test_dictionary.h 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523
  1. /*************************************************************************/
  2. /* test_dictionary.h */
  3. /*************************************************************************/
  4. /* This file is part of: */
  5. /* GODOT ENGINE */
  6. /* https://godotengine.org */
  7. /*************************************************************************/
  8. /* Copyright (c) 2007-2022 Juan Linietsky, Ariel Manzur. */
  9. /* Copyright (c) 2014-2022 Godot Engine contributors (cf. AUTHORS.md). */
  10. /* */
  11. /* Permission is hereby granted, free of charge, to any person obtaining */
  12. /* a copy of this software and associated documentation files (the */
  13. /* "Software"), to deal in the Software without restriction, including */
  14. /* without limitation the rights to use, copy, modify, merge, publish, */
  15. /* distribute, sublicense, and/or sell copies of the Software, and to */
  16. /* permit persons to whom the Software is furnished to do so, subject to */
  17. /* the following conditions: */
  18. /* */
  19. /* The above copyright notice and this permission notice shall be */
  20. /* included in all copies or substantial portions of the Software. */
  21. /* */
  22. /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
  23. /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
  24. /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
  25. /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
  26. /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
  27. /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
  28. /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
  29. /*************************************************************************/
  30. #ifndef TEST_DICTIONARY_H
  31. #define TEST_DICTIONARY_H
  32. #include "core/variant/dictionary.h"
  33. #include "tests/test_macros.h"
  34. namespace TestDictionary {
  35. static inline Array build_array() {
  36. return Array();
  37. }
  38. template <typename... Targs>
  39. static inline Array build_array(Variant item, Targs... Fargs) {
  40. Array a = build_array(Fargs...);
  41. a.push_front(item);
  42. return a;
  43. }
  44. static inline Dictionary build_dictionary() {
  45. return Dictionary();
  46. }
  47. template <typename... Targs>
  48. static inline Dictionary build_dictionary(Variant key, Variant item, Targs... Fargs) {
  49. Dictionary d = build_dictionary(Fargs...);
  50. d[key] = item;
  51. return d;
  52. }
  53. TEST_CASE("[Dictionary] Assignment using bracket notation ([])") {
  54. Dictionary map;
  55. map["Hello"] = 0;
  56. CHECK(int(map["Hello"]) == 0);
  57. map["Hello"] = 3;
  58. CHECK(int(map["Hello"]) == 3);
  59. map["World!"] = 4;
  60. CHECK(int(map["World!"]) == 4);
  61. // Test non-string keys, since keys can be of any Variant type.
  62. map[12345] = -5;
  63. CHECK(int(map[12345]) == -5);
  64. map[false] = 128;
  65. CHECK(int(map[false]) == 128);
  66. map[Vector2(10, 20)] = 30;
  67. CHECK(int(map[Vector2(10, 20)]) == 30);
  68. map[0] = 400;
  69. CHECK(int(map[0]) == 400);
  70. // Check that assigning 0 doesn't overwrite the value for `false`.
