vertexcodec.cpp 33 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195
  1. // This file is part of meshoptimizer library; see meshoptimizer.h for version/license details
  2. #include "meshoptimizer.h"
  3. #include <assert.h>
  4. #include <string.h>
  5. // The block below auto-detects SIMD ISA that can be used on the target platform
  6. #ifndef MESHOPTIMIZER_NO_SIMD
  7. // The SIMD implementation requires SSSE3, which can be enabled unconditionally through compiler settings
  8. #if defined(__AVX__) || defined(__SSSE3__)
  9. #define SIMD_SSE
  10. #endif
  11. // An experimental implementation using AVX512 instructions; it's only enabled when AVX512 is enabled through compiler settings
  12. #if defined(__AVX512VBMI2__) && defined(__AVX512VBMI__) && defined(__AVX512VL__) && defined(__POPCNT__)
  13. #undef SIMD_SSE
  14. #define SIMD_AVX
  15. #endif
  16. // MSVC supports compiling SSSE3 code regardless of compile options; we use a cpuid-based scalar fallback
  17. #if !defined(SIMD_SSE) && !defined(SIMD_AVX) && defined(_MSC_VER) && !defined(__clang__) && (defined(_M_IX86) || defined(_M_X64))
  18. #define SIMD_SSE
  19. #define SIMD_FALLBACK
  20. #endif
  21. // GCC 4.9+ and clang 3.8+ support targeting SIMD ISA from individual functions; we use a cpuid-based scalar fallback
  22. #if !defined(SIMD_SSE) && !defined(SIMD_AVX) && ((defined(__clang__) && __clang_major__ * 100 + __clang_minor__ >= 308) || (defined(__GNUC__) && __GNUC__ * 100 + __GNUC_MINOR__ >= 409)) && (defined(__i386__) || defined(__x86_64__))
  23. #define SIMD_SSE
  24. #define SIMD_FALLBACK
  25. #define SIMD_TARGET __attribute__((target("ssse3")))
  26. #endif
  27. // GCC/clang define these when NEON support is available
  28. #if defined(__ARM_NEON__) || defined(__ARM_NEON)
  29. #define SIMD_NEON
  30. #endif
  31. // On MSVC, we assume that ARM builds always target NEON-capable devices
  32. #if !defined(SIMD_NEON) && defined(_MSC_VER) && (defined(_M_ARM) || defined(_M_ARM64))
  33. #define SIMD_NEON
  34. #endif
  35. // When targeting Wasm SIMD we can't use runtime cpuid checks so we unconditionally enable SIMD
  36. #if defined(__wasm_simd128__)
  37. #define SIMD_WASM
  38. #endif
  39. #ifndef SIMD_TARGET
  40. #define SIMD_TARGET
  41. #endif
  42. #endif // !MESHOPTIMIZER_NO_SIMD
  43. #ifdef SIMD_SSE
  44. #include <tmmintrin.h>
  45. #endif
  46. #if defined(SIMD_SSE) && defined(SIMD_FALLBACK)
  47. #ifdef _MSC_VER
  48. #include <intrin.h> // __cpuid
  49. #else
  50. #include <cpuid.h> // __cpuid
  51. #endif
  52. #endif
  53. #ifdef SIMD_AVX
  54. #include <immintrin.h>
  55. #endif
  56. #ifdef SIMD_NEON
  57. #if defined(_MSC_VER) && defined(_M_ARM64)
  58. #include <arm64_neon.h>
  59. #else
  60. #include <arm_neon.h>
  61. #endif
  62. #endif
  63. #ifdef SIMD_WASM
  64. #undef __DEPRECATED
  65. #pragma clang diagnostic ignored "-Wdeprecated-declarations"
  66. #include <wasm_simd128.h>
  67. #endif
  68. #ifdef SIMD_WASM
  69. #define wasmx_splat_v32x4(v, i) wasm_v32x4_shuffle(v, v, i, i, i, i)
  70. #define wasmx_unpacklo_v8x16(a, b) wasm_v8x16_shuffle(a, b, 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23)
  71. #define wasmx_unpackhi_v8x16(a, b) wasm_v8x16_shuffle(a, b, 8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31)
  72. #define wasmx_unpacklo_v16x8(a, b) wasm_v16x8_shuffle(a, b, 0, 8, 1, 9, 2, 10, 3, 11)
