btCollisionWorld.cpp 61 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612
  1. /*
  2. Bullet Continuous Collision Detection and Physics Library
  3. Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
  4. This software is provided 'as-is', without any express or implied warranty.
  5. In no event will the authors be held liable for any damages arising from the use of this software.
  6. Permission is granted to anyone to use this software for any purpose,
  7. including commercial applications, and to alter it and redistribute it freely,
  8. subject to the following restrictions:
  9. 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
  10. 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
  11. 3. This notice may not be removed or altered from any source distribution.
  12. */
  13. #include "btCollisionWorld.h"
  14. #include "btCollisionDispatcher.h"
  15. #include "BulletCollision/CollisionDispatch/btCollisionObject.h"
  16. #include "BulletCollision/CollisionShapes/btCollisionShape.h"
  17. #include "BulletCollision/CollisionShapes/btConvexShape.h"
  18. #include "BulletCollision/NarrowPhaseCollision/btGjkEpaPenetrationDepthSolver.h"
  19. #include "BulletCollision/CollisionShapes/btSphereShape.h" //for raycasting
  20. #include "BulletCollision/CollisionShapes/btBvhTriangleMeshShape.h" //for raycasting
  21. #include "BulletCollision/CollisionShapes/btScaledBvhTriangleMeshShape.h" //for raycasting
  22. #include "BulletCollision/NarrowPhaseCollision/btRaycastCallback.h"
  23. #include "BulletCollision/CollisionShapes/btCompoundShape.h"
  24. #include "BulletCollision/NarrowPhaseCollision/btSubSimplexConvexCast.h"
  25. #include "BulletCollision/NarrowPhaseCollision/btGjkConvexCast.h"
  26. #include "BulletCollision/NarrowPhaseCollision/btContinuousConvexCollision.h"
  27. #include "BulletCollision/BroadphaseCollision/btCollisionAlgorithm.h"
  28. #include "BulletCollision/BroadphaseCollision/btBroadphaseInterface.h"
  29. #include "BulletCollision/BroadphaseCollision/btDbvt.h"
  30. #include "LinearMath/btAabbUtil2.h"
  31. #include "LinearMath/btQuickprof.h"
  32. #include "LinearMath/btSerializer.h"
  33. #include "BulletCollision/CollisionShapes/btConvexPolyhedron.h"
  34. #include "BulletCollision/CollisionDispatch/btCollisionObjectWrapper.h"
  35. //#define DISABLE_DBVT_COMPOUNDSHAPE_RAYCAST_ACCELERATION
  36. //#define USE_BRUTEFORCE_RAYBROADPHASE 1
  37. //RECALCULATE_AABB is slower, but benefit is that you don't need to call 'stepSimulation' or 'updateAabbs' before using a rayTest
  38. //#define RECALCULATE_AABB_RAYCAST 1
  39. //When the user doesn't provide dispatcher or broadphase, create basic versions (and delete them in destructor)
  40. #include "BulletCollision/CollisionDispatch/btCollisionDispatcher.h"
  41. #include "BulletCollision/BroadphaseCollision/btSimpleBroadphase.h"
  42. #include "BulletCollision/CollisionDispatch/btCollisionConfiguration.h"
  43. ///for debug drawing
  44. //for debug rendering
  45. #include "BulletCollision/CollisionShapes/btBoxShape.h"
  46. #include "BulletCollision/CollisionShapes/btCapsuleShape.h"
  47. #include "BulletCollision/CollisionShapes/btCompoundShape.h"
  48. #include "BulletCollision/CollisionShapes/btConeShape.h"
  49. #include "BulletCollision/CollisionShapes/btConvexTriangleMeshShape.h"
  50. #include "BulletCollision/CollisionShapes/btCylinderShape.h"
  51. #include "BulletCollision/CollisionShapes/btMultiSphereShape.h"
  52. #include "BulletCollision/CollisionShapes/btPolyhedralConvexShape.h"
  53. #include "BulletCollision/CollisionShapes/btSphereShape.h"
  54. #include "BulletCollision/CollisionShapes/btTriangleCallback.h"
  55. #include "BulletCollision/CollisionShapes/btTriangleMeshShape.h"
  56. #include "BulletCollision/CollisionShapes/btStaticPlaneShape.h"
  57. btCollisionWorld::btCollisionWorld(btDispatcher* dispatcher, btBroadphaseInterface* pairCache, btCollisionConfiguration* collisionConfiguration)
  58. : m_dispatcher1(dispatcher),
  59. m_broadphasePairCache(pairCache),
  60. m_debugDrawer(0),
  61. m_forceUpdateAllAabbs(true)
  62. {
  63. }
  64. btCollisionWorld::~btCollisionWorld()
  65. {
  66. //clean up remaining objects
  67. int i;
  68. for (i = 0; i < m_collisionObjects.size(); i++)
  69. {
  70. btCollisionObject* collisionObject = m_collisionObjects[i];
  71. btBroadphaseProxy* bp = collisionObject->getBroadphaseHandle();
  72. if (bp)
  73. {
  74. //
  75. // only clear the cached algorithms
  76. //
  77. getBroadphase()->getOverlappingPairCache()->cleanProxyFromPairs(bp, m_dispatcher1);
  78. getBroadphase()->destroyProxy(bp, m_dispatcher1);
  79. collisionObject->setBroadphaseHandle(0);
  80. }
  81. }
  82. }
  83. void btCollisionWorld::refreshBroadphaseProxy(btCollisionObject* collisionObject)
  84. {
  85. if (collisionObject->getBroadphaseHandle())
  86. {
  87. int collisionFilterGroup = collisionObject->getBroadphaseHandle()->m_collisionFilterGroup;
  88. int collisionFilterMask = collisionObject->getBroadphaseHandle()->m_collisionFilterMask;
  89. getBroadphase()->destroyProxy(collisionObject->getBroadphaseHandle(), getDispatcher());
  90. //calculate new AABB
  91. btTransform trans = collisionObject->getWorldTransform();
  92. btVector3 minAabb;
  93. btVector3 maxAabb;
  94. collisionObject->getCollisionShape()->getAabb(trans, minAabb, maxAabb);
  95. int type = collisionObject->getCollisionShape()->getShapeType();
  96. collisionObject->setBroadphaseHandle(getBroadphase()->createProxy(
  97. minAabb,
  98. maxAabb,
  99. type,
  100. collisionObject,
  101. collisionFilterGroup,
  102. collisionFilterMask,
  103. m_dispatcher1));
  104. }
  105. }
  106. void btCollisionWorld::addCollisionObject(btCollisionObject* collisionObject, int collisionFilterGroup, int collisionFilterMask)
  107. {
  108. btAssert(collisionObject);
  109. //check that the object isn't already added
  110. btAssert(m_collisionObjects.findLinearSearch(collisionObject) == m_collisionObjects.size());
  111. btAssert(collisionObject->getWorldArrayIndex() == -1); // do not add the same object to more than one collision world
  112. collisionObject->setWorldArrayIndex(m_collisionObjects.size());
  113. m_collisionObjects.push_back(collisionObject);
  114. //calculate new AABB
  115. btTransform trans = collisionObject->getWorldTransform();
  116. btVector3 minAabb;
  117. btVector3 maxAabb;
  118. collisionObject->getCollisionShape()->getAabb(trans, minAabb, maxAabb);
  119. int type = collisionObject->getCollisionShape()->getShapeType();
  120. collisionObject->setBroadphaseHandle(getBroadphase()->createProxy(
  121. minAabb,
  122. maxAabb,
  123. type,
  124. collisionObject,
  125. collisionFilterGroup,
  126. collisionFilterMask,
  127. m_dispatcher1));
  128. }
  129. void btCollisionWorld::updateSingleAabb(btCollisionObject* colObj)
  130. {
  131. btVector3 minAabb, maxAabb;
  132. colObj->getCollisionShape()->getAabb(colObj->getWorldTransform(), minAabb, maxAabb);
  133. //need to increase the aabb for contact thresholds
  134. btVector3 contactThreshold(gContactBreakingThreshold, gContactBreakingThreshold, gContactBreakingThreshold);
  135. minAabb -= contactThreshold;
  136. maxAabb += contactThreshold;
  137. if (getDispatchInfo().m_useContinuous && colObj->getInternalType() == btCollisionObject::CO_RIGID_BODY && !colObj->isStaticOrKinematicObject())
  138. {
  139. btVector3 minAabb2, maxAabb2;
  140. colObj->getCollisionShape()->getAabb(colObj->getInterpolationWorldTransform(), minAabb2, maxAabb2);
  141. minAabb2 -= contactThreshold;
  142. maxAabb2 += contactThreshold;
  143. minAabb.setMin(minAabb2);
  144. maxAabb.setMax(maxAabb2);
  145. }
  146. btBroadphaseInterface* bp = (btBroadphaseInterface*)m_broadphasePairCache;
  147. //moving objects should be moderately sized, probably something wrong if not
  148. if (colObj->isStaticObject() || ((maxAabb - minAabb).length2() < btScalar(1e12)))
  149. {
  150. bp->setAabb(colObj->getBroadphaseHandle(), minAabb, maxAabb, m_dispatcher1);
  151. }
  152. else
  153. {
  154. //something went wrong, investigate
  155. //this assert is unwanted in 3D modelers (danger of loosing work)
  156. colObj->setActivationState(DISABLE_SIMULATION);
  157. static bool reportMe = true;
  158. if (reportMe && m_debugDrawer)
  159. {
  160. reportMe = false;
  161. m_debugDrawer->reportErrorWarning("Overflow in AABB, object removed from simulation");
  162. m_debugDrawer->reportErrorWarning("If you can reproduce this, please email [email protected]\n");
  163. m_debugDrawer->reportErrorWarning("Please include above information, your Platform, version of OS.\n");
  164. m_debugDrawer->reportErrorWarning("Thanks.\n");
  165. }
  166. }
  167. }
  168. void btCollisionWorld::updateAabbs()
  169. {
  170. BT_PROFILE("updateAabbs");
  171. btTransform predictedTrans;
  172. for (int i = 0; i < m_collisionObjects.size(); i++)
  173. {
  174. btCollisionObject* colObj = m_collisionObjects[i];
  175. btAssert(colObj->getWorldArrayIndex() == i);
  176. //only update aabb of active objects
  177. if (m_forceUpdateAllAabbs || colObj->isActive())
  178. {
  179. updateSingleAabb(colObj);
  180. }
  181. }
  182. }
  183. void btCollisionWorld::computeOverlappingPairs()
  184. {
  185. BT_PROFILE("calculateOverlappingPairs");
  186. m_broadphasePairCache->calculateOverlappingPairs(m_dispatcher1);
  187. }
  188. void btCollisionWorld::performDiscreteCollisionDetection()
  189. {
  190. BT_PROFILE("performDiscreteCollisionDetection");
  191. btDispatcherInfo& dispatchInfo = getDispatchInfo();
  192. updateAabbs();
  193. computeOverlappingPairs();
  194. btDispatcher* dispatcher = getDispatcher();
  195. {
  196. BT_PROFILE("dispatchAllCollisionPairs");
  197. if (dispatcher)
  198. dispatcher->dispatchAllCollisionPairs(m_broadphasePairCache->getOverlappingPairCache(), dispatchInfo, m_dispatcher1);
  199. }
  200. }
  201. void btCollisionWorld::removeCollisionObject(btCollisionObject* collisionObject)
  202. {
  203. //bool removeFromBroadphase = false;
  204. {
  205. btBroadphaseProxy* bp = collisionObject->getBroadphaseHandle();
  206. if (bp)
  207. {
  208. //
  209. // only clear the cached algorithms
  210. //
  211. getBroadphase()->getOverlappingPairCache()->cleanProxyFromPairs(bp, m_dispatcher1);
  212. getBroadphase()->destroyProxy(bp, m_dispatcher1);
  213. collisionObject->setBroadphaseHandle(0);
  214. }
  215. }
  216. int iObj = collisionObject->getWorldArrayIndex();
  217. // btAssert(iObj >= 0 && iObj < m_collisionObjects.size()); // trying to remove an object that was never added or already removed previously?
