btMultiBodyConstraint.cpp 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421
  1. #include "btMultiBodyConstraint.h"
  2. #include "BulletDynamics/Dynamics/btRigidBody.h"
  3. #include "btMultiBodyPoint2Point.h" //for testing (BTMBP2PCONSTRAINT_BLOCK_ANGULAR_MOTION_TEST macro)
  4. btMultiBodyConstraint::btMultiBodyConstraint(btMultiBody* bodyA, btMultiBody* bodyB, int linkA, int linkB, int numRows, bool isUnilateral)
  5. : m_bodyA(bodyA),
  6. m_bodyB(bodyB),
  7. m_linkA(linkA),
  8. m_linkB(linkB),
  9. m_numRows(numRows),
  10. m_jacSizeA(0),
  11. m_jacSizeBoth(0),
  12. m_isUnilateral(isUnilateral),
  13. m_numDofsFinalized(-1),
  14. m_maxAppliedImpulse(100)
  15. {
  16. }
  17. void btMultiBodyConstraint::updateJacobianSizes()
  18. {
  19. if (m_bodyA)
  20. {
  21. m_jacSizeA = (6 + m_bodyA->getNumDofs());
  22. }
  23. if (m_bodyB)
  24. {
  25. m_jacSizeBoth = m_jacSizeA + 6 + m_bodyB->getNumDofs();
  26. }
  27. else
  28. m_jacSizeBoth = m_jacSizeA;
  29. }
  30. void btMultiBodyConstraint::allocateJacobiansMultiDof()
  31. {
  32. updateJacobianSizes();
  33. m_posOffset = ((1 + m_jacSizeBoth) * m_numRows);
  34. m_data.resize((2 + m_jacSizeBoth) * m_numRows);
  35. }
  36. btMultiBodyConstraint::~btMultiBodyConstraint()
  37. {
  38. }
  39. void btMultiBodyConstraint::applyDeltaVee(btMultiBodyJacobianData& data, btScalar* delta_vee, btScalar impulse, int velocityIndex, int ndof)
  40. {
  41. for (int i = 0; i < ndof; ++i)
  42. data.m_deltaVelocities[velocityIndex + i] += delta_vee[i] * impulse;
  43. }
  44. btScalar btMultiBodyConstraint::fillMultiBodyConstraint(btMultiBodySolverConstraint& solverConstraint,
  45. btMultiBodyJacobianData& data,
  46. btScalar* jacOrgA, btScalar* jacOrgB,
  47. const btVector3& constraintNormalAng,
  48. const btVector3& constraintNormalLin,
  49. const btVector3& posAworld, const btVector3& posBworld,
  50. btScalar posError,
  51. const btContactSolverInfo& infoGlobal,
  52. btScalar lowerLimit, btScalar upperLimit,
  53. bool angConstraint,
  54. btScalar relaxation,
  55. bool isFriction, btScalar desiredVelocity, btScalar cfmSlip)
  56. {
  57. solverConstraint.m_multiBodyA = m_bodyA;
  58. solverConstraint.m_multiBodyB = m_bodyB;
  59. solverConstraint.m_linkA = m_linkA;
  60. solverConstraint.m_linkB = m_linkB;
  61. btMultiBody* multiBodyA = solverConstraint.m_multiBodyA;
  62. btMultiBody* multiBodyB = solverConstraint.m_multiBodyB;
  63. btSolverBody* bodyA = multiBodyA ? 0 : &data.m_solverBodyPool->at(solverConstraint.m_solverBodyIdA);
  64. btSolverBody* bodyB = multiBodyB ? 0 : &data.m_solverBodyPool->at(solverConstraint.m_solverBodyIdB);