  73. #define wasmx_unpackhi_v16x8(a, b) wasm_v16x8_shuffle(a, b, 4, 12, 5, 13, 6, 14, 7, 15)
  74. #define wasmx_unpacklo_v64x2(a, b) wasm_v64x2_shuffle(a, b, 0, 2)
  75. #define wasmx_unpackhi_v64x2(a, b) wasm_v64x2_shuffle(a, b, 1, 3)
  76. #endif
  77. namespace meshopt
  78. {
  79. const unsigned char kVertexHeader = 0xa0;
  80. static int gEncodeVertexVersion = 0;
  81. const size_t kVertexBlockSizeBytes = 8192;
  82. const size_t kVertexBlockMaxSize = 256;
  83. const size_t kByteGroupSize = 16;
  84. const size_t kByteGroupDecodeLimit = 24;
  85. const size_t kTailMaxSize = 32;
  86. static size_t getVertexBlockSize(size_t vertex_size)
  87. {
  88. // make sure the entire block fits into the scratch buffer
  89. size_t result = kVertexBlockSizeBytes / vertex_size;
  90. // align to byte group size; we encode each byte as a byte group
  91. // if vertex block is misaligned, it results in wasted bytes, so just truncate the block size
  92. result &= ~(kByteGroupSize - 1);
  93. return (result < kVertexBlockMaxSize) ? result : kVertexBlockMaxSize;
  94. }
  95. inline unsigned char zigzag8(unsigned char v)
  96. {
  97. return ((signed char)(v) >> 7) ^ (v << 1);
  98. }
  99. inline unsigned char unzigzag8(unsigned char v)
  100. {
  101. return -(v & 1) ^ (v >> 1);
  102. }
  103. static bool encodeBytesGroupZero(const unsigned char* buffer)
  104. {
  105. for (size_t i = 0; i < kByteGroupSize; ++i)
  106. if (buffer[i])
  107. return false;
  108. return true;
  109. }
  110. static size_t encodeBytesGroupMeasure(const unsigned char* buffer, int bits)
  111. {
  112. assert(bits >= 1 && bits <= 8);
  113. if (bits == 1)
  114. return encodeBytesGroupZero(buffer) ? 0 : size_t(-1);
  115. if (bits == 8)
  116. return kByteGroupSize;
  117. size_t result = kByteGroupSize * bits / 8;
  118. unsigned char sentinel = (1 << bits) - 1;
  119. for (size_t i = 0; i < kByteGroupSize; ++i)
  120. result += buffer[i] >= sentinel;
  121. return result;
  122. }
  123. static unsigned char* encodeBytesGroup(unsigned char* data, const unsigned char* buffer, int bits)
  124. {
  125. assert(bits >= 1 && bits <= 8);
  126. if (bits == 1)
  127. return data;
  128. if (bits == 8)
  129. {
  130. memcpy(data, buffer, kByteGroupSize);
  131. return data + kByteGroupSize;
  132. }
  133. size_t byte_size = 8 / bits;
  134. assert(kByteGroupSize % byte_size == 0);
  135. // fixed portion: bits bits for each value
  136. // variable portion: full byte for each out-of-range value (using 1...1 as sentinel)
  137. unsigned char sentinel = (1 << bits) - 1;
  138. for (size_t i = 0; i < kByteGroupSize; i += byte_size)
  139. {
  140. unsigned char byte = 0;
  141. for (size_t k = 0; k < byte_size; ++k)
  142. {
  143. unsigned char enc = (buffer[i + k] >= sentinel) ? sentinel : buffer[i + k];
  144. byte <<= bits;
  145. byte |= enc;
  146. }
  147. *data++ = byte;
  148. }
  149. for (size_t i = 0; i < kByteGroupSize; ++i)
  150. {
  151. if (buffer[i] >= sentinel)
  152. {
  153. *data++ = buffer[i];
  154. }
  155. }
  156. return data;
  157. }
  158. static unsigned char* encodeBytes(unsigned char* data, unsigned char* data_end, const unsigned char* buffer, size_t buffer_size)
  159. {
  160. assert(buffer_size % kByteGroupSize == 0);
  161. unsigned char* header = data;
  162. // round number of groups to 4 to get number of header bytes
  163. size_t header_size = (buffer_size / kByteGroupSize + 3) / 4;