  218. if (iObj >= 0 && iObj < m_collisionObjects.size())
  219. {
  220. btAssert(collisionObject == m_collisionObjects[iObj]);
  221. m_collisionObjects.swap(iObj, m_collisionObjects.size() - 1);
  222. m_collisionObjects.pop_back();
  223. if (iObj < m_collisionObjects.size())
  224. {
  225. m_collisionObjects[iObj]->setWorldArrayIndex(iObj);
  226. }
  227. }
  228. else
  229. {
  230. // slow linear search
  231. //swapremove
  232. m_collisionObjects.remove(collisionObject);
  233. }
  234. collisionObject->setWorldArrayIndex(-1);
  235. }
  236. void btCollisionWorld::rayTestSingle(const btTransform& rayFromTrans, const btTransform& rayToTrans,
  237. btCollisionObject* collisionObject,
  238. const btCollisionShape* collisionShape,
  239. const btTransform& colObjWorldTransform,
  240. RayResultCallback& resultCallback)
  241. {
  242. btCollisionObjectWrapper colObWrap(0, collisionShape, collisionObject, colObjWorldTransform, -1, -1);
  243. btCollisionWorld::rayTestSingleInternal(rayFromTrans, rayToTrans, &colObWrap, resultCallback);
  244. }
  245. void btCollisionWorld::rayTestSingleInternal(const btTransform& rayFromTrans, const btTransform& rayToTrans,
  246. const btCollisionObjectWrapper* collisionObjectWrap,
  247. RayResultCallback& resultCallback)
  248. {
  249. btSphereShape pointShape(btScalar(0.0));
  250. pointShape.setMargin(0.f);
  251. const btConvexShape* castShape = &pointShape;
  252. const btCollisionShape* collisionShape = collisionObjectWrap->getCollisionShape();
  253. const btTransform& colObjWorldTransform = collisionObjectWrap->getWorldTransform();
  254. if (collisionShape->isConvex())
  255. {
  256. // BT_PROFILE("rayTestConvex");
  257. btConvexCast::CastResult castResult;
  258. castResult.m_fraction = resultCallback.m_closestHitFraction;
  259. btConvexShape* convexShape = (btConvexShape*)collisionShape;
  260. btVoronoiSimplexSolver simplexSolver;
  261. btSubsimplexConvexCast subSimplexConvexCaster(castShape, convexShape, &simplexSolver);
  262. btGjkConvexCast gjkConvexCaster(castShape, convexShape, &simplexSolver);
  263. //btContinuousConvexCollision convexCaster(castShape,convexShape,&simplexSolver,0);
  264. btConvexCast* convexCasterPtr = 0;
  265. //use kF_UseSubSimplexConvexCastRaytest by default
  266. if (resultCallback.m_flags & btTriangleRaycastCallback::kF_UseGjkConvexCastRaytest)
  267. convexCasterPtr = &gjkConvexCaster;
  268. else
  269. convexCasterPtr = &subSimplexConvexCaster;
  270. btConvexCast& convexCaster = *convexCasterPtr;
  271. if (convexCaster.calcTimeOfImpact(rayFromTrans, rayToTrans, colObjWorldTransform, colObjWorldTransform, castResult))
  272. {
  273. //add hit
  274. if (castResult.m_normal.length2() > btScalar(0.0001))
  275. {
  276. if (castResult.m_fraction < resultCallback.m_closestHitFraction)
  277. {
  278. //todo: figure out what this is about. When is rayFromTest.getBasis() not identity?
  279. #ifdef USE_SUBSIMPLEX_CONVEX_CAST
  280. //rotate normal into worldspace
  281. castResult.m_normal = rayFromTrans.getBasis() * castResult.m_normal;
  282. #endif //USE_SUBSIMPLEX_CONVEX_CAST
  283. castResult.m_normal.normalize();
  284. btCollisionWorld::LocalRayResult localRayResult(
  285. collisionObjectWrap->getCollisionObject(),
  286. 0,
  287. castResult.m_normal,
  288. castResult.m_fraction);
  289. bool normalInWorldSpace = true;
  290. resultCallback.addSingleResult(localRayResult, normalInWorldSpace);
  291. }
  292. }
  293. }
  294. }
  295. else
  296. {
  297. if (collisionShape->isConcave())
  298. {
  299. //ConvexCast::CastResult
  300. struct BridgeTriangleRaycastCallback : public btTriangleRaycastCallback
  301. {
  302. btCollisionWorld::RayResultCallback* m_resultCallback;
  303. const btCollisionObject* m_collisionObject;
  304. const btConcaveShape* m_triangleMesh;
  305. btTransform m_colObjWorldTransform;
  306. BridgeTriangleRaycastCallback(const btVector3& from, const btVector3& to,
  307. btCollisionWorld::RayResultCallback* resultCallback, const btCollisionObject* collisionObject, const btConcaveShape* triangleMesh, const btTransform& colObjWorldTransform) : //@BP Mod
  308. btTriangleRaycastCallback(from, to, resultCallback->m_flags),
  309. m_resultCallback(resultCallback),
  310. m_collisionObject(collisionObject),
  311. m_triangleMesh(triangleMesh),
  312. m_colObjWorldTransform(colObjWorldTransform)
  313. {
  314. }
  315. virtual btScalar reportHit(const btVector3& hitNormalLocal, btScalar hitFraction, int partId, int triangleIndex)
  316. {
  317. btCollisionWorld::LocalShapeInfo shapeInfo;
  318. shapeInfo.m_shapePart = partId;
  319. shapeInfo.m_triangleIndex = triangleIndex;
  320. btVector3 hitNormalWorld = m_colObjWorldTransform.getBasis() * hitNormalLocal;
  321. btCollisionWorld::LocalRayResult rayResult(m_collisionObject,
  322. &shapeInfo,
  323. hitNormalWorld,
  324. hitFraction);
  325. bool normalInWorldSpace = true;
  326. return m_resultCallback->addSingleResult(rayResult, normalInWorldSpace);
  327. }
  328. };
  329. btTransform worldTocollisionObject = colObjWorldTransform.inverse();
  330. btVector3 rayFromLocal = worldTocollisionObject * rayFromTrans.getOrigin();
  331. btVector3 rayToLocal = worldTocollisionObject * rayToTrans.getOrigin();
  332. // BT_PROFILE("rayTestConcave");
  333. if (collisionShape->getShapeType() == TRIANGLE_MESH_SHAPE_PROXYTYPE)
  334. {
  335. ///optimized version for btBvhTriangleMeshShape
  336. btBvhTriangleMeshShape* triangleMesh = (btBvhTriangleMeshShape*)collisionShape;
  337. BridgeTriangleRaycastCallback rcb(rayFromLocal, rayToLocal, &resultCallback, collisionObjectWrap->getCollisionObject(), triangleMesh, colObjWorldTransform);
  338. rcb.m_hitFraction = resultCallback.m_closestHitFraction;
  339. triangleMesh->performRaycast(&rcb, rayFromLocal, rayToLocal);
  340. }
  341. else if (collisionShape->getShapeType() == SCALED_TRIANGLE_MESH_SHAPE_PROXYTYPE)
  342. {
  343. ///optimized version for btScaledBvhTriangleMeshShape
  344. btScaledBvhTriangleMeshShape* scaledTriangleMesh = (btScaledBvhTriangleMeshShape*)collisionShape;
  345. btBvhTriangleMeshShape* triangleMesh = (btBvhTriangleMeshShape*)scaledTriangleMesh->getChildShape();
  346. //scale the ray positions
  347. btVector3 scale = scaledTriangleMesh->getLocalScaling();
  348. btVector3 rayFromLocalScaled = rayFromLocal / scale;
  349. btVector3 rayToLocalScaled = rayToLocal / scale;
  350. //perform raycast in the underlying btBvhTriangleMeshShape
  351. BridgeTriangleRaycastCallback rcb(rayFromLocalScaled, rayToLocalScaled, &resultCallback, collisionObjectWrap->getCollisionObject(), triangleMesh, colObjWorldTransform);
  352. rcb.m_hitFraction = resultCallback.m_closestHitFraction;
  353. triangleMesh->performRaycast(&rcb, rayFromLocalScaled, rayToLocalScaled);
  354. }
  355. else
  356. {
  357. //generic (slower) case
  358. btConcaveShape* concaveShape = (btConcaveShape*)collisionShape;
  359. btTransform worldTocollisionObject = colObjWorldTransform.inverse();