  65. btRigidBody* rb0 = multiBodyA ? 0 : bodyA->m_originalBody;
  66. btRigidBody* rb1 = multiBodyB ? 0 : bodyB->m_originalBody;
  67. btVector3 rel_pos1, rel_pos2; //these two used to be inited to posAworld and posBworld (respectively) but it does not seem necessary
  68. if (bodyA)
  69. rel_pos1 = posAworld - bodyA->getWorldTransform().getOrigin();
  70. if (bodyB)
  71. rel_pos2 = posBworld - bodyB->getWorldTransform().getOrigin();
  72. if (multiBodyA)
  73. {
  74. if (solverConstraint.m_linkA < 0)
  75. {
  76. rel_pos1 = posAworld - multiBodyA->getBasePos();
  77. }
  78. else
  79. {
  80. rel_pos1 = posAworld - multiBodyA->getLink(solverConstraint.m_linkA).m_cachedWorldTransform.getOrigin();
  81. }
  82. const int ndofA = multiBodyA->getNumDofs() + 6;
  83. solverConstraint.m_deltaVelAindex = multiBodyA->getCompanionId();
  84. if (solverConstraint.m_deltaVelAindex < 0)
  85. {
  86. solverConstraint.m_deltaVelAindex = data.m_deltaVelocities.size();
  87. multiBodyA->setCompanionId(solverConstraint.m_deltaVelAindex);
  88. data.m_deltaVelocities.resize(data.m_deltaVelocities.size() + ndofA);
  89. }
  90. else
  91. {
  92. btAssert(data.m_deltaVelocities.size() >= solverConstraint.m_deltaVelAindex + ndofA);
  93. }
  94. //determine jacobian of this 1D constraint in terms of multibodyA's degrees of freedom
  95. //resize..
  96. solverConstraint.m_jacAindex = data.m_jacobians.size();
  97. data.m_jacobians.resize(data.m_jacobians.size() + ndofA);
  98. //copy/determine
  99. if (jacOrgA)
  100. {
  101. for (int i = 0; i < ndofA; i++)
  102. data.m_jacobians[solverConstraint.m_jacAindex + i] = jacOrgA[i];
  103. }
  104. else
  105. {
  106. btScalar* jac1 = &data.m_jacobians[solverConstraint.m_jacAindex];
  107. //multiBodyA->fillContactJacobianMultiDof(solverConstraint.m_linkA, posAworld, constraintNormalLin, jac1, data.scratch_r, data.scratch_v, data.scratch_m);
  108. multiBodyA->fillConstraintJacobianMultiDof(solverConstraint.m_linkA, posAworld, constraintNormalAng, constraintNormalLin, jac1, data.scratch_r, data.scratch_v, data.scratch_m);
  109. }
  110. //determine the velocity response of multibodyA to reaction impulses of this constraint (i.e. A[i,i] for i=1,...n_con: multibody's inverse inertia with respect to this 1D constraint)
  111. //resize..
  112. data.m_deltaVelocitiesUnitImpulse.resize(data.m_deltaVelocitiesUnitImpulse.size() + ndofA); //=> each constraint row has the constrained tree dofs allocated in m_deltaVelocitiesUnitImpulse
  113. btAssert(data.m_jacobians.size() == data.m_deltaVelocitiesUnitImpulse.size());
  114. btScalar* delta = &data.m_deltaVelocitiesUnitImpulse[solverConstraint.m_jacAindex];
  115. //determine..