  164. if (size_t(data_end - data) < header_size)
  165. return 0;
  166. data += header_size;
  167. memset(header, 0, header_size);
  168. for (size_t i = 0; i < buffer_size; i += kByteGroupSize)
  169. {
  170. if (size_t(data_end - data) < kByteGroupDecodeLimit)
  171. return 0;
  172. int best_bits = 8;
  173. size_t best_size = encodeBytesGroupMeasure(buffer + i, 8);
  174. for (int bits = 1; bits < 8; bits *= 2)
  175. {
  176. size_t size = encodeBytesGroupMeasure(buffer + i, bits);
  177. if (size < best_size)
  178. {
  179. best_bits = bits;
  180. best_size = size;
  181. }
  182. }
  183. int bitslog2 = (best_bits == 1) ? 0 : (best_bits == 2) ? 1 : (best_bits == 4) ? 2 : 3;
  184. assert((1 << bitslog2) == best_bits);
  185. size_t header_offset = i / kByteGroupSize;
  186. header[header_offset / 4] |= bitslog2 << ((header_offset % 4) * 2);
  187. unsigned char* next = encodeBytesGroup(data, buffer + i, best_bits);
  188. assert(data + best_size == next);
  189. data = next;
  190. }
  191. return data;
  192. }
  193. static unsigned char* encodeVertexBlock(unsigned char* data, unsigned char* data_end, const unsigned char* vertex_data, size_t vertex_count, size_t vertex_size, unsigned char last_vertex[256])
  194. {
  195. assert(vertex_count > 0 && vertex_count <= kVertexBlockMaxSize);
  196. unsigned char buffer[kVertexBlockMaxSize];
  197. assert(sizeof(buffer) % kByteGroupSize == 0);
  198. // we sometimes encode elements we didn't fill when rounding to kByteGroupSize
  199. memset(buffer, 0, sizeof(buffer));
  200. for (size_t k = 0; k < vertex_size; ++k)
  201. {
  202. size_t vertex_offset = k;
  203. unsigned char p = last_vertex[k];
  204. for (size_t i = 0; i < vertex_count; ++i)
  205. {
  206. buffer[i] = zigzag8(vertex_data[vertex_offset] - p);
  207. p = vertex_data[vertex_offset];
  208. vertex_offset += vertex_size;
  209. }
  210. data = encodeBytes(data, data_end, buffer, (vertex_count + kByteGroupSize - 1) & ~(kByteGroupSize - 1));
  211. if (!data)
  212. return 0;
  213. }
  214. memcpy(last_vertex, &vertex_data[vertex_size * (vertex_count - 1)], vertex_size);
  215. return data;
  216. }
  217. #if defined(SIMD_FALLBACK) || (!defined(SIMD_SSE) && !defined(SIMD_NEON) && !defined(SIMD_AVX))
  218. static const unsigned char* decodeBytesGroup(const unsigned char* data, unsigned char* buffer, int bitslog2)
  219. {
  220. #define READ() byte = *data++
  221. #define NEXT(bits) enc = byte >> (8 - bits), byte <<= bits, encv = *data_var, *buffer++ = (enc == (1 << bits) - 1) ? encv : enc, data_var += (enc == (1 << bits) - 1)
  222. unsigned char byte, enc, encv;
  223. const unsigned char* data_var;
  224. switch (bitslog2)
  225. {
  226. case 0:
  227. memset(buffer, 0, kByteGroupSize);
  228. return data;
  229. case 1:
  230. data_var = data + 4;
  231. // 4 groups with 4 2-bit values in each byte
  232. READ(), NEXT(2), NEXT(2), NEXT(2), NEXT(2);
  233. READ(), NEXT(2), NEXT(2), NEXT(2), NEXT(2);
  234. READ(), NEXT(2), NEXT(2), NEXT(2), NEXT(2);
  235. READ(), NEXT(2), NEXT(2), NEXT(2), NEXT(2);
  236. return data_var;
  237. case 2:
  238. data_var = data + 8;
  239. // 8 groups with 2 4-bit values in each byte
  240. READ(), NEXT(4), NEXT(4);
  241. READ(), NEXT(4), NEXT(4);
  242. READ(), NEXT(4), NEXT(4);
  243. READ(), NEXT(4), NEXT(4);
  244. READ(), NEXT(4), NEXT(4);
  245. READ(), NEXT(4), NEXT(4);
  246. READ(), NEXT(4), NEXT(4);
  247. READ(), NEXT(4), NEXT(4);