  360. btVector3 rayFromLocal = worldTocollisionObject * rayFromTrans.getOrigin();
  361. btVector3 rayToLocal = worldTocollisionObject * rayToTrans.getOrigin();
  362. //ConvexCast::CastResult
  363. struct BridgeTriangleRaycastCallback : public btTriangleRaycastCallback
  364. {
  365. btCollisionWorld::RayResultCallback* m_resultCallback;
  366. const btCollisionObject* m_collisionObject;
  367. btConcaveShape* m_triangleMesh;
  368. btTransform m_colObjWorldTransform;
  369. BridgeTriangleRaycastCallback(const btVector3& from, const btVector3& to,
  370. btCollisionWorld::RayResultCallback* resultCallback, const btCollisionObject* collisionObject, btConcaveShape* triangleMesh, const btTransform& colObjWorldTransform) : //@BP Mod
  371. btTriangleRaycastCallback(from, to, resultCallback->m_flags),
  372. m_resultCallback(resultCallback),
  373. m_collisionObject(collisionObject),
  374. m_triangleMesh(triangleMesh),
  375. m_colObjWorldTransform(colObjWorldTransform)
  376. {
  377. }
  378. virtual btScalar reportHit(const btVector3& hitNormalLocal, btScalar hitFraction, int partId, int triangleIndex)
  379. {
  380. btCollisionWorld::LocalShapeInfo shapeInfo;
  381. shapeInfo.m_shapePart = partId;
  382. shapeInfo.m_triangleIndex = triangleIndex;
  383. btVector3 hitNormalWorld = m_colObjWorldTransform.getBasis() * hitNormalLocal;
  384. btCollisionWorld::LocalRayResult rayResult(m_collisionObject,
  385. &shapeInfo,
  386. hitNormalWorld,
  387. hitFraction);
  388. bool normalInWorldSpace = true;
  389. return m_resultCallback->addSingleResult(rayResult, normalInWorldSpace);
  390. }
  391. };
  392. BridgeTriangleRaycastCallback rcb(rayFromLocal, rayToLocal, &resultCallback, collisionObjectWrap->getCollisionObject(), concaveShape, colObjWorldTransform);
  393. rcb.m_hitFraction = resultCallback.m_closestHitFraction;
  394. btVector3 rayAabbMinLocal = rayFromLocal;
  395. rayAabbMinLocal.setMin(rayToLocal);
  396. btVector3 rayAabbMaxLocal = rayFromLocal;
  397. rayAabbMaxLocal.setMax(rayToLocal);
  398. concaveShape->processAllTriangles(&rcb, rayAabbMinLocal, rayAabbMaxLocal);
  399. }
  400. }
  401. else
  402. {
  403. // BT_PROFILE("rayTestCompound");
  404. if (collisionShape->isCompound())
  405. {
  406. struct LocalInfoAdder2 : public RayResultCallback
  407. {
  408. RayResultCallback* m_userCallback;
  409. int m_i;
  410. LocalInfoAdder2(int i, RayResultCallback* user)
  411. : m_userCallback(user), m_i(i)
  412. {
  413. m_closestHitFraction = m_userCallback->m_closestHitFraction;
  414. m_flags = m_userCallback->m_flags;
  415. }
  416. virtual bool needsCollision(btBroadphaseProxy* p) const
  417. {
  418. return m_userCallback->needsCollision(p);
  419. }
  420. virtual btScalar addSingleResult(btCollisionWorld::LocalRayResult& r, bool b)
  421. {
  422. btCollisionWorld::LocalShapeInfo shapeInfo;
  423. shapeInfo.m_shapePart = -1;
  424. shapeInfo.m_triangleIndex = m_i;
  425. if (r.m_localShapeInfo == NULL)
  426. r.m_localShapeInfo = &shapeInfo;
  427. const btScalar result = m_userCallback->addSingleResult(r, b);
  428. m_closestHitFraction = m_userCallback->m_closestHitFraction;
  429. return result;
  430. }
  431. };
  432. struct RayTester : btDbvt::ICollide
  433. {
  434. const btCollisionObject* m_collisionObject;
  435. const btCompoundShape* m_compoundShape;
  436. const btTransform& m_colObjWorldTransform;
  437. const btTransform& m_rayFromTrans;
  438. const btTransform& m_rayToTrans;
  439. RayResultCallback& m_resultCallback;
  440. RayTester(const btCollisionObject* collisionObject,
  441. const btCompoundShape* compoundShape,
  442. const btTransform& colObjWorldTransform,
  443. const btTransform& rayFromTrans,
  444. const btTransform& rayToTrans,
  445. RayResultCallback& resultCallback) : m_collisionObject(collisionObject),
  446. m_compoundShape(compoundShape),
  447. m_colObjWorldTransform(colObjWorldTransform),
  448. m_rayFromTrans(rayFromTrans),
  449. m_rayToTrans(rayToTrans),
  450. m_resultCallback(resultCallback)
  451. {
  452. }
  453. void ProcessLeaf(int i)
  454. {
  455. const btCollisionShape* childCollisionShape = m_compoundShape->getChildShape(i);
  456. const btTransform& childTrans = m_compoundShape->getChildTransform(i);
  457. btTransform childWorldTrans = m_colObjWorldTransform * childTrans;
  458. btCollisionObjectWrapper tmpOb(0, childCollisionShape, m_collisionObject, childWorldTrans, -1, i);
  459. // replace collision shape so that callback can determine the triangle
  460. LocalInfoAdder2 my_cb(i, &m_resultCallback);
  461. rayTestSingleInternal(
  462. m_rayFromTrans,
  463. m_rayToTrans,
  464. &tmpOb,
  465. my_cb);
  466. }
  467. void Process(const btDbvtNode* leaf)
  468. {
  469. ProcessLeaf(leaf->dataAsInt);
  470. }
  471. };
  472. const btCompoundShape* compoundShape = static_cast<const btCompoundShape*>(collisionShape);
  473. const btDbvt* dbvt = compoundShape->getDynamicAabbTree();
  474. RayTester rayCB(
  475. collisionObjectWrap->getCollisionObject(),
  476. compoundShape,
  477. colObjWorldTransform,
  478. rayFromTrans,
  479. rayToTrans,
  480. resultCallback);
  481. #ifndef DISABLE_DBVT_COMPOUNDSHAPE_RAYCAST_ACCELERATION
  482. if (dbvt)
  483. {
  484. btVector3 localRayFrom = colObjWorldTransform.inverseTimes(rayFromTrans).getOrigin();
  485. btVector3 localRayTo = colObjWorldTransform.inverseTimes(rayToTrans).getOrigin();
  486. btDbvt::rayTest(dbvt->m_root, localRayFrom, localRayTo, rayCB);
  487. }
  488. else
  489. #endif //DISABLE_DBVT_COMPOUNDSHAPE_RAYCAST_ACCELERATION
  490. {
  491. for (int i = 0, n = compoundShape->getNumChildShapes(); i < n; ++i)
  492. {
  493. rayCB.ProcessLeaf(i);
  494. }
  495. }
  496. }
  497. }
  498. }
  499. }
  500. void btCollisionWorld::objectQuerySingle(const btConvexShape* castShape, const btTransform& convexFromTrans, const btTransform& convexToTrans,
  501. btCollisionObject* collisionObject,
  502. const btCollisionShape* collisionShape,
  503. const btTransform& colObjWorldTransform,
  504. ConvexResultCallback& resultCallback, btScalar allowedPenetration)
  505. {
  506. btCollisionObjectWrapper tmpOb(0, collisionShape, collisionObject, colObjWorldTransform, -1, -1);
  507. btCollisionWorld::objectQuerySingleInternal(castShape, convexFromTrans, convexToTrans, &tmpOb, resultCallback, allowedPenetration);
  508. }
  509. void btCollisionWorld::objectQuerySingleInternal(const btConvexShape* castShape, const btTransform& convexFromTrans, const btTransform& convexToTrans,
  510. const btCollisionObjectWrapper* colObjWrap,
  511. ConvexResultCallback& resultCallback, btScalar allowedPenetration)
  512. {
  513. const btCollisionShape* collisionShape = colObjWrap->getCollisionShape();
  514. const btTransform& colObjWorldTransform = colObjWrap->getWorldTransform();
  515. if (collisionShape->isConvex())
  516. {
  517. //BT_PROFILE("convexSweepConvex");
  518. btConvexCast::CastResult castResult;
  519. castResult.m_allowedPenetration = allowedPenetration;
  520. castResult.m_fraction = resultCallback.m_closestHitFraction; //btScalar(1.);//??