  116. multiBodyA->calcAccelerationDeltasMultiDof(&data.m_jacobians[solverConstraint.m_jacAindex], delta, data.scratch_r, data.scratch_v);
  117. btVector3 torqueAxis0;
  118. if (angConstraint)
  119. {
  120. torqueAxis0 = constraintNormalAng;
  121. }
  122. else
  123. {
  124. torqueAxis0 = rel_pos1.cross(constraintNormalLin);
  125. }
  126. solverConstraint.m_relpos1CrossNormal = torqueAxis0;
  127. solverConstraint.m_contactNormal1 = constraintNormalLin;
  128. }
  129. else //if(rb0)
  130. {
  131. btVector3 torqueAxis0;
  132. if (angConstraint)
  133. {
  134. torqueAxis0 = constraintNormalAng;
  135. }
  136. else
  137. {
  138. torqueAxis0 = rel_pos1.cross(constraintNormalLin);
  139. }
  140. solverConstraint.m_angularComponentA = rb0 ? rb0->getInvInertiaTensorWorld() * torqueAxis0 * rb0->getAngularFactor() : btVector3(0, 0, 0);
  141. solverConstraint.m_relpos1CrossNormal = torqueAxis0;
  142. solverConstraint.m_contactNormal1 = constraintNormalLin;
  143. }
  144. if (multiBodyB)
  145. {
  146. if (solverConstraint.m_linkB < 0)
  147. {
  148. rel_pos2 = posBworld - multiBodyB->getBasePos();
  149. }
  150. else
  151. {
  152. rel_pos2 = posBworld - multiBodyB->getLink(solverConstraint.m_linkB).m_cachedWorldTransform.getOrigin();
  153. }
  154. const int ndofB = multiBodyB->getNumDofs() + 6;
  155. solverConstraint.m_deltaVelBindex = multiBodyB->getCompanionId();
  156. if (solverConstraint.m_deltaVelBindex < 0)
  157. {
  158. solverConstraint.m_deltaVelBindex = data.m_deltaVelocities.size();
  159. multiBodyB->setCompanionId(solverConstraint.m_deltaVelBindex);
  160. data.m_deltaVelocities.resize(data.m_deltaVelocities.size() + ndofB);
  161. }
  162. //determine jacobian of this 1D constraint in terms of multibodyB's degrees of freedom
  163. //resize..
  164. solverConstraint.m_jacBindex = data.m_jacobians.size();
  165. data.m_jacobians.resize(data.m_jacobians.size() + ndofB);
  166. //copy/determine..
  167. if (jacOrgB)
  168. {
  169. for (int i = 0; i < ndofB; i++)
  170. data.m_jacobians[solverConstraint.m_jacBindex + i] = jacOrgB[i];
  171. }
  172. else
  173. {
  174. //multiBodyB->fillContactJacobianMultiDof(solverConstraint.m_linkB, posBworld, -constraintNormalLin, &data.m_jacobians[solverConstraint.m_jacBindex], data.scratch_r, data.scratch_v, data.scratch_m);
  175. multiBodyB->fillConstraintJacobianMultiDof(solverConstraint.m_linkB, posBworld, -constraintNormalAng, -constraintNormalLin, &data.m_jacobians[solverConstraint.m_jacBindex], data.scratch_r, data.scratch_v, data.scratch_m);
  176. }
  177. //determine velocity response of multibodyB to reaction impulses of this constraint (i.e. A[i,i] for i=1,...n_con: multibody's inverse inertia with respect to this 1D constraint)
  178. //resize..
  179. data.m_deltaVelocitiesUnitImpulse.resize(data.m_deltaVelocitiesUnitImpulse.size() + ndofB);
  180. btAssert(data.m_jacobians.size() == data.m_deltaVelocitiesUnitImpulse.size());
  181. btScalar* delta = &data.m_deltaVelocitiesUnitImpulse[solverConstraint.m_jacBindex];
  182. //determine..
  183. multiBodyB->calcAccelerationDeltasMultiDof(&data.m_jacobians[solverConstraint.m_jacBindex], delta, data.scratch_r, data.scratch_v);
  184. btVector3 torqueAxis1;
  185. if (angConstraint)
  186. {
  187. torqueAxis1 = constraintNormalAng;
  188. }
  189. else
  190. {
  191. torqueAxis1 = rel_pos2.cross(constraintNormalLin);
  192. }
  193. solverConstraint.m_relpos2CrossNormal = -torqueAxis1;