  248. return data_var;
  249. case 3:
  250. memcpy(buffer, data, kByteGroupSize);
  251. return data + kByteGroupSize;
  252. default:
  253. assert(!"Unexpected bit length"); // unreachable since bitslog2 is a 2-bit value
  254. return data;
  255. }
  256. #undef READ
  257. #undef NEXT
  258. }
  259. static const unsigned char* decodeBytes(const unsigned char* data, const unsigned char* data_end, unsigned char* buffer, size_t buffer_size)
  260. {
  261. assert(buffer_size % kByteGroupSize == 0);
  262. const unsigned char* header = data;
  263. // round number of groups to 4 to get number of header bytes
  264. size_t header_size = (buffer_size / kByteGroupSize + 3) / 4;
  265. if (size_t(data_end - data) < header_size)
  266. return 0;
  267. data += header_size;
  268. for (size_t i = 0; i < buffer_size; i += kByteGroupSize)
  269. {
  270. if (size_t(data_end - data) < kByteGroupDecodeLimit)
  271. return 0;
  272. size_t header_offset = i / kByteGroupSize;
  273. int bitslog2 = (header[header_offset / 4] >> ((header_offset % 4) * 2)) & 3;
  274. data = decodeBytesGroup(data, buffer + i, bitslog2);
  275. }
  276. return data;
  277. }
  278. static const unsigned char* decodeVertexBlock(const unsigned char* data, const unsigned char* data_end, unsigned char* vertex_data, size_t vertex_count, size_t vertex_size, unsigned char last_vertex[256])
  279. {
  280. assert(vertex_count > 0 && vertex_count <= kVertexBlockMaxSize);
  281. unsigned char buffer[kVertexBlockMaxSize];
  282. unsigned char transposed[kVertexBlockSizeBytes];
  283. size_t vertex_count_aligned = (vertex_count + kByteGroupSize - 1) & ~(kByteGroupSize - 1);
  284. for (size_t k = 0; k < vertex_size; ++k)
  285. {
  286. data = decodeBytes(data, data_end, buffer, vertex_count_aligned);
  287. if (!data)
  288. return 0;
  289. size_t vertex_offset = k;
  290. unsigned char p = last_vertex[k];
  291. for (size_t i = 0; i < vertex_count; ++i)
  292. {
  293. unsigned char v = unzigzag8(buffer[i]) + p;
  294. transposed[vertex_offset] = v;
  295. p = v;
  296. vertex_offset += vertex_size;
  297. }
  298. }
  299. memcpy(vertex_data, transposed, vertex_count * vertex_size);
  300. memcpy(last_vertex, &transposed[vertex_size * (vertex_count - 1)], vertex_size);
  301. return data;
  302. }
  303. #endif
  304. #if defined(SIMD_SSE) || defined(SIMD_NEON) || defined(SIMD_WASM)
  305. static unsigned char kDecodeBytesGroupShuffle[256][8];
  306. static unsigned char kDecodeBytesGroupCount[256];
  307. #ifdef __wasm__
  308. __attribute__((cold)) // this saves 500 bytes in the output binary - we don't need to vectorize this loop!
  309. #endif
  310. static bool
  311. decodeBytesGroupBuildTables()
  312. {
  313. for (int mask = 0; mask < 256; ++mask)
  314. {
  315. unsigned char shuffle[8];
  316. unsigned char count = 0;
  317. for (int i = 0; i < 8; ++i)
  318. {
  319. int maski = (mask >> i) & 1;
  320. shuffle[i] = maski ? count : 0x80;
  321. count += (unsigned char)(maski);
  322. }
  323. memcpy(kDecodeBytesGroupShuffle[mask], shuffle, 8);
  324. kDecodeBytesGroupCount[mask] = count;
  325. }
  326. return true;
  327. }
  328. static bool gDecodeBytesGroupInitialized = decodeBytesGroupBuildTables();
  329. #endif
  330. #ifdef SIMD_SSE
  331. SIMD_TARGET
  332. static __m128i decodeShuffleMask(unsigned char mask0, unsigned char mask1)
  333. {