  521. btConvexShape* convexShape = (btConvexShape*)collisionShape;
  522. btVoronoiSimplexSolver simplexSolver;
  523. btGjkEpaPenetrationDepthSolver gjkEpaPenetrationSolver;
  524. btContinuousConvexCollision convexCaster1(castShape, convexShape, &simplexSolver, &gjkEpaPenetrationSolver);
  525. //btGjkConvexCast convexCaster2(castShape,convexShape,&simplexSolver);
  526. //btSubsimplexConvexCast convexCaster3(castShape,convexShape,&simplexSolver);
  527. btConvexCast* castPtr = &convexCaster1;
  528. if (castPtr->calcTimeOfImpact(convexFromTrans, convexToTrans, colObjWorldTransform, colObjWorldTransform, castResult))
  529. {
  530. //add hit
  531. if (castResult.m_normal.length2() > btScalar(0.0001))
  532. {
  533. if (castResult.m_fraction < resultCallback.m_closestHitFraction)
  534. {
  535. castResult.m_normal.normalize();
  536. btCollisionWorld::LocalConvexResult localConvexResult(
  537. colObjWrap->getCollisionObject(),
  538. 0,
  539. castResult.m_normal,
  540. castResult.m_hitPoint,
  541. castResult.m_fraction);
  542. bool normalInWorldSpace = true;
  543. resultCallback.addSingleResult(localConvexResult, normalInWorldSpace);
  544. }
  545. }
  546. }
  547. }
  548. else
  549. {
  550. if (collisionShape->isConcave())
  551. {
  552. if (collisionShape->getShapeType() == TRIANGLE_MESH_SHAPE_PROXYTYPE)
  553. {
  554. //BT_PROFILE("convexSweepbtBvhTriangleMesh");
  555. btBvhTriangleMeshShape* triangleMesh = (btBvhTriangleMeshShape*)collisionShape;
  556. btTransform worldTocollisionObject = colObjWorldTransform.inverse();
  557. btVector3 convexFromLocal = worldTocollisionObject * convexFromTrans.getOrigin();
  558. btVector3 convexToLocal = worldTocollisionObject * convexToTrans.getOrigin();
  559. // rotation of box in local mesh space = MeshRotation^-1 * ConvexToRotation
  560. btTransform rotationXform = btTransform(worldTocollisionObject.getBasis() * convexToTrans.getBasis());
  561. //ConvexCast::CastResult
  562. struct BridgeTriangleConvexcastCallback : public btTriangleConvexcastCallback
  563. {
  564. btCollisionWorld::ConvexResultCallback* m_resultCallback;
  565. const btCollisionObject* m_collisionObject;
  566. btTriangleMeshShape* m_triangleMesh;
  567. BridgeTriangleConvexcastCallback(const btConvexShape* castShape, const btTransform& from, const btTransform& to,
  568. btCollisionWorld::ConvexResultCallback* resultCallback, const btCollisionObject* collisionObject, btTriangleMeshShape* triangleMesh, const btTransform& triangleToWorld) : btTriangleConvexcastCallback(castShape, from, to, triangleToWorld, triangleMesh->getMargin()),
  569. m_resultCallback(resultCallback),
  570. m_collisionObject(collisionObject),
  571. m_triangleMesh(triangleMesh)
  572. {
  573. }
  574. virtual btScalar reportHit(const btVector3& hitNormalLocal, const btVector3& hitPointLocal, btScalar hitFraction, int partId, int triangleIndex)
  575. {
  576. btCollisionWorld::LocalShapeInfo shapeInfo;
  577. shapeInfo.m_shapePart = partId;
  578. shapeInfo.m_triangleIndex = triangleIndex;
  579. if (hitFraction <= m_resultCallback->m_closestHitFraction)
  580. {
  581. btCollisionWorld::LocalConvexResult convexResult(m_collisionObject,
  582. &shapeInfo,
  583. hitNormalLocal,
  584. hitPointLocal,
  585. hitFraction);
  586. bool normalInWorldSpace = true;
  587. return m_resultCallback->addSingleResult(convexResult, normalInWorldSpace);
  588. }
  589. return hitFraction;
  590. }
  591. };
  592. BridgeTriangleConvexcastCallback tccb(castShape, convexFromTrans, convexToTrans, &resultCallback, colObjWrap->getCollisionObject(), triangleMesh, colObjWorldTransform);
  593. tccb.m_hitFraction = resultCallback.m_closestHitFraction;
  594. tccb.m_allowedPenetration = allowedPenetration;
  595. btVector3 boxMinLocal, boxMaxLocal;
  596. castShape->getAabb(rotationXform, boxMinLocal, boxMaxLocal);
  597. triangleMesh->performConvexcast(&tccb, convexFromLocal, convexToLocal, boxMinLocal, boxMaxLocal);
  598. }
  599. else
  600. {
  601. if (collisionShape->getShapeType() == STATIC_PLANE_PROXYTYPE)
  602. {
  603. btConvexCast::CastResult castResult;
  604. castResult.m_allowedPenetration = allowedPenetration;
  605. castResult.m_fraction = resultCallback.m_closestHitFraction;
  606. btStaticPlaneShape* planeShape = (btStaticPlaneShape*)collisionShape;
  607. btContinuousConvexCollision convexCaster1(castShape, planeShape);
  608. btConvexCast* castPtr = &convexCaster1;
  609. if (castPtr->calcTimeOfImpact(convexFromTrans, convexToTrans, colObjWorldTransform, colObjWorldTransform, castResult))
  610. {
  611. //add hit
  612. if (castResult.m_normal.length2() > btScalar(0.0001))
  613. {
  614. if (castResult.m_fraction < resultCallback.m_closestHitFraction)
  615. {
  616. castResult.m_normal.normalize();
  617. btCollisionWorld::LocalConvexResult localConvexResult(
  618. colObjWrap->getCollisionObject(),
  619. 0,
  620. castResult.m_normal,
  621. castResult.m_hitPoint,
  622. castResult.m_fraction);
  623. bool normalInWorldSpace = true;
  624. resultCallback.addSingleResult(localConvexResult, normalInWorldSpace);
  625. }
  626. }
  627. }
  628. }
  629. else
  630. {
  631. //BT_PROFILE("convexSweepConcave");
  632. btConcaveShape* concaveShape = (btConcaveShape*)collisionShape;
  633. btTransform worldTocollisionObject = colObjWorldTransform.inverse();
  634. btVector3 convexFromLocal = worldTocollisionObject * convexFromTrans.getOrigin();
  635. btVector3 convexToLocal = worldTocollisionObject * convexToTrans.getOrigin();
  636. // rotation of box in local mesh space = MeshRotation^-1 * ConvexToRotation
  637. btTransform rotationXform = btTransform(worldTocollisionObject.getBasis() * convexToTrans.getBasis());
  638. //ConvexCast::CastResult
  639. struct BridgeTriangleConvexcastCallback : public btTriangleConvexcastCallback
  640. {
  641. btCollisionWorld::ConvexResultCallback* m_resultCallback;
  642. const btCollisionObject* m_collisionObject;
  643. btConcaveShape* m_triangleMesh;
  644. BridgeTriangleConvexcastCallback(const btConvexShape* castShape, const btTransform& from, const btTransform& to,
  645. btCollisionWorld::ConvexResultCallback* resultCallback, const btCollisionObject* collisionObject, btConcaveShape* triangleMesh, const btTransform& triangleToWorld) : btTriangleConvexcastCallback(castShape, from, to, triangleToWorld, triangleMesh->getMargin()),
  646. m_resultCallback(resultCallback),
  647. m_collisionObject(collisionObject),
  648. m_triangleMesh(triangleMesh)
  649. {
  650. }
  651. virtual btScalar reportHit(const btVector3& hitNormalLocal, const btVector3& hitPointLocal, btScalar hitFraction, int partId, int triangleIndex)
  652. {
  653. btCollisionWorld::LocalShapeInfo shapeInfo;
  654. shapeInfo.m_shapePart = partId;
  655. shapeInfo.m_triangleIndex = triangleIndex;
  656. if (hitFraction <= m_resultCallback->m_closestHitFraction)
  657. {
  658. btCollisionWorld::LocalConvexResult convexResult(m_collisionObject,
  659. &shapeInfo,
  660. hitNormalLocal,
  661. hitPointLocal,
  662. hitFraction);
  663. bool normalInWorldSpace = true;
  664. return m_resultCallback->addSingleResult(convexResult, normalInWorldSpace);
  665. }
  666. return hitFraction;
  667. }
  668. };
  669. BridgeTriangleConvexcastCallback tccb(castShape, convexFromTrans, convexToTrans, &resultCallback, colObjWrap->getCollisionObject(), concaveShape, colObjWorldTransform);
  670. tccb.m_hitFraction = resultCallback.m_closestHitFraction;
  671. tccb.m_allowedPenetration = allowedPenetration;
  672. btVector3 boxMinLocal, boxMaxLocal;
  673. castShape->getAabb(rotationXform, boxMinLocal, boxMaxLocal);
  674. btVector3 rayAabbMinLocal = convexFromLocal;
  675. rayAabbMinLocal.setMin(convexToLocal);
  676. btVector3 rayAabbMaxLocal = convexFromLocal;
  677. rayAabbMaxLocal.setMax(convexToLocal);
  678. rayAabbMinLocal += boxMinLocal;
  679. rayAabbMaxLocal += boxMaxLocal;
  680. concaveShape->processAllTriangles(&tccb, rayAabbMinLocal, rayAabbMaxLocal);
  681. }
  682. }
  683. }
  684. else
  685. {
  686. if (collisionShape->isCompound())
  687. {
  688. struct btCompoundLeafCallback : btDbvt::ICollide
  689. {
  690. btCompoundLeafCallback(
  691. const btCollisionObjectWrapper* colObjWrap,
  692. const btConvexShape* castShape,
  693. const btTransform& convexFromTrans,
  694. const btTransform& convexToTrans,
  695. btScalar allowedPenetration,
  696. const btCompoundShape* compoundShape,
  697. const btTransform& colObjWorldTransform,
  698. ConvexResultCallback& resultCallback)
  699. : m_colObjWrap(colObjWrap),
  700. m_castShape(castShape),
  701. m_convexFromTrans(convexFromTrans),
  702. m_convexToTrans(convexToTrans),