  71. CHECK(int(map[false]) == 128);
  72. }
  73. TEST_CASE("[Dictionary] get_key_lists()") {
  74. Dictionary map;
  75. List<Variant> keys;
  76. List<Variant> *ptr = &keys;
  77. map.get_key_list(ptr);
  78. CHECK(keys.is_empty());
  79. map[1] = 3;
  80. map.get_key_list(ptr);
  81. CHECK(keys.size() == 1);
  82. CHECK(int(keys[0]) == 1);
  83. map[2] = 4;
  84. map.get_key_list(ptr);
  85. CHECK(keys.size() == 3);
  86. }
  87. TEST_CASE("[Dictionary] get_key_at_index()") {
  88. Dictionary map;
  89. map[4] = 3;
  90. Variant val = map.get_key_at_index(0);
  91. CHECK(int(val) == 4);
  92. map[3] = 1;
  93. val = map.get_key_at_index(0);
  94. CHECK(int(val) == 4);
  95. val = map.get_key_at_index(1);
  96. CHECK(int(val) == 3);
  97. }
  98. TEST_CASE("[Dictionary] getptr()") {
  99. Dictionary map;
  100. map[1] = 3;
  101. Variant *key = map.getptr(1);
  102. CHECK(int(*key) == 3);
  103. key = map.getptr(2);
  104. CHECK(key == nullptr);
  105. }
  106. TEST_CASE("[Dictionary] get_valid()") {
  107. Dictionary map;
  108. map[1] = 3;
  109. Variant val = map.get_valid(1);
  110. CHECK(int(val) == 3);
  111. }
  112. TEST_CASE("[Dictionary] get()") {
  113. Dictionary map;
  114. map[1] = 3;
  115. Variant val = map.get(1, -1);
  116. CHECK(int(val) == 3);
  117. }
  118. TEST_CASE("[Dictionary] size(), empty() and clear()") {
  119. Dictionary map;
  120. CHECK(map.size() == 0);
  121. CHECK(map.is_empty());
  122. map[1] = 3;
  123. CHECK(map.size() == 1);
  124. CHECK(!map.is_empty());
  125. map.clear();
  126. CHECK(map.size() == 0);
  127. CHECK(map.is_empty());
  128. }
  129. TEST_CASE("[Dictionary] has() and has_all()") {
  130. Dictionary map;
  131. CHECK(map.has(1) == false);
  132. map[1] = 3;
  133. CHECK(map.has(1));
  134. Array keys;
  135. keys.push_back(1);
  136. CHECK(map.has_all(keys));
  137. keys.push_back(2);
  138. CHECK(map.has_all(keys) == false);
  139. }
  140. TEST_CASE("[Dictionary] keys() and values()") {
  141. Dictionary map;
  142. Array keys = map.keys();
  143. Array values = map.values();
  144. CHECK(keys.is_empty());
  145. CHECK(values.is_empty());
  146. map[1] = 3;
  147. keys = map.keys();
  148. values = map.values();
  149. CHECK(int(keys[0]) == 1);
  150. CHECK(int(values[0]) == 3);
  151. }
  152. TEST_CASE("[Dictionary] Duplicate dictionary") {
  153. // d = {1: {1: 1}, {2: 2}: [2], [3]: 3}
  154. Dictionary k2 = build_dictionary(2, 2);
  155. Array k3 = build_array(3);
  156. Dictionary d = build_dictionary(1, build_dictionary(1, 1), k2, build_array(2), k3, 3);
  157. // Deep copy
  158. Dictionary deep_d = d.duplicate(true);
  159. CHECK_MESSAGE(deep_d.id() != d.id(), "Should create a new dictionary");
  160. CHECK_MESSAGE(Dictionary(deep_d[1]).id() != Dictionary(d[1]).id(), "Should clone nested dictionary");
  161. CHECK_MESSAGE(Array(deep_d[k2]).id() != Array(d[k2]).id(), "Should clone nested array");
  162. CHECK_EQ(deep_d, d);
  163. deep_d[0] = 0;
  164. CHECK_NE(deep_d, d);
  165. deep_d.erase(0);
  166. Dictionary(deep_d[1]).operator[](0) = 0;
  167. CHECK_NE(deep_d, d);
  168. Dictionary(deep_d[1]).erase(0);
  169. CHECK_EQ(deep_d, d);
  170. // Keys should also be copied