  334. __m128i sm0 = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(&kDecodeBytesGroupShuffle[mask0]));
  335. __m128i sm1 = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(&kDecodeBytesGroupShuffle[mask1]));
  336. __m128i sm1off = _mm_set1_epi8(kDecodeBytesGroupCount[mask0]);
  337. __m128i sm1r = _mm_add_epi8(sm1, sm1off);
  338. return _mm_unpacklo_epi64(sm0, sm1r);
  339. }
  340. SIMD_TARGET
  341. static const unsigned char* decodeBytesGroupSimd(const unsigned char* data, unsigned char* buffer, int bitslog2)
  342. {
  343. switch (bitslog2)
  344. {
  345. case 0:
  346. {
  347. __m128i result = _mm_setzero_si128();
  348. _mm_storeu_si128(reinterpret_cast<__m128i*>(buffer), result);
  349. return data;
  350. }
  351. case 1:
  352. {
  353. #ifdef __GNUC__
  354. typedef int __attribute__((aligned(1))) unaligned_int;
  355. #else
  356. typedef int unaligned_int;
  357. #endif
  358. __m128i sel2 = _mm_cvtsi32_si128(*reinterpret_cast<const unaligned_int*>(data));
  359. __m128i rest = _mm_loadu_si128(reinterpret_cast<const __m128i*>(data + 4));
  360. __m128i sel22 = _mm_unpacklo_epi8(_mm_srli_epi16(sel2, 4), sel2);
  361. __m128i sel2222 = _mm_unpacklo_epi8(_mm_srli_epi16(sel22, 2), sel22);
  362. __m128i sel = _mm_and_si128(sel2222, _mm_set1_epi8(3));
  363. __m128i mask = _mm_cmpeq_epi8(sel, _mm_set1_epi8(3));
  364. int mask16 = _mm_movemask_epi8(mask);
  365. unsigned char mask0 = (unsigned char)(mask16 & 255);
  366. unsigned char mask1 = (unsigned char)(mask16 >> 8);
  367. __m128i shuf = decodeShuffleMask(mask0, mask1);
  368. __m128i result = _mm_or_si128(_mm_shuffle_epi8(rest, shuf), _mm_andnot_si128(mask, sel));
  369. _mm_storeu_si128(reinterpret_cast<__m128i*>(buffer), result);
  370. return data + 4 + kDecodeBytesGroupCount[mask0] + kDecodeBytesGroupCount[mask1];
  371. }
  372. case 2:
  373. {
  374. __m128i sel4 = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(data));
  375. __m128i rest = _mm_loadu_si128(reinterpret_cast<const __m128i*>(data + 8));
  376. __m128i sel44 = _mm_unpacklo_epi8(_mm_srli_epi16(sel4, 4), sel4);
  377. __m128i sel = _mm_and_si128(sel44, _mm_set1_epi8(15));
  378. __m128i mask = _mm_cmpeq_epi8(sel, _mm_set1_epi8(15));
  379. int mask16 = _mm_movemask_epi8(mask);
  380. unsigned char mask0 = (unsigned char)(mask16 & 255);
  381. unsigned char mask1 = (unsigned char)(mask16 >> 8);
  382. __m128i shuf = decodeShuffleMask(mask0, mask1);
  383. __m128i result = _mm_or_si128(_mm_shuffle_epi8(rest, shuf), _mm_andnot_si128(mask, sel));
  384. _mm_storeu_si128(reinterpret_cast<__m128i*>(buffer), result);
  385. return data + 8 + kDecodeBytesGroupCount[mask0] + kDecodeBytesGroupCount[mask1];
  386. }
  387. case 3:
  388. {
  389. __m128i result = _mm_loadu_si128(reinterpret_cast<const __m128i*>(data));
  390. _mm_storeu_si128(reinterpret_cast<__m128i*>(buffer), result);
  391. return data + 16;
  392. }
  393. default:
  394. assert(!"Unexpected bit length"); // unreachable since bitslog2 is a 2-bit value
  395. return data;
  396. }
  397. }
  398. #endif
  399. #ifdef SIMD_AVX
  400. static const __m128i decodeBytesGroupConfig[] = {
  401. _mm_set1_epi8(3),
  402. _mm_set1_epi8(15),
  403. _mm_setr_epi8(6, 4, 2, 0, 14, 12, 10, 8, 22, 20, 18, 16, 30, 28, 26, 24),
  404. _mm_setr_epi8(4, 0, 12, 8, 20, 16, 28, 24, 36, 32, 44, 40, 52, 48, 60, 56),
  405. };
  406. static const unsigned char* decodeBytesGroupSimd(const unsigned char* data, unsigned char* buffer, int bitslog2)