  703. m_allowedPenetration(allowedPenetration),
  704. m_compoundShape(compoundShape),
  705. m_colObjWorldTransform(colObjWorldTransform),
  706. m_resultCallback(resultCallback)
  707. {
  708. }
  709. const btCollisionObjectWrapper* m_colObjWrap;
  710. const btConvexShape* m_castShape;
  711. const btTransform& m_convexFromTrans;
  712. const btTransform& m_convexToTrans;
  713. btScalar m_allowedPenetration;
  714. const btCompoundShape* m_compoundShape;
  715. const btTransform& m_colObjWorldTransform;
  716. ConvexResultCallback& m_resultCallback;
  717. public:
  718. void ProcessChild(int index, const btTransform& childTrans, const btCollisionShape* childCollisionShape)
  719. {
  720. btTransform childWorldTrans = m_colObjWorldTransform * childTrans;
  721. struct LocalInfoAdder : public ConvexResultCallback
  722. {
  723. ConvexResultCallback* m_userCallback;
  724. int m_i;
  725. LocalInfoAdder(int i, ConvexResultCallback* user)
  726. : m_userCallback(user), m_i(i)
  727. {
  728. m_closestHitFraction = m_userCallback->m_closestHitFraction;
  729. }
  730. virtual bool needsCollision(btBroadphaseProxy* p) const
  731. {
  732. return m_userCallback->needsCollision(p);
  733. }
  734. virtual btScalar addSingleResult(btCollisionWorld::LocalConvexResult& r, bool b)
  735. {
  736. btCollisionWorld::LocalShapeInfo shapeInfo;
  737. shapeInfo.m_shapePart = -1;
  738. shapeInfo.m_triangleIndex = m_i;
  739. if (r.m_localShapeInfo == NULL)
  740. r.m_localShapeInfo = &shapeInfo;
  741. const btScalar result = m_userCallback->addSingleResult(r, b);
  742. m_closestHitFraction = m_userCallback->m_closestHitFraction;
  743. return result;
  744. }
  745. };
  746. LocalInfoAdder my_cb(index, &m_resultCallback);
  747. btCollisionObjectWrapper tmpObj(m_colObjWrap, childCollisionShape, m_colObjWrap->getCollisionObject(), childWorldTrans, -1, index);
  748. objectQuerySingleInternal(m_castShape, m_convexFromTrans, m_convexToTrans, &tmpObj, my_cb, m_allowedPenetration);
  749. }
  750. void Process(const btDbvtNode* leaf)
  751. {
  752. // Processing leaf node
  753. int index = leaf->dataAsInt;
  754. btTransform childTrans = m_compoundShape->getChildTransform(index);
  755. const btCollisionShape* childCollisionShape = m_compoundShape->getChildShape(index);
  756. ProcessChild(index, childTrans, childCollisionShape);
  757. }
  758. };
  759. BT_PROFILE("convexSweepCompound");
  760. const btCompoundShape* compoundShape = static_cast<const btCompoundShape*>(collisionShape);
  761. btVector3 fromLocalAabbMin, fromLocalAabbMax;
  762. btVector3 toLocalAabbMin, toLocalAabbMax;
  763. castShape->getAabb(colObjWorldTransform.inverse() * convexFromTrans, fromLocalAabbMin, fromLocalAabbMax);
  764. castShape->getAabb(colObjWorldTransform.inverse() * convexToTrans, toLocalAabbMin, toLocalAabbMax);
  765. fromLocalAabbMin.setMin(toLocalAabbMin);
  766. fromLocalAabbMax.setMax(toLocalAabbMax);
  767. btCompoundLeafCallback callback(colObjWrap, castShape, convexFromTrans, convexToTrans,
  768. allowedPenetration, compoundShape, colObjWorldTransform, resultCallback);
  769. const btDbvt* tree = compoundShape->getDynamicAabbTree();
  770. if (tree)
  771. {
  772. const ATTRIBUTE_ALIGNED16(btDbvtVolume) bounds = btDbvtVolume::FromMM(fromLocalAabbMin, fromLocalAabbMax);
  773. tree->collideTV(tree->m_root, bounds, callback);
  774. }
  775. else
  776. {
  777. int i;
  778. for (i = 0; i < compoundShape->getNumChildShapes(); i++)
  779. {
  780. const btCollisionShape* childCollisionShape = compoundShape->getChildShape(i);
  781. btTransform childTrans = compoundShape->getChildTransform(i);
  782. callback.ProcessChild(i, childTrans, childCollisionShape);
  783. }
  784. }
  785. }
  786. }
  787. }
  788. }
  789. struct btSingleRayCallback : public btBroadphaseRayCallback
  790. {
  791. btVector3 m_rayFromWorld;
  792. btVector3 m_rayToWorld;
  793. btTransform m_rayFromTrans;
  794. btTransform m_rayToTrans;
  795. btVector3 m_hitNormal;
  796. const btCollisionWorld* m_world;
  797. btCollisionWorld::RayResultCallback& m_resultCallback;
  798. btSingleRayCallback(const btVector3& rayFromWorld, const btVector3& rayToWorld, const btCollisionWorld* world, btCollisionWorld::RayResultCallback& resultCallback)
  799. : m_rayFromWorld(rayFromWorld),
  800. m_rayToWorld(rayToWorld),
  801. m_world(world),
  802. m_resultCallback(resultCallback)
  803. {
  804. m_rayFromTrans.setIdentity();
  805. m_rayFromTrans.setOrigin(m_rayFromWorld);
  806. m_rayToTrans.setIdentity();
  807. m_rayToTrans.setOrigin(m_rayToWorld);
  808. btVector3 rayDir = (rayToWorld - rayFromWorld);
  809. rayDir.normalize();
  810. ///what about division by zero? --> just set rayDirection[i] to INF/BT_LARGE_FLOAT
  811. m_rayDirectionInverse[0] = rayDir[0] == btScalar(0.0) ? btScalar(BT_LARGE_FLOAT) : btScalar(1.0) / rayDir[0];
  812. m_rayDirectionInverse[1] = rayDir[1] == btScalar(0.0) ? btScalar(BT_LARGE_FLOAT) : btScalar(1.0) / rayDir[1];
  813. m_rayDirectionInverse[2] = rayDir[2] == btScalar(0.0) ? btScalar(BT_LARGE_FLOAT) : btScalar(1.0) / rayDir[2];
  814. m_signs[0] = m_rayDirectionInverse[0] < 0.0;
  815. m_signs[1] = m_rayDirectionInverse[1] < 0.0;
  816. m_signs[2] = m_rayDirectionInverse[2] < 0.0;
  817. m_lambda_max = rayDir.dot(m_rayToWorld - m_rayFromWorld);
  818. }
  819. virtual bool process(const btBroadphaseProxy* proxy)
  820. {
  821. ///terminate further ray tests, once the closestHitFraction reached zero
  822. if (m_resultCallback.m_closestHitFraction == btScalar(0.f))
  823. return false;
  824. btCollisionObject* collisionObject = (btCollisionObject*)proxy->m_clientObject;
  825. //only perform raycast if filterMask matches
  826. if (m_resultCallback.needsCollision(collisionObject->getBroadphaseHandle()))
  827. {
  828. //RigidcollisionObject* collisionObject = ctrl->GetRigidcollisionObject();
  829. //btVector3 collisionObjectAabbMin,collisionObjectAabbMax;
  830. #if 0
  831. #ifdef RECALCULATE_AABB
  832. btVector3 collisionObjectAabbMin,collisionObjectAabbMax;
  833. collisionObject->getCollisionShape()->getAabb(collisionObject->getWorldTransform(),collisionObjectAabbMin,collisionObjectAabbMax);
  834. #else
  835. //getBroadphase()->getAabb(collisionObject->getBroadphaseHandle(),collisionObjectAabbMin,collisionObjectAabbMax);
  836. const btVector3& collisionObjectAabbMin = collisionObject->getBroadphaseHandle()->m_aabbMin;
  837. const btVector3& collisionObjectAabbMax = collisionObject->getBroadphaseHandle()->m_aabbMax;
  838. #endif
  839. #endif
  840. //btScalar hitLambda = m_resultCallback.m_closestHitFraction;
  841. //culling already done by broadphase
  842. //if (btRayAabb(m_rayFromWorld,m_rayToWorld,collisionObjectAabbMin,collisionObjectAabbMax,hitLambda,m_hitNormal))
  843. {
  844. m_world->rayTestSingle(m_rayFromTrans, m_rayToTrans,
  845. collisionObject,
  846. collisionObject->getCollisionShape(),
  847. collisionObject->getWorldTransform(),
  848. m_resultCallback);
  849. }
  850. }
  851. return true;
  852. }
  853. };
  854. void btCollisionWorld::rayTest(const btVector3& rayFromWorld, const btVector3& rayToWorld, RayResultCallback& resultCallback) const
  855. {
  856. //BT_PROFILE("rayTest");
  857. /// use the broadphase to accelerate the search for objects, based on their aabb
  858. /// and for each object with ray-aabb overlap, perform an exact ray test
  859. btSingleRayCallback rayCB(rayFromWorld, rayToWorld, this, resultCallback);
  860. #ifndef USE_BRUTEFORCE_RAYBROADPHASE
  861. m_broadphasePairCache->rayTest(rayFromWorld, rayToWorld, rayCB);
  862. #else
  863. for (int i = 0; i < this->getNumCollisionObjects(); i++)
  864. {
  865. rayCB.process(m_collisionObjects[i]->getBroadphaseHandle());
  866. }
  867. #endif //USE_BRUTEFORCE_RAYBROADPHASE
  868. }
  869. struct btSingleSweepCallback : public btBroadphaseRayCallback
  870. {
  871. btTransform m_convexFromTrans;
  872. btTransform m_convexToTrans;
  873. btVector3 m_hitNormal;
  874. const btCollisionWorld* m_world;
  875. btCollisionWorld::ConvexResultCallback& m_resultCallback;
  876. btScalar m_allowedCcdPenetration;
  877. const btConvexShape* m_castShape;
  878. btSingleSweepCallback(const btConvexShape* castShape, const btTransform& convexFromTrans, const btTransform& convexToTrans, const btCollisionWorld* world, btCollisionWorld::ConvexResultCallback& resultCallback, btScalar allowedPenetration)
  879. : m_convexFromTrans(convexFromTrans),
  880. m_convexToTrans(convexToTrans),
  881. m_world(world),
  882. m_resultCallback(resultCallback),
  883. m_allowedCcdPenetration(allowedPenetration),
  884. m_castShape(castShape)