  171. k2[0] = 0;
  172. CHECK_NE(deep_d, d);
  173. k2.erase(0);
  174. CHECK_EQ(deep_d, d);
  175. k3.push_back(0);
  176. CHECK_NE(deep_d, d);
  177. k3.pop_back();
  178. CHECK_EQ(deep_d, d);
  179. // Shallow copy
  180. Dictionary shallow_d = d.duplicate(false);
  181. CHECK_MESSAGE(shallow_d.id() != d.id(), "Should create a new array");
  182. CHECK_MESSAGE(Dictionary(shallow_d[1]).id() == Dictionary(d[1]).id(), "Should keep nested dictionary");
  183. CHECK_MESSAGE(Array(shallow_d[k2]).id() == Array(d[k2]).id(), "Should keep nested array");
  184. CHECK_EQ(shallow_d, d);
  185. shallow_d[0] = 0;
  186. CHECK_NE(shallow_d, d);
  187. shallow_d.erase(0);
  188. #if 0 // TODO: recursion in dict key currently is buggy
  189. // Keys should also be shallowed
  190. k2[0] = 0;
  191. CHECK_EQ(shallow_d, d);
  192. k2.erase(0);
  193. k3.push_back(0);
  194. CHECK_EQ(shallow_d, d);
  195. #endif
  196. }
  197. TEST_CASE("[Dictionary] Duplicate recursive dictionary") {
  198. // Self recursive
  199. Dictionary d;
  200. d[1] = d;
  201. Dictionary d_shallow = d.duplicate(false);
  202. CHECK_EQ(d, d_shallow);
  203. // Deep copy of recursive dictionary endup with recursion limit and return
  204. // an invalid result (multiple nested dictionaries), the point is we should
  205. // not end up with a segfault and an error log should be printed
  206. ERR_PRINT_OFF;
  207. d.duplicate(true);
  208. ERR_PRINT_ON;
  209. // Nested recursive
  210. Dictionary d1;
  211. Dictionary d2;
  212. d1[2] = d2;
  213. d2[1] = d1;
  214. Dictionary d1_shallow = d1.duplicate(false);
  215. CHECK_EQ(d1, d1_shallow);
  216. // Same deep copy issue as above
  217. ERR_PRINT_OFF;
  218. d1.duplicate(true);
  219. ERR_PRINT_ON;
  220. // Break the recursivity otherwise Dictionary teardown will leak memory
  221. d.clear();
  222. d1.clear();
  223. d2.clear();
  224. }
  225. #if 0 // TODO: duplicate recursion in dict key is currently buggy
  226. TEST_CASE("[Dictionary] Duplicate recursive dictionary on keys") {
  227. // Self recursive
  228. Dictionary d;
  229. d[d] = d;
  230. Dictionary d_shallow = d.duplicate(false);
  231. CHECK_EQ(d, d_shallow);
  232. // Deep copy of recursive dictionary endup with recursion limit and return
  233. // an invalid result (multiple nested dictionaries), the point is we should
  234. // not end up with a segfault and an error log should be printed
  235. ERR_PRINT_OFF;
  236. d.duplicate(true);
  237. ERR_PRINT_ON;
  238. // Nested recursive
  239. Dictionary d1;
  240. Dictionary d2;
  241. d1[d2] = d2;
  242. d2[d1] = d1;
  243. Dictionary d1_shallow = d1.duplicate(false);
  244. CHECK_EQ(d1, d1_shallow);
  245. // Same deep copy issue as above
  246. ERR_PRINT_OFF;
  247. d1.duplicate(true);
  248. ERR_PRINT_ON;
  249. // Break the recursivity otherwise Dictionary teardown will leak memory
  250. d.clear();
  251. d1.clear();
  252. d2.clear();
  253. }
  254. #endif
  255. TEST_CASE("[Dictionary] Hash dictionary") {
  256. // d = {1: {1: 1}, {2: 2}: [2], [3]: 3}
  257. Dictionary k2 = build_dictionary(2, 2);
  258. Array k3 = build_array(3);
  259. Dictionary d = build_dictionary(1, build_dictionary(1, 1), k2, build_array(2), k3, 3);