  407. {
  408. switch (bitslog2)
  409. {
  410. case 0:
  411. {
  412. __m128i result = _mm_setzero_si128();
  413. _mm_storeu_si128(reinterpret_cast<__m128i*>(buffer), result);
  414. return data;
  415. }
  416. case 1:
  417. case 2:
  418. {
  419. const unsigned char* skip = data + (bitslog2 << 2);
  420. __m128i selb = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(data));
  421. __m128i rest = _mm_loadu_si128(reinterpret_cast<const __m128i*>(skip));
  422. __m128i sent = decodeBytesGroupConfig[bitslog2 - 1];
  423. __m128i ctrl = decodeBytesGroupConfig[bitslog2 + 1];
  424. __m128i selw = _mm_shuffle_epi32(selb, 0x44);
  425. __m128i sel = _mm_and_si128(sent, _mm_multishift_epi64_epi8(ctrl, selw));
  426. __mmask16 mask16 = _mm_cmp_epi8_mask(sel, sent, _MM_CMPINT_EQ);
  427. __m128i result = _mm_mask_expand_epi8(sel, mask16, rest);
  428. _mm_storeu_si128(reinterpret_cast<__m128i*>(buffer), result);
  429. return skip + _mm_popcnt_u32(mask16);
  430. }
  431. case 3:
  432. {
  433. __m128i result = _mm_loadu_si128(reinterpret_cast<const __m128i*>(data));
  434. _mm_storeu_si128(reinterpret_cast<__m128i*>(buffer), result);
  435. return data + 16;
  436. }
  437. default:
  438. assert(!"Unexpected bit length"); // unreachable since bitslog2 is a 2-bit value
  439. return data;
  440. }
  441. }
  442. #endif
  443. #ifdef SIMD_NEON
  444. static uint8x16_t shuffleBytes(unsigned char mask0, unsigned char mask1, uint8x8_t rest0, uint8x8_t rest1)
  445. {
  446. uint8x8_t sm0 = vld1_u8(kDecodeBytesGroupShuffle[mask0]);
  447. uint8x8_t sm1 = vld1_u8(kDecodeBytesGroupShuffle[mask1]);
  448. uint8x8_t r0 = vtbl1_u8(rest0, sm0);
  449. uint8x8_t r1 = vtbl1_u8(rest1, sm1);
  450. return vcombine_u8(r0, r1);
  451. }
  452. static void neonMoveMask(uint8x16_t mask, unsigned char& mask0, unsigned char& mask1)
  453. {
  454. static const unsigned char byte_mask_data[16] = {1, 2, 4, 8, 16, 32, 64, 128, 1, 2, 4, 8, 16, 32, 64, 128};
  455. uint8x16_t byte_mask = vld1q_u8(byte_mask_data);
  456. uint8x16_t masked = vandq_u8(mask, byte_mask);
  457. #ifdef __aarch64__
  458. // aarch64 has horizontal sums; MSVC doesn't expose this via arm64_neon.h so this path is exclusive to clang/gcc
  459. mask0 = vaddv_u8(vget_low_u8(masked));
  460. mask1 = vaddv_u8(vget_high_u8(masked));
  461. #else
  462. // we need horizontal sums of each half of masked, which can be done in 3 steps (yielding sums of sizes 2, 4, 8)
  463. uint8x8_t sum1 = vpadd_u8(vget_low_u8(masked), vget_high_u8(masked));
  464. uint8x8_t sum2 = vpadd_u8(sum1, sum1);
  465. uint8x8_t sum3 = vpadd_u8(sum2, sum2);
  466. mask0 = vget_lane_u8(sum3, 0);
  467. mask1 = vget_lane_u8(sum3, 1);
  468. #endif
  469. }
  470. static const unsigned char* decodeBytesGroupSimd(const unsigned char* data, unsigned char* buffer, int bitslog2)
  471. {
  472. switch (bitslog2)
  473. {
  474. case 0:
  475. {
  476. uint8x16_t result = vdupq_n_u8(0);
  477. vst1q_u8(buffer, result);
  478. return data;
  479. }
  480. case 1:
  481. {
  482. uint8x8_t sel2 = vld1_u8(data);
  483. uint8x8_t sel22 = vzip_u8(vshr_n_u8(sel2, 4), sel2).val[0];
  484. uint8x8x2_t sel2222 = vzip_u8(vshr_n_u8(sel22, 2), sel22);
  485. uint8x16_t sel = vandq_u8(vcombine_u8(sel2222.val[0], sel2222.val[1]), vdupq_n_u8(3));
  486. uint8x16_t mask = vceqq_u8(sel, vdupq_n_u8(3));
  487. unsigned char mask0, mask1;
  488. neonMoveMask(mask, mask0, mask1);