  885. {
  886. btVector3 unnormalizedRayDir = (m_convexToTrans.getOrigin() - m_convexFromTrans.getOrigin());
  887. btVector3 rayDir = unnormalizedRayDir.normalized();
  888. ///what about division by zero? --> just set rayDirection[i] to INF/BT_LARGE_FLOAT
  889. m_rayDirectionInverse[0] = rayDir[0] == btScalar(0.0) ? btScalar(BT_LARGE_FLOAT) : btScalar(1.0) / rayDir[0];
  890. m_rayDirectionInverse[1] = rayDir[1] == btScalar(0.0) ? btScalar(BT_LARGE_FLOAT) : btScalar(1.0) / rayDir[1];
  891. m_rayDirectionInverse[2] = rayDir[2] == btScalar(0.0) ? btScalar(BT_LARGE_FLOAT) : btScalar(1.0) / rayDir[2];
  892. m_signs[0] = m_rayDirectionInverse[0] < 0.0;
  893. m_signs[1] = m_rayDirectionInverse[1] < 0.0;
  894. m_signs[2] = m_rayDirectionInverse[2] < 0.0;
  895. m_lambda_max = rayDir.dot(unnormalizedRayDir);
  896. }
  897. virtual bool process(const btBroadphaseProxy* proxy)
  898. {
  899. ///terminate further convex sweep tests, once the closestHitFraction reached zero
  900. if (m_resultCallback.m_closestHitFraction == btScalar(0.f))
  901. return false;
  902. btCollisionObject* collisionObject = (btCollisionObject*)proxy->m_clientObject;
  903. //only perform raycast if filterMask matches
  904. if (m_resultCallback.needsCollision(collisionObject->getBroadphaseHandle()))
  905. {
  906. //RigidcollisionObject* collisionObject = ctrl->GetRigidcollisionObject();
  907. m_world->objectQuerySingle(m_castShape, m_convexFromTrans, m_convexToTrans,
  908. collisionObject,
  909. collisionObject->getCollisionShape(),
  910. collisionObject->getWorldTransform(),
  911. m_resultCallback,
  912. m_allowedCcdPenetration);
  913. }
  914. return true;
  915. }
  916. };
  917. void btCollisionWorld::convexSweepTest(const btConvexShape* castShape, const btTransform& convexFromWorld, const btTransform& convexToWorld, ConvexResultCallback& resultCallback, btScalar allowedCcdPenetration) const
  918. {
  919. BT_PROFILE("convexSweepTest");
  920. /// use the broadphase to accelerate the search for objects, based on their aabb
  921. /// and for each object with ray-aabb overlap, perform an exact ray test
  922. /// unfortunately the implementation for rayTest and convexSweepTest duplicated, albeit practically identical
  923. btTransform convexFromTrans, convexToTrans;
  924. convexFromTrans = convexFromWorld;
  925. convexToTrans = convexToWorld;
  926. btVector3 castShapeAabbMin, castShapeAabbMax;
  927. /* Compute AABB that encompasses angular movement */
  928. {
  929. btVector3 linVel, angVel;
  930. btTransformUtil::calculateVelocity(convexFromTrans, convexToTrans, 1.0f, linVel, angVel);
  931. btVector3 zeroLinVel;
  932. zeroLinVel.setValue(0, 0, 0);
  933. btTransform R;
  934. R.setIdentity();
  935. R.setRotation(convexFromTrans.getRotation());
  936. castShape->calculateTemporalAabb(R, zeroLinVel, angVel, 1.0f, castShapeAabbMin, castShapeAabbMax);
  937. }
  938. #ifndef USE_BRUTEFORCE_RAYBROADPHASE
  939. btSingleSweepCallback convexCB(castShape, convexFromWorld, convexToWorld, this, resultCallback, allowedCcdPenetration);
  940. m_broadphasePairCache->rayTest(convexFromTrans.getOrigin(), convexToTrans.getOrigin(), convexCB, castShapeAabbMin, castShapeAabbMax);
  941. #else
  942. /// go over all objects, and if the ray intersects their aabb + cast shape aabb,
  943. // do a ray-shape query using convexCaster (CCD)
  944. int i;
  945. for (i = 0; i < m_collisionObjects.size(); i++)
  946. {
  947. btCollisionObject* collisionObject = m_collisionObjects[i];
  948. //only perform raycast if filterMask matches
  949. if (resultCallback.needsCollision(collisionObject->getBroadphaseHandle()))
  950. {
  951. //RigidcollisionObject* collisionObject = ctrl->GetRigidcollisionObject();
  952. btVector3 collisionObjectAabbMin, collisionObjectAabbMax;
  953. collisionObject->getCollisionShape()->getAabb(collisionObject->getWorldTransform(), collisionObjectAabbMin, collisionObjectAabbMax);
  954. AabbExpand(collisionObjectAabbMin, collisionObjectAabbMax, castShapeAabbMin, castShapeAabbMax);
  955. btScalar hitLambda = btScalar(1.); //could use resultCallback.m_closestHitFraction, but needs testing
  956. btVector3 hitNormal;
  957. if (btRayAabb(convexFromWorld.getOrigin(), convexToWorld.getOrigin(), collisionObjectAabbMin, collisionObjectAabbMax, hitLambda, hitNormal))
  958. {
  959. objectQuerySingle(castShape, convexFromTrans, convexToTrans,
  960. collisionObject,
  961. collisionObject->getCollisionShape(),
  962. collisionObject->getWorldTransform(),
  963. resultCallback,
  964. allowedCcdPenetration);
  965. }
  966. }
  967. }
  968. #endif //USE_BRUTEFORCE_RAYBROADPHASE
  969. }
  970. struct btBridgedManifoldResult : public btManifoldResult
  971. {
  972. btCollisionWorld::ContactResultCallback& m_resultCallback;
  973. btBridgedManifoldResult(const btCollisionObjectWrapper* obj0Wrap, const btCollisionObjectWrapper* obj1Wrap, btCollisionWorld::ContactResultCallback& resultCallback)
  974. : btManifoldResult(obj0Wrap, obj1Wrap),
  975. m_resultCallback(resultCallback)
  976. {
  977. }
  978. virtual void addContactPoint(const btVector3& normalOnBInWorld, const btVector3& pointInWorld, btScalar depth)
  979. {
  980. bool isSwapped = m_manifoldPtr->getBody0() != m_body0Wrap->getCollisionObject();
  981. btVector3 pointA = pointInWorld + normalOnBInWorld * depth;
  982. btVector3 localA;
  983. btVector3 localB;
  984. if (isSwapped)
  985. {
  986. localA = m_body1Wrap->getCollisionObject()->getWorldTransform().invXform(pointA);
  987. localB = m_body0Wrap->getCollisionObject()->getWorldTransform().invXform(pointInWorld);
  988. }
  989. else
  990. {
  991. localA = m_body0Wrap->getCollisionObject()->getWorldTransform().invXform(pointA);
  992. localB = m_body1Wrap->getCollisionObject()->getWorldTransform().invXform(pointInWorld);
  993. }
  994. btManifoldPoint newPt(localA, localB, normalOnBInWorld, depth);
  995. newPt.m_positionWorldOnA = pointA;
  996. newPt.m_positionWorldOnB = pointInWorld;
  997. //BP mod, store contact triangles.
  998. if (isSwapped)
  999. {
  1000. newPt.m_partId0 = m_partId1;
  1001. newPt.m_partId1 = m_partId0;
  1002. newPt.m_index0 = m_index1;
  1003. newPt.m_index1 = m_index0;
  1004. }
  1005. else
  1006. {
  1007. newPt.m_partId0 = m_partId0;
  1008. newPt.m_partId1 = m_partId1;
  1009. newPt.m_index0 = m_index0;
  1010. newPt.m_index1 = m_index1;
  1011. }
  1012. //experimental feature info, for per-triangle material etc.
  1013. const btCollisionObjectWrapper* obj0Wrap = isSwapped ? m_body1Wrap : m_body0Wrap;
  1014. const btCollisionObjectWrapper* obj1Wrap = isSwapped ? m_body0Wrap : m_body1Wrap;
  1015. m_resultCallback.addSingleResult(newPt, obj0Wrap, newPt.m_partId0, newPt.m_index0, obj1Wrap, newPt.m_partId1, newPt.m_index1);
  1016. }
  1017. };
  1018. struct btSingleContactCallback : public btBroadphaseAabbCallback
  1019. {
  1020. btCollisionObject* m_collisionObject;
  1021. btCollisionWorld* m_world;
  1022. btCollisionWorld::ContactResultCallback& m_resultCallback;
  1023. btSingleContactCallback(btCollisionObject* collisionObject, btCollisionWorld* world, btCollisionWorld::ContactResultCallback& resultCallback)
  1024. : m_collisionObject(collisionObject),
  1025. m_world(world),
  1026. m_resultCallback(resultCallback)
  1027. {
  1028. }
  1029. virtual bool process(const btBroadphaseProxy* proxy)
  1030. {
  1031. btCollisionObject* collisionObject = (btCollisionObject*)proxy->m_clientObject;
  1032. if (collisionObject == m_collisionObject)
  1033. return true;
  1034. //only perform raycast if filterMask matches
  1035. if (m_resultCallback.needsCollision(collisionObject->getBroadphaseHandle()))
  1036. {
  1037. btCollisionObjectWrapper ob0(0, m_collisionObject->getCollisionShape(), m_collisionObject, m_collisionObject->getWorldTransform(), -1, -1);
  1038. btCollisionObjectWrapper ob1(0, collisionObject->getCollisionShape(), collisionObject, collisionObject->getWorldTransform(), -1, -1);
  1039. btCollisionAlgorithm* algorithm = m_world->getDispatcher()->findAlgorithm(&ob0, &ob1, 0, BT_CLOSEST_POINT_ALGORITHMS);
  1040. if (algorithm)
  1041. {
  1042. btBridgedManifoldResult contactPointResult(&ob0, &ob1, m_resultCallback);
  1043. //discrete collision detection query
  1044. algorithm->processCollision(&ob0, &ob1, m_world->getDispatchInfo(), &contactPointResult);
  1045. algorithm->~btCollisionAlgorithm();
  1046. m_world->getDispatcher()->freeCollisionAlgorithm(algorithm);
  1047. }
  1048. }
  1049. return true;
  1050. }
  1051. };
  1052. ///contactTest performs a discrete collision test against all objects in the btCollisionWorld, and calls the resultCallback.