  260. uint32_t original_hash = d.hash();
  261. // Modify dict change the hash
  262. d[0] = 0;
  263. CHECK_NE(d.hash(), original_hash);
  264. d.erase(0);
  265. CHECK_EQ(d.hash(), original_hash);
  266. // Modify nested item change the hash
  267. Dictionary(d[1]).operator[](0) = 0;
  268. CHECK_NE(d.hash(), original_hash);
  269. Dictionary(d[1]).erase(0);
  270. Array(d[k2]).push_back(0);
  271. CHECK_NE(d.hash(), original_hash);
  272. Array(d[k2]).pop_back();
  273. // Modify a key change the hash
  274. k2[0] = 0;
  275. CHECK_NE(d.hash(), original_hash);
  276. k2.erase(0);
  277. CHECK_EQ(d.hash(), original_hash);
  278. k3.push_back(0);
  279. CHECK_NE(d.hash(), original_hash);
  280. k3.pop_back();
  281. CHECK_EQ(d.hash(), original_hash);
  282. // Duplication doesn't change the hash
  283. Dictionary d2 = d.duplicate(true);
  284. CHECK_EQ(d2.hash(), original_hash);
  285. }
  286. TEST_CASE("[Dictionary] Hash recursive dictionary") {
  287. Dictionary d;
  288. d[1] = d;
  289. // Hash should reach recursion limit, we just make sure this doesn't blow up
  290. ERR_PRINT_OFF;
  291. d.hash();
  292. ERR_PRINT_ON;
  293. // Break the recursivity otherwise Dictionary teardown will leak memory
  294. d.clear();
  295. }
  296. #if 0 // TODO: recursion in dict key is currently buggy
  297. TEST_CASE("[Dictionary] Hash recursive dictionary on keys") {
  298. Dictionary d;
  299. d[d] = 1;
  300. // Hash should reach recursion limit, we just make sure this doesn't blow up
  301. ERR_PRINT_OFF;
  302. d.hash();
  303. ERR_PRINT_ON;
  304. // Break the recursivity otherwise Dictionary teardown will leak memory
  305. d.clear();
  306. }
  307. #endif
  308. TEST_CASE("[Dictionary] Empty comparison") {
  309. Dictionary d1;
  310. Dictionary d2;
  311. // test both operator== and operator!=
  312. CHECK_EQ(d1, d2);
  313. CHECK_FALSE(d1 != d2);
  314. }
  315. TEST_CASE("[Dictionary] Flat comparison") {
  316. Dictionary d1 = build_dictionary(1, 1);
  317. Dictionary d2 = build_dictionary(1, 1);
  318. Dictionary other_d = build_dictionary(2, 1);
  319. // test both operator== and operator!=
  320. CHECK_EQ(d1, d1); // compare self
  321. CHECK_FALSE(d1 != d1);
  322. CHECK_EQ(d1, d2); // different equivalent arrays
  323. CHECK_FALSE(d1 != d2);
  324. CHECK_NE(d1, other_d); // different arrays with different content
  325. CHECK_FALSE(d1 == other_d);
  326. }
  327. TEST_CASE("[Dictionary] Nested dictionary comparison") {
  328. // d1 = {1: {2: {3: 4}}}
  329. Dictionary d1 = build_dictionary(1, build_dictionary(2, build_dictionary(3, 4)));
  330. Dictionary d2 = d1.duplicate(true);
  331. // other_d = {1: {2: {3: 0}}}
  332. Dictionary other_d = build_dictionary(1, build_dictionary(2, build_dictionary(3, 0)));
  333. // test both operator== and operator!=
  334. CHECK_EQ(d1, d1); // compare self
  335. CHECK_FALSE(d1 != d1);
  336. CHECK_EQ(d1, d2); // different equivalent arrays
  337. CHECK_FALSE(d1 != d2);
  338. CHECK_NE(d1, other_d); // different arrays with different content
  339. CHECK_FALSE(d1 == other_d);
  340. }
  341. TEST_CASE("[Dictionary] Nested array comparison") {
  342. // d1 = {1: [2, 3]}