  489. uint8x8_t rest0 = vld1_u8(data + 4);
  490. uint8x8_t rest1 = vld1_u8(data + 4 + kDecodeBytesGroupCount[mask0]);
  491. uint8x16_t result = vbslq_u8(mask, shuffleBytes(mask0, mask1, rest0, rest1), sel);
  492. vst1q_u8(buffer, result);
  493. return data + 4 + kDecodeBytesGroupCount[mask0] + kDecodeBytesGroupCount[mask1];
  494. }
  495. case 2:
  496. {
  497. uint8x8_t sel4 = vld1_u8(data);
  498. uint8x8x2_t sel44 = vzip_u8(vshr_n_u8(sel4, 4), vand_u8(sel4, vdup_n_u8(15)));
  499. uint8x16_t sel = vcombine_u8(sel44.val[0], sel44.val[1]);
  500. uint8x16_t mask = vceqq_u8(sel, vdupq_n_u8(15));
  501. unsigned char mask0, mask1;
  502. neonMoveMask(mask, mask0, mask1);
  503. uint8x8_t rest0 = vld1_u8(data + 8);
  504. uint8x8_t rest1 = vld1_u8(data + 8 + kDecodeBytesGroupCount[mask0]);
  505. uint8x16_t result = vbslq_u8(mask, shuffleBytes(mask0, mask1, rest0, rest1), sel);
  506. vst1q_u8(buffer, result);
  507. return data + 8 + kDecodeBytesGroupCount[mask0] + kDecodeBytesGroupCount[mask1];
  508. }
  509. case 3:
  510. {
  511. uint8x16_t result = vld1q_u8(data);
  512. vst1q_u8(buffer, result);
  513. return data + 16;
  514. }
  515. default:
  516. assert(!"Unexpected bit length"); // unreachable since bitslog2 is a 2-bit value
  517. return data;
  518. }
  519. }
  520. #endif
  521. #ifdef SIMD_WASM
  522. SIMD_TARGET
  523. static v128_t decodeShuffleMask(unsigned char mask0, unsigned char mask1)
  524. {
  525. v128_t sm0 = wasm_v128_load(&kDecodeBytesGroupShuffle[mask0]);
  526. v128_t sm1 = wasm_v128_load(&kDecodeBytesGroupShuffle[mask1]);
  527. v128_t sm1off = wasm_v128_load(&kDecodeBytesGroupCount[mask0]);
  528. sm1off = wasm_v8x16_shuffle(sm1off, sm1off, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0);
  529. v128_t sm1r = wasm_i8x16_add(sm1, sm1off);
  530. return wasmx_unpacklo_v64x2(sm0, sm1r);
  531. }
  532. SIMD_TARGET
  533. static void wasmMoveMask(v128_t mask, unsigned char& mask0, unsigned char& mask1)
  534. {
  535. // magic constant found using z3 SMT assuming mask has 8 groups of 0xff or 0x00
  536. const uint64_t magic = 0x000103070f1f3f80ull;
  537. // TODO: This can use v8x16_bitmask in the future
  538. mask0 = uint8_t((wasm_i64x2_extract_lane(mask, 0) * magic) >> 56);
  539. mask1 = uint8_t((wasm_i64x2_extract_lane(mask, 1) * magic) >> 56);
  540. }
  541. SIMD_TARGET
  542. static const unsigned char* decodeBytesGroupSimd(const unsigned char* data, unsigned char* buffer, int bitslog2)
  543. {
  544. unsigned char byte, enc, encv;
  545. const unsigned char* data_var;
  546. switch (bitslog2)
  547. {
  548. case 0:
  549. {
  550. v128_t result = wasm_i8x16_splat(0);
  551. wasm_v128_store(buffer, result);
  552. return data;
  553. }
  554. case 1:
  555. {
  556. v128_t sel2 = wasm_v128_load(data);
  557. v128_t rest = wasm_v128_load(data + 4);
  558. v128_t sel22 = wasmx_unpacklo_v8x16(wasm_i16x8_shr(sel2, 4), sel2);
  559. v128_t sel2222 = wasmx_unpacklo_v8x16(wasm_i16x8_shr(sel22, 2), sel22);
  560. v128_t sel = wasm_v128_and(sel2222, wasm_i8x16_splat(3));
  561. v128_t mask = wasm_i8x16_eq(sel, wasm_i8x16_splat(3));
  562. unsigned char mask0, mask1;
  563. wasmMoveMask(mask, mask0, mask1);
  564. v128_t shuf = decodeShuffleMask(mask0, mask1);
  565. v128_t result = wasm_v128_bitselect(wasm_v8x16_swizzle(rest, shuf), sel, mask);
  566. wasm_v128_store(buffer, result);