  1053. ///it reports one or more contact points for every overlapping object (including the one with deepest penetration)
  1054. void btCollisionWorld::contactTest(btCollisionObject* colObj, ContactResultCallback& resultCallback)
  1055. {
  1056. btVector3 aabbMin, aabbMax;
  1057. colObj->getCollisionShape()->getAabb(colObj->getWorldTransform(), aabbMin, aabbMax);
  1058. btSingleContactCallback contactCB(colObj, this, resultCallback);
  1059. m_broadphasePairCache->aabbTest(aabbMin, aabbMax, contactCB);
  1060. }
  1061. ///contactTest performs a discrete collision test between two collision objects and calls the resultCallback if overlap if detected.
  1062. ///it reports one or more contact points (including the one with deepest penetration)
  1063. void btCollisionWorld::contactPairTest(btCollisionObject* colObjA, btCollisionObject* colObjB, ContactResultCallback& resultCallback)
  1064. {
  1065. btCollisionObjectWrapper obA(0, colObjA->getCollisionShape(), colObjA, colObjA->getWorldTransform(), -1, -1);
  1066. btCollisionObjectWrapper obB(0, colObjB->getCollisionShape(), colObjB, colObjB->getWorldTransform(), -1, -1);
  1067. btCollisionAlgorithm* algorithm = getDispatcher()->findAlgorithm(&obA, &obB, 0, BT_CLOSEST_POINT_ALGORITHMS);
  1068. if (algorithm)
  1069. {
  1070. btBridgedManifoldResult contactPointResult(&obA, &obB, resultCallback);
  1071. contactPointResult.m_closestPointDistanceThreshold = resultCallback.m_closestDistanceThreshold;
  1072. //discrete collision detection query
  1073. algorithm->processCollision(&obA, &obB, getDispatchInfo(), &contactPointResult);
  1074. algorithm->~btCollisionAlgorithm();
  1075. getDispatcher()->freeCollisionAlgorithm(algorithm);
  1076. }
  1077. }
  1078. class DebugDrawcallback : public btTriangleCallback, public btInternalTriangleIndexCallback
  1079. {
  1080. btIDebugDraw* m_debugDrawer;
  1081. btVector3 m_color;
  1082. btTransform m_worldTrans;
  1083. public:
  1084. DebugDrawcallback(btIDebugDraw* debugDrawer, const btTransform& worldTrans, const btVector3& color) : m_debugDrawer(debugDrawer),
  1085. m_color(color),
  1086. m_worldTrans(worldTrans)
  1087. {
  1088. }
  1089. virtual void internalProcessTriangleIndex(btVector3* triangle, int partId, int triangleIndex)
  1090. {
  1091. processTriangle(triangle, partId, triangleIndex);
  1092. }
  1093. virtual void processTriangle(btVector3* triangle, int partId, int triangleIndex)
  1094. {
  1095. (void)partId;
  1096. (void)triangleIndex;
  1097. btVector3 wv0, wv1, wv2;
  1098. wv0 = m_worldTrans * triangle[0];
  1099. wv1 = m_worldTrans * triangle[1];
  1100. wv2 = m_worldTrans * triangle[2];
  1101. btVector3 center = (wv0 + wv1 + wv2) * btScalar(1. / 3.);
  1102. if (m_debugDrawer->getDebugMode() & btIDebugDraw::DBG_DrawNormals)
  1103. {
  1104. btVector3 normal = (wv1 - wv0).cross(wv2 - wv0);
  1105. normal.normalize();
  1106. btVector3 normalColor(1, 1, 0);
  1107. m_debugDrawer->drawLine(center, center + normal, normalColor);
  1108. }
  1109. m_debugDrawer->drawLine(wv0, wv1, m_color);
  1110. m_debugDrawer->drawLine(wv1, wv2, m_color);
  1111. m_debugDrawer->drawLine(wv2, wv0, m_color);
  1112. }
  1113. };
  1114. void btCollisionWorld::debugDrawObject(const btTransform& worldTransform, const btCollisionShape* shape, const btVector3& color)
  1115. {
  1116. // Draw a small simplex at the center of the object
  1117. if (getDebugDrawer() && getDebugDrawer()->getDebugMode() & btIDebugDraw::DBG_DrawFrames)
  1118. {
  1119. getDebugDrawer()->drawTransform(worldTransform, .1);
  1120. }
  1121. if (shape->getShapeType() == COMPOUND_SHAPE_PROXYTYPE)
  1122. {
  1123. const btCompoundShape* compoundShape = static_cast<const btCompoundShape*>(shape);
  1124. for (int i = compoundShape->getNumChildShapes() - 1; i >= 0; i--)
  1125. {
  1126. btTransform childTrans = compoundShape->getChildTransform(i);
  1127. const btCollisionShape* colShape = compoundShape->getChildShape(i);
  1128. debugDrawObject(worldTransform * childTrans, colShape, color);
  1129. }
  1130. }
  1131. else
  1132. {
  1133. switch (shape->getShapeType())
  1134. {
  1135. case BOX_SHAPE_PROXYTYPE:
  1136. {
  1137. const btBoxShape* boxShape = static_cast<const btBoxShape*>(shape);
  1138. btVector3 halfExtents = boxShape->getHalfExtentsWithMargin();
  1139. getDebugDrawer()->drawBox(-halfExtents, halfExtents, worldTransform, color);
  1140. break;
  1141. }
  1142. case SPHERE_SHAPE_PROXYTYPE:
  1143. {
  1144. const btSphereShape* sphereShape = static_cast<const btSphereShape*>(shape);
  1145. btScalar radius = sphereShape->getMargin(); //radius doesn't include the margin, so draw with margin
  1146. getDebugDrawer()->drawSphere(radius, worldTransform, color);
  1147. break;
  1148. }
  1149. case MULTI_SPHERE_SHAPE_PROXYTYPE:
  1150. {
  1151. const btMultiSphereShape* multiSphereShape = static_cast<const btMultiSphereShape*>(shape);
  1152. btTransform childTransform;
  1153. childTransform.setIdentity();
  1154. for (int i = multiSphereShape->getSphereCount() - 1; i >= 0; i--)
  1155. {
  1156. childTransform.setOrigin(multiSphereShape->getSpherePosition(i));
  1157. getDebugDrawer()->drawSphere(multiSphereShape->getSphereRadius(i), worldTransform * childTransform, color);
  1158. }
  1159. break;
  1160. }
  1161. case CAPSULE_SHAPE_PROXYTYPE:
  1162. {
  1163. const btCapsuleShape* capsuleShape = static_cast<const btCapsuleShape*>(shape);
  1164. btScalar radius = capsuleShape->getRadius();
  1165. btScalar halfHeight = capsuleShape->getHalfHeight();
  1166. int upAxis = capsuleShape->getUpAxis();
  1167. getDebugDrawer()->drawCapsule(radius, halfHeight, upAxis, worldTransform, color);
  1168. break;
  1169. }
  1170. case CONE_SHAPE_PROXYTYPE:
  1171. {
  1172. const btConeShape* coneShape = static_cast<const btConeShape*>(shape);
  1173. btScalar radius = coneShape->getRadius(); //+coneShape->getMargin();
  1174. btScalar height = coneShape->getHeight(); //+coneShape->getMargin();
  1175. int upAxis = coneShape->getConeUpIndex();
  1176. getDebugDrawer()->drawCone(radius, height, upAxis, worldTransform, color);
  1177. break;
  1178. }
  1179. case CYLINDER_SHAPE_PROXYTYPE:
  1180. {
  1181. const btCylinderShape* cylinder = static_cast<const btCylinderShape*>(shape);
  1182. int upAxis = cylinder->getUpAxis();
  1183. btScalar radius = cylinder->getRadius();
  1184. btScalar halfHeight = cylinder->getHalfExtentsWithMargin()[upAxis];
  1185. getDebugDrawer()->drawCylinder(radius, halfHeight, upAxis, worldTransform, color);
  1186. break;
  1187. }
  1188. case STATIC_PLANE_PROXYTYPE:
  1189. {
  1190. const btStaticPlaneShape* staticPlaneShape = static_cast<const btStaticPlaneShape*>(shape);
  1191. btScalar planeConst = staticPlaneShape->getPlaneConstant();
  1192. const btVector3& planeNormal = staticPlaneShape->getPlaneNormal();
  1193. getDebugDrawer()->drawPlane(planeNormal, planeConst, worldTransform, color);
  1194. break;
  1195. }
  1196. default:
  1197. {
  1198. /// for polyhedral shapes
  1199. if (shape->isPolyhedral())
  1200. {
  1201. btPolyhedralConvexShape* polyshape = (btPolyhedralConvexShape*)shape;
  1202. int i;
  1203. if (polyshape->getConvexPolyhedron())
  1204. {
  1205. const btConvexPolyhedron* poly = polyshape->getConvexPolyhedron();
  1206. for (i = 0; i < poly->m_faces.size(); i++)
  1207. {
  1208. btVector3 centroid(0, 0, 0);
  1209. int numVerts = poly->m_faces[i].m_indices.size();
  1210. if (numVerts)
  1211. {
  1212. int lastV = poly->m_faces[i].m_indices[numVerts - 1];
  1213. for (int v = 0; v < poly->m_faces[i].m_indices.size(); v++)
  1214. {
  1215. int curVert = poly->m_faces[i].m_indices[v];
  1216. centroid += poly->m_vertices[curVert];
