * MAX(0.0, normal.dot(p_motion_A));	}	Vector2 support_A = to;	Transform2D invb = p_transform_B.affine_inverse();	from = invb.xform(from);	to = invb.xform(to);	Vector2 p, n;	if (!p_shape_B->intersect_segment(from, to, p, n)) {		if (sep_axis)			*sep_axis = p_transform_A[1].normalized();		return false;	}	Vector2 support_B = p_transform_B.xform(p);	if (ray->get_slips_on_slope()) {		Vector2 global_n = invb.basis_xform_inv(n).normalized();		support_B = support_A + (support_B - support_A).length() * global_n;	}	if (p_result_callback) {		if (p_swap_result)			p_result_callback(support_B, support_A, p_userdata);		else			p_result_callback(support_A, support_B, p_userdata);	}	return true;}struct _ConcaveCollisionInfo2D {	const Transform2D *transform_A;	const Shape2DSW *shape_A;	const Transform2D *transform_B;	Vector2 motion_A;	Vector2 motion_B;	real_t margin_A;	real_t margin_B;	CollisionSolver2DSW::CallbackResult result_callback;	void *userdata;	bool swap_result;	bool collided;	int aabb_tests;	int collisions;	Vector2 *sep_axis;};void CollisionSolver2DSW::concave_callback(void *p_userdata, Shape2DSW *p_convex) {	_ConcaveCollisionInfo2D &cinfo = *(_ConcaveCollisionInfo2D *)(p_userdata);	cinfo.aabb_tests++;	if (!cinfo.result_callback && cinfo.collided)		return; //already collided and no contacts requested, don't test anymore	bool collided = collision_solver(cinfo.shape_A, *cinfo.transform_A, cinfo.motion_A, p_convex, *cinfo.transform_B, cinfo.motion_B, cinfo.result_callback, cinfo.userdata, cinfo.swap_result, cinfo.sep_axis, cinfo.margin_A, cinfo.margin_B);	if (!collided)		return;	cinfo.collided = true;	cinfo.collisions++;}bool CollisionSolver2DSW::solve_concave(const Shape2DSW *p_shape_A, const Transform2D &p_transform_A, const Vector2 &p_motion_A, const Shape2DSW *p_shape_B, const Transform2D &p_transform_B, const Vector2 &p_motion_B, CallbackResult p_result_callback, void *p_userdata, bool p_swap_result, Vector2 *sep_axis, real_t p_margin_A, real_t p_margin_B) {	const ConcaveShape2DSW *concave_B = static_cast<const ConcaveShape2DSW *>(p_shape_B);	_ConcaveCollisionInfo2D cinfo;	cinfo.transform_A = &p_transform_A;	cinfo.shape_A = p_shape_A;	cinfo.transform_B = &p_transform_B;	cinfo.motion_A = p_motion_A;	cinfo.result_callback = p_result_callback;	cinfo.userdata = p_userdata;	cinfo.swap_result = p_swap_result;	cinfo.collided = false;	cinfo.collisions = 0;	cinfo.sep_axis = sep_axis;	cinfo.margin_A = p_margin_A;	cinfo.margin_B = p_margin_B;	cinfo.aabb_tests = 0;	Transform2D rel_transform = p_transform_A;	rel_transform.elements[2] -= p_transform_B.get_origin();	//quickly compute a local Rect2	Rect2 local_aabb;	for (int i = 0; i < 2; i++) {		Vector2 axis(p_transform_B.elements[i]);		real_t axis_scale = 1.0 / axis.length();		axis *= axis_scale;		real_t smin, smax;		p_shape_A->project_rangev(axis, rel_transform, smin, smax);		smin *= axis_scale;		smax *= axis_scale;		local_aabb.position[i] = smin;		local_aabb.size[i] = smax - smin;	}	concave_B->cull(local_aabb, concave_callback, &cinfo);	return cinfo.collided;}bool CollisionSolver2DSW::solve(const Shape2DSW *p_shape_A, const Transform2D &p_transform_A, const Vector2 &p_motion_A, const Shape2DSW *p_shape_B, const Transform2D &p_transform_B, const Vector2 &p_motion_B, CallbackResult p_result_callback, void *p_userdata, Vector2 *sep_axis, real_t p_margin_A, real_t p_margin_B) {	Physics2DServer::ShapeType type_A = p_shape_A->get_type();	Physics2DServer::ShapeType type_B = p_shape_B->get_type();	bool concave_A = p_shape_A->is_concave();	bool concave_B = p_shape_B->is_concave();	real_t margin_A = p_margin_A, margin_B = p_margin_B;	bool swap = false;	if (type_A > type_B) {		SWAP(type_A, type_B);		SWAP(concave_A, concave_B);		SWAP(margin_A, margin_B);		swap = true;	}	if (type_A == Physics2DServer::SHAPE_LINE) {		if (type_B == Physics2DServer::SHAPE_LINE || type_B == Physics2DServer::SHAPE_RAY) {			return false;		}		if (swap) {			return solve_static_line(p_shape_B, p_transform_B, p_shape_A, p_transform_A, p_result_callback, p_userdata, true);		} else {			return solve_static_line(p_shape_A, p_transform_A, p_shape_B, p_transform_B, p_result_callback, p_userdata, false);		}	} else if (type_A == Physics2DServer::SHAPE_RAY) {		if (type_B == Physics2DServer::SHAPE_RAY) {			return false; //no ray-ray		}		if (swap) {			return solve_raycast(p_shape_B, p_motion_B, p_transform_B, p_shape_A, p_transform_A, p_result_callback, p_userdata, true, sep_axis);		} else {			return solve_raycast(p_shape_A, p_motion_A, p_transform_A, p_shape_B, p_transform_B, p_result_callback, p_userdata, false, sep_axis);		}	} else if (concave_B) {		if (concave_A)			return false;		if (!swap)			return solve_concave(p_shape_A, p_transform_A, p_motion_A, p_shape_B, p_transform_B, p_motion_B, p_result_callback, p_userdata, false, sep_axis, margin_A, margin_B);		else			return solve_concave(p_shape_B, p_transform_B, p_motion_B, p_shape_A, p_transform_A, p_motion_A, p_result_callback, p_userdata, true, sep_axis, margin_A, margin_B);	} else {		return collision_solver(p_shape_A, p_transform_A, p_motion_A, p_shape_B, p_transform_B, p_motion_B, p_result_callback, p_userdata, false, sep_axis, margin_A, margin_B);	}	return false;}
 |