  343. Dictionary d1 = build_dictionary(1, build_array(2, 3));
  344. Dictionary d2 = d1.duplicate(true);
  345. // other_d = {1: [2, 0]}
  346. Dictionary other_d = build_dictionary(1, build_array(2, 0));
  347. // test both operator== and operator!=
  348. CHECK_EQ(d1, d1); // compare self
  349. CHECK_FALSE(d1 != d1);
  350. CHECK_EQ(d1, d2); // different equivalent arrays
  351. CHECK_FALSE(d1 != d2);
  352. CHECK_NE(d1, other_d); // different arrays with different content
  353. CHECK_FALSE(d1 == other_d);
  354. }
  355. TEST_CASE("[Dictionary] Recursive comparison") {
  356. Dictionary d1;
  357. d1[1] = d1;
  358. Dictionary d2;
  359. d2[1] = d2;
  360. // Comparison should reach recursion limit
  361. ERR_PRINT_OFF;
  362. CHECK_EQ(d1, d2);
  363. CHECK_FALSE(d1 != d2);
  364. ERR_PRINT_ON;
  365. d1[2] = 2;
  366. d2[2] = 2;
  367. // Comparison should reach recursion limit
  368. ERR_PRINT_OFF;
  369. CHECK_EQ(d1, d2);
  370. CHECK_FALSE(d1 != d2);
  371. ERR_PRINT_ON;
  372. d1[3] = 3;
  373. d2[3] = 0;
  374. // Comparison should reach recursion limit
  375. ERR_PRINT_OFF;
  376. CHECK_NE(d1, d2);
  377. CHECK_FALSE(d1 == d2);
  378. ERR_PRINT_ON;
  379. // Break the recursivity otherwise Dictionary teardown will leak memory
  380. d1.clear();
  381. d2.clear();
  382. }
  383. #if 0 // TODO: recursion in dict key is currently buggy
  384. TEST_CASE("[Dictionary] Recursive comparison on keys") {
  385. Dictionary d1;
  386. // Hash computation should reach recursion limit
  387. ERR_PRINT_OFF;
  388. d1[d1] = 1;
  389. ERR_PRINT_ON;
  390. Dictionary d2;
  391. // Hash computation should reach recursion limit
  392. ERR_PRINT_OFF;
  393. d2[d2] = 1;
  394. ERR_PRINT_ON;
  395. // Comparison should reach recursion limit
  396. ERR_PRINT_OFF;
  397. CHECK_EQ(d1, d2);
  398. CHECK_FALSE(d1 != d2);
  399. ERR_PRINT_ON;
  400. d1[2] = 2;
  401. d2[2] = 2;
  402. // Comparison should reach recursion limit
  403. ERR_PRINT_OFF;
  404. CHECK_EQ(d1, d2);
  405. CHECK_FALSE(d1 != d2);
  406. ERR_PRINT_ON;
  407. d1[3] = 3;
  408. d2[3] = 0;
  409. // Comparison should reach recursion limit
  410. ERR_PRINT_OFF;
  411. CHECK_NE(d1, d2);
  412. CHECK_FALSE(d1 == d2);
  413. ERR_PRINT_ON;
  414. // Break the recursivity otherwise Dictionary teardown will leak memory
  415. d1.clear();
  416. d2.clear();
  417. }
  418. #endif
  419. TEST_CASE("[Dictionary] Recursive self comparison") {
  420. Dictionary d1;
  421. Dictionary d2;
  422. d1[1] = d2;
  423. d2[1] = d1;
  424. CHECK_EQ(d1, d1);
  425. CHECK_FALSE(d1 != d1);
  426. // Break the recursivity otherwise Dictionary teardown will leak memory
  427. d1.clear();
  428. d2.clear();
  429. }
  430. TEST_CASE("[Dictionary] Order and find") {
  431. Dictionary d;
  432. d[4] = "four";
  433. d[8] = "eight";
  434. d[12] = "twelve";
  435. d["4"] = "four";
  436. Array keys;
  437. keys.append(4);
  438. keys.append(8);
  439. keys.append(12);
  440. keys.append("4");
  441. CHECK_EQ(d.keys(), keys);
  442. CHECK_EQ(d.find_key("four"), Variant(4));
  443. CHECK_EQ(d.find_key("does not exist"), Variant());
  444. }
  445. } // namespace TestDictionary
  446. #endif // TEST_DICTIONARY_H