  194. solverConstraint.m_contactNormal2 = -constraintNormalLin;
  195. }
  196. else //if(rb1)
  197. {
  198. btVector3 torqueAxis1;
  199. if (angConstraint)
  200. {
  201. torqueAxis1 = constraintNormalAng;
  202. }
  203. else
  204. {
  205. torqueAxis1 = rel_pos2.cross(constraintNormalLin);
  206. }
  207. solverConstraint.m_angularComponentB = rb1 ? rb1->getInvInertiaTensorWorld() * -torqueAxis1 * rb1->getAngularFactor() : btVector3(0, 0, 0);
  208. solverConstraint.m_relpos2CrossNormal = -torqueAxis1;
  209. solverConstraint.m_contactNormal2 = -constraintNormalLin;
  210. }
  211. {
  212. btVector3 vec;
  213. btScalar denom0 = 0.f;
  214. btScalar denom1 = 0.f;
  215. btScalar* jacB = 0;
  216. btScalar* jacA = 0;
  217. btScalar* deltaVelA = 0;
  218. btScalar* deltaVelB = 0;
  219. int ndofA = 0;
  220. //determine the "effective mass" of the constrained multibodyA with respect to this 1D constraint (i.e. 1/A[i,i])
  221. if (multiBodyA)
  222. {
  223. ndofA = multiBodyA->getNumDofs() + 6;
  224. jacA = &data.m_jacobians[solverConstraint.m_jacAindex];
  225. deltaVelA = &data.m_deltaVelocitiesUnitImpulse[solverConstraint.m_jacAindex];
  226. for (int i = 0; i < ndofA; ++i)
  227. {
  228. btScalar j = jacA[i];
  229. btScalar l = deltaVelA[i];
  230. denom0 += j * l;
  231. }
  232. }
  233. else if (rb0)
  234. {
  235. vec = (solverConstraint.m_angularComponentA).cross(rel_pos1);
  236. if (angConstraint)
  237. {
  238. denom0 = constraintNormalAng.dot(solverConstraint.m_angularComponentA);
  239. }
  240. else
  241. {
  242. denom0 = rb0->getInvMass() + constraintNormalLin.dot(vec);
  243. }
  244. }
  245. //
  246. if (multiBodyB)
  247. {
  248. const int ndofB = multiBodyB->getNumDofs() + 6;
  249. jacB = &data.m_jacobians[solverConstraint.m_jacBindex];
  250. deltaVelB = &data.m_deltaVelocitiesUnitImpulse[solverConstraint.m_jacBindex];
  251. for (int i = 0; i < ndofB; ++i)
  252. {
  253. btScalar j = jacB[i];
  254. btScalar l = deltaVelB[i];
  255. denom1 += j * l;
  256. }
  257. }
  258. else if (rb1)
  259. {
  260. vec = (-solverConstraint.m_angularComponentB).cross(rel_pos2);
  261. if (angConstraint)
  262. {
  263. denom1 = constraintNormalAng.dot(-solverConstraint.m_angularComponentB);
  264. }
  265. else
  266. {
  267. denom1 = rb1->getInvMass() + constraintNormalLin.dot(vec);
  268. }
  269. }
  270. //
  271. btScalar d = denom0 + denom1;
  272. if (d > SIMD_EPSILON)
  273. {
  274. solverConstraint.m_jacDiagABInv = relaxation / (d);
  275. }
  276. else
  277. {
  278. //disable the constraint row to handle singularity/redundant constraint
  279. solverConstraint.m_jacDiagABInv = 0.f;
  280. }
  281. }
  282. //compute rhs and remaining solverConstraint fields
  283. btScalar penetration = isFriction ? 0 : posError;
  284. btScalar rel_vel = 0.f;
  285. int ndofA = 0;
  286. int ndofB = 0;
  287. {
  288. btVector3 vel1, vel2;
  289. if (multiBodyA)
  290. {
  291. ndofA = multiBodyA->getNumDofs() + 6;
  292. btScalar* jacA = &data.m_jacobians[solverConstraint.m_jacAindex];
  293. for (int i = 0; i < ndofA; ++i)
  294. rel_vel += multiBodyA->getVelocityVector()[i] * jacA[i];
  295. }
  296. else if (rb0)
  297. {
  298. rel_vel += rb0->getLinearVelocity().dot(solverConstraint.m_contactNormal1);
  299. rel_vel += rb0->getAngularVelocity().dot(solverConstraint.m_relpos1CrossNormal);
  300. }
  301. if (multiBodyB)
  302. {