  1217. getDebugDrawer()->drawLine(worldTransform * poly->m_vertices[lastV], worldTransform * poly->m_vertices[curVert], color);
  1218. lastV = curVert;
  1219. }
  1220. }
  1221. centroid *= btScalar(1.f) / btScalar(numVerts);
  1222. if (getDebugDrawer()->getDebugMode() & btIDebugDraw::DBG_DrawNormals)
  1223. {
  1224. btVector3 normalColor(1, 1, 0);
  1225. btVector3 faceNormal(poly->m_faces[i].m_plane[0], poly->m_faces[i].m_plane[1], poly->m_faces[i].m_plane[2]);
  1226. getDebugDrawer()->drawLine(worldTransform * centroid, worldTransform * (centroid + faceNormal), normalColor);
  1227. }
  1228. }
  1229. }
  1230. else
  1231. {
  1232. for (i = 0; i < polyshape->getNumEdges(); i++)
  1233. {
  1234. btVector3 a, b;
  1235. polyshape->getEdge(i, a, b);
  1236. btVector3 wa = worldTransform * a;
  1237. btVector3 wb = worldTransform * b;
  1238. getDebugDrawer()->drawLine(wa, wb, color);
  1239. }
  1240. }
  1241. }
  1242. if (shape->isConcave())
  1243. {
  1244. btConcaveShape* concaveMesh = (btConcaveShape*)shape;
  1245. ///@todo pass camera, for some culling? no -> we are not a graphics lib
  1246. btVector3 aabbMax(btScalar(BT_LARGE_FLOAT), btScalar(BT_LARGE_FLOAT), btScalar(BT_LARGE_FLOAT));
  1247. btVector3 aabbMin(btScalar(-BT_LARGE_FLOAT), btScalar(-BT_LARGE_FLOAT), btScalar(-BT_LARGE_FLOAT));
  1248. DebugDrawcallback drawCallback(getDebugDrawer(), worldTransform, color);
  1249. concaveMesh->processAllTriangles(&drawCallback, aabbMin, aabbMax);
  1250. }
  1251. if (shape->getShapeType() == CONVEX_TRIANGLEMESH_SHAPE_PROXYTYPE)
  1252. {
  1253. btConvexTriangleMeshShape* convexMesh = (btConvexTriangleMeshShape*)shape;
  1254. //todo: pass camera for some culling
  1255. btVector3 aabbMax(btScalar(BT_LARGE_FLOAT), btScalar(BT_LARGE_FLOAT), btScalar(BT_LARGE_FLOAT));
  1256. btVector3 aabbMin(btScalar(-BT_LARGE_FLOAT), btScalar(-BT_LARGE_FLOAT), btScalar(-BT_LARGE_FLOAT));
  1257. //DebugDrawcallback drawCallback;
  1258. DebugDrawcallback drawCallback(getDebugDrawer(), worldTransform, color);
  1259. convexMesh->getMeshInterface()->InternalProcessAllTriangles(&drawCallback, aabbMin, aabbMax);
  1260. }
  1261. }
  1262. }
  1263. }
  1264. }
  1265. void btCollisionWorld::debugDrawWorld()
  1266. {
  1267. if (getDebugDrawer())
  1268. {
  1269. getDebugDrawer()->clearLines();
  1270. btIDebugDraw::DefaultColors defaultColors = getDebugDrawer()->getDefaultColors();
  1271. if (getDebugDrawer()->getDebugMode() & btIDebugDraw::DBG_DrawContactPoints)
  1272. {
  1273. if (getDispatcher())
  1274. {
  1275. int numManifolds = getDispatcher()->getNumManifolds();
  1276. for (int i = 0; i < numManifolds; i++)
  1277. {
  1278. btPersistentManifold* contactManifold = getDispatcher()->getManifoldByIndexInternal(i);
  1279. //btCollisionObject* obA = static_cast<btCollisionObject*>(contactManifold->getBody0());
  1280. //btCollisionObject* obB = static_cast<btCollisionObject*>(contactManifold->getBody1());
  1281. int numContacts = contactManifold->getNumContacts();
  1282. for (int j = 0; j < numContacts; j++)
  1283. {
  1284. btManifoldPoint& cp = contactManifold->getContactPoint(j);
  1285. getDebugDrawer()->drawContactPoint(cp.m_positionWorldOnB, cp.m_normalWorldOnB, cp.getDistance(), cp.getLifeTime(), defaultColors.m_contactPoint);
  1286. }
  1287. }
  1288. }
  1289. }
  1290. if ((getDebugDrawer()->getDebugMode() & (btIDebugDraw::DBG_DrawWireframe | btIDebugDraw::DBG_DrawAabb)))
  1291. {
  1292. int i;
  1293. for (i = 0; i < m_collisionObjects.size(); i++)
  1294. {
  1295. btCollisionObject* colObj = m_collisionObjects[i];
  1296. if ((colObj->getCollisionFlags() & btCollisionObject::CF_DISABLE_VISUALIZE_OBJECT) == 0)
  1297. {
  1298. if (getDebugDrawer() && (getDebugDrawer()->getDebugMode() & btIDebugDraw::DBG_DrawWireframe))
  1299. {
  1300. btVector3 color(btScalar(0.4), btScalar(0.4), btScalar(0.4));
  1301. switch (colObj->getActivationState())
  1302. {
  1303. case ACTIVE_TAG:
  1304. color = defaultColors.m_activeObject;
  1305. break;
  1306. case ISLAND_SLEEPING:
  1307. color = defaultColors.m_deactivatedObject;
  1308. break;
  1309. case WANTS_DEACTIVATION:
  1310. color = defaultColors.m_wantsDeactivationObject;
  1311. break;
  1312. case DISABLE_DEACTIVATION:
  1313. color = defaultColors.m_disabledDeactivationObject;
  1314. break;
  1315. case DISABLE_SIMULATION:
  1316. color = defaultColors.m_disabledSimulationObject;
  1317. break;
  1318. default:
  1319. {
  1320. color = btVector3(btScalar(.3), btScalar(0.3), btScalar(0.3));
  1321. }
  1322. };
  1323. colObj->getCustomDebugColor(color);
  1324. debugDrawObject(colObj->getWorldTransform(), colObj->getCollisionShape(), color);
  1325. }
  1326. if (m_debugDrawer && (m_debugDrawer->getDebugMode() & btIDebugDraw::DBG_DrawAabb))
  1327. {
  1328. btVector3 minAabb, maxAabb;
  1329. btVector3 colorvec = defaultColors.m_aabb;
  1330. colObj->getCollisionShape()->getAabb(colObj->getWorldTransform(), minAabb, maxAabb);
  1331. btVector3 contactThreshold(gContactBreakingThreshold, gContactBreakingThreshold, gContactBreakingThreshold);
  1332. minAabb -= contactThreshold;
  1333. maxAabb += contactThreshold;
  1334. btVector3 minAabb2, maxAabb2;
  1335. if (getDispatchInfo().m_useContinuous && colObj->getInternalType() == btCollisionObject::CO_RIGID_BODY && !colObj->isStaticOrKinematicObject())
  1336. {
  1337. colObj->getCollisionShape()->getAabb(colObj->getInterpolationWorldTransform(), minAabb2, maxAabb2);
  1338. minAabb2 -= contactThreshold;
  1339. maxAabb2 += contactThreshold;
  1340. minAabb.setMin(minAabb2);
  1341. maxAabb.setMax(maxAabb2);
  1342. }
  1343. m_debugDrawer->drawAabb(minAabb, maxAabb, colorvec);
  1344. }
  1345. }
  1346. }
  1347. }
  1348. }
  1349. }
  1350. void btCollisionWorld::serializeCollisionObjects(btSerializer* serializer)
  1351. {
  1352. int i;
  1353. ///keep track of shapes already serialized
  1354. btHashMap<btHashPtr, btCollisionShape*> serializedShapes;
  1355. for (i = 0; i < m_collisionObjects.size(); i++)
  1356. {
  1357. btCollisionObject* colObj = m_collisionObjects[i];
  1358. btCollisionShape* shape = colObj->getCollisionShape();
  1359. if (!serializedShapes.find(shape))
  1360. {
  1361. serializedShapes.insert(shape, shape);
  1362. shape->serializeSingleShape(serializer);
  1363. }
  1364. }
  1365. //serialize all collision objects
  1366. for (i = 0; i < m_collisionObjects.size(); i++)
  1367. {
  1368. btCollisionObject* colObj = m_collisionObjects[i];
  1369. if (colObj->getInternalType() == btCollisionObject::CO_COLLISION_OBJECT)
  1370. {
  1371. colObj->serializeSingleObject(serializer);
  1372. }
  1373. }
  1374. }
  1375. void btCollisionWorld::serializeContactManifolds(btSerializer* serializer)
  1376. {
  1377. if (serializer->getSerializationFlags() & BT_SERIALIZE_CONTACT_MANIFOLDS)
  1378. {
  1379. int numManifolds = getDispatcher()->getNumManifolds();
  1380. for (int i = 0; i < numManifolds; i++)
  1381. {
  1382. const btPersistentManifold* manifold = getDispatcher()->getInternalManifoldPointer()[i];
  1383. //don't serialize empty manifolds, they just take space
  1384. //(may have to do it anyway if it destroys determinism)
  1385. if (manifold->getNumContacts() == 0)
  1386. continue;
  1387. btChunk* chunk = serializer->allocate(manifold->calculateSerializeBufferSize(), 1);
  1388. const char* structType = manifold->serialize(manifold, chunk->m_oldPtr, serializer);
  1389. serializer->finalizeChunk(chunk, structType, BT_CONTACTMANIFOLD_CODE, (void*)manifold);
  1390. }
  1391. }
  1392. }
  1393. void btCollisionWorld::serialize(btSerializer* serializer)
  1394. {
  1395. serializer->startSerialization();
  1396. serializeCollisionObjects(serializer);
  1397. serializeContactManifolds(serializer);
  1398. serializer->finishSerialization();
  1399. }