  303. ndofB = multiBodyB->getNumDofs() + 6;
  304. btScalar* jacB = &data.m_jacobians[solverConstraint.m_jacBindex];
  305. for (int i = 0; i < ndofB; ++i)
  306. rel_vel += multiBodyB->getVelocityVector()[i] * jacB[i];
  307. }
  308. else if (rb1)
  309. {
  310. rel_vel += rb1->getLinearVelocity().dot(solverConstraint.m_contactNormal2);
  311. rel_vel += rb1->getAngularVelocity().dot(solverConstraint.m_relpos2CrossNormal);
  312. }
  313. solverConstraint.m_friction = 0.f; //cp.m_combinedFriction;
  314. }
  315. ///warm starting (or zero if disabled)
  316. /*
  317. if (infoGlobal.m_solverMode & SOLVER_USE_WARMSTARTING)
  318. {
  319. solverConstraint.m_appliedImpulse = isFriction ? 0 : cp.m_appliedImpulse * infoGlobal.m_warmstartingFactor;
  320. if (solverConstraint.m_appliedImpulse)
  321. {
  322. if (multiBodyA)
  323. {
  324. btScalar impulse = solverConstraint.m_appliedImpulse;
  325. btScalar* deltaV = &data.m_deltaVelocitiesUnitImpulse[solverConstraint.m_jacAindex];
  326. multiBodyA->applyDeltaVee(deltaV,impulse);
  327. applyDeltaVee(data,deltaV,impulse,solverConstraint.m_deltaVelAindex,ndofA);
  328. } else
  329. {
  330. if (rb0)
  331. bodyA->internalApplyImpulse(solverConstraint.m_contactNormal1*bodyA->internalGetInvMass()*rb0->getLinearFactor(),solverConstraint.m_angularComponentA,solverConstraint.m_appliedImpulse);
  332. }
  333. if (multiBodyB)
  334. {
  335. btScalar impulse = solverConstraint.m_appliedImpulse;
  336. btScalar* deltaV = &data.m_deltaVelocitiesUnitImpulse[solverConstraint.m_jacBindex];
  337. multiBodyB->applyDeltaVee(deltaV,impulse);
  338. applyDeltaVee(data,deltaV,impulse,solverConstraint.m_deltaVelBindex,ndofB);
  339. } else
  340. {
  341. if (rb1)
  342. bodyB->internalApplyImpulse(-solverConstraint.m_contactNormal2*bodyB->internalGetInvMass()*rb1->getLinearFactor(),-solverConstraint.m_angularComponentB,-(btScalar)solverConstraint.m_appliedImpulse);
  343. }
  344. }
  345. } else
  346. */
  347. solverConstraint.m_appliedImpulse = 0.f;
  348. solverConstraint.m_appliedPushImpulse = 0.f;
  349. {
  350. btScalar positionalError = 0.f;
  351. btScalar velocityError = desiredVelocity - rel_vel; // * damping;
  352. btScalar erp = infoGlobal.m_erp2;
  353. //split impulse is not implemented yet for btMultiBody*
  354. //if (!infoGlobal.m_splitImpulse || (penetration > infoGlobal.m_splitImpulsePenetrationThreshold))
  355. {
  356. erp = infoGlobal.m_erp;
  357. }
  358. positionalError = -penetration * erp / infoGlobal.m_timeStep;
  359. btScalar penetrationImpulse = positionalError * solverConstraint.m_jacDiagABInv;
  360. btScalar velocityImpulse = velocityError * solverConstraint.m_jacDiagABInv;
  361. //split impulse is not implemented yet for btMultiBody*
  362. // if (!infoGlobal.m_splitImpulse || (penetration > infoGlobal.m_splitImpulsePenetrationThreshold))
  363. {
  364. //combine position and velocity into rhs
  365. solverConstraint.m_rhs = penetrationImpulse + velocityImpulse;
  366. solverConstraint.m_rhsPenetration = 0.f;
  367. }
  368. /*else
  369. {
  370. //split position and velocity into rhs and m_rhsPenetration
  371. solverConstraint.m_rhs = velocityImpulse;
  372. solverConstraint.m_rhsPenetration = penetrationImpulse;
  373. }
  374. */
  375. solverConstraint.m_cfm = 0.f;
  376. solverConstraint.m_lowerLimit = lowerLimit;
  377. solverConstraint.m_upperLimit = upperLimit;
  378. }
  379. return rel_vel;
  380. }