  567. return data + 4 + kDecodeBytesGroupCount[mask0] + kDecodeBytesGroupCount[mask1];
  568. }
  569. case 2:
  570. {
  571. v128_t sel4 = wasm_v128_load(data);
  572. v128_t rest = wasm_v128_load(data + 8);
  573. v128_t sel44 = wasmx_unpacklo_v8x16(wasm_i16x8_shr(sel4, 4), sel4);
  574. v128_t sel = wasm_v128_and(sel44, wasm_i8x16_splat(15));
  575. v128_t mask = wasm_i8x16_eq(sel, wasm_i8x16_splat(15));
  576. unsigned char mask0, mask1;
  577. wasmMoveMask(mask, mask0, mask1);
  578. v128_t shuf = decodeShuffleMask(mask0, mask1);
  579. v128_t result = wasm_v128_bitselect(wasm_v8x16_swizzle(rest, shuf), sel, mask);
  580. wasm_v128_store(buffer, result);
  581. return data + 8 + kDecodeBytesGroupCount[mask0] + kDecodeBytesGroupCount[mask1];
  582. }
  583. case 3:
  584. {
  585. v128_t result = wasm_v128_load(data);
  586. wasm_v128_store(buffer, result);
  587. return data + 16;
  588. }
  589. default:
  590. assert(!"Unexpected bit length"); // unreachable since bitslog2 is a 2-bit value
  591. return data;
  592. }
  593. }
  594. #endif
  595. #if defined(SIMD_SSE) || defined(SIMD_AVX)
  596. SIMD_TARGET
  597. static void transpose8(__m128i& x0, __m128i& x1, __m128i& x2, __m128i& x3)
  598. {
  599. __m128i t0 = _mm_unpacklo_epi8(x0, x1);
  600. __m128i t1 = _mm_unpackhi_epi8(x0, x1);
  601. __m128i t2 = _mm_unpacklo_epi8(x2, x3);
  602. __m128i t3 = _mm_unpackhi_epi8(x2, x3);
  603. x0 = _mm_unpacklo_epi16(t0, t2);
  604. x1 = _mm_unpackhi_epi16(t0, t2);
  605. x2 = _mm_unpacklo_epi16(t1, t3);
  606. x3 = _mm_unpackhi_epi16(t1, t3);
  607. }
  608. SIMD_TARGET
  609. static __m128i unzigzag8(__m128i v)
  610. {
  611. __m128i xl = _mm_sub_epi8(_mm_setzero_si128(), _mm_and_si128(v, _mm_set1_epi8(1)));
  612. __m128i xr = _mm_and_si128(_mm_srli_epi16(v, 1), _mm_set1_epi8(127));
  613. return _mm_xor_si128(xl, xr);
  614. }
  615. #endif
  616. #ifdef SIMD_NEON
  617. static void transpose8(uint8x16_t& x0, uint8x16_t& x1, uint8x16_t& x2, uint8x16_t& x3)
  618. {
  619. uint8x16x2_t t01 = vzipq_u8(x0, x1);
  620. uint8x16x2_t t23 = vzipq_u8(x2, x3);
  621. uint16x8x2_t x01 = vzipq_u16(vreinterpretq_u16_u8(t01.val[0]), vreinterpretq_u16_u8(t23.val[0]));
  622. uint16x8x2_t x23 = vzipq_u16(vreinterpretq_u16_u8(t01.val[1]), vreinterpretq_u16_u8(t23.val[1]));
  623. x0 = vreinterpretq_u8_u16(x01.val[0]);
  624. x1 = vreinterpretq_u8_u16(x01.val[1]);
  625. x2 = vreinterpretq_u8_u16(x23.val[0]);
  626. x3 = vreinterpretq_u8_u16(x23.val[1]);
  627. }
  628. static uint8x16_t unzigzag8(uint8x16_t v)
  629. {
  630. uint8x16_t xl = vreinterpretq_u8_s8(vnegq_s8(vreinterpretq_s8_u8(vandq_u8(v, vdupq_n_u8(1)))));
  631. uint8x16_t xr = vshrq_n_u8(v, 1);
  632. return veorq_u8(xl, xr);
  633. }
  634. #endif
  635. #ifdef SIMD_WASM
  636. SIMD_TARGET
  637. static void transpose8(v128_t& x0, v128_t& x1, v128_t& x2, v128_t& x3)
  638. {
  639. v128_t t0 = wasmx_unpacklo_v8x16(x0, x1);
  640. v128_t t1 = wasmx_unpackhi_v8x16(x0, x1);
  641. v128_t t2 = wasmx_unpacklo_v8x16(x2, x3);
  642. v128_t t3 = wasmx_unpackhi_v8x16(x2, x3);
  643. x0 = wasmx_unpacklo_v16x8(t0, t2);
  644. x1 = wasmx_unpackhi_v16x8(t0, t2);
  645. x2 = wasmx_unpacklo_v16x8(t1, t3);
  646. x3 = wasmx_unpackhi_v16x8(t1, t3);
  647. }
  648. SIMD_TARGET
  649. static v128_t unzigzag8(v128_t v)
  650. {
  651. v128_t xl = wasm_i8x16_neg(wasm_v128_and(v, wasm_i8x16_splat(1)));
  652. v128_t xr = wasm_u8x16_shr(v, 1);
  653. return wasm_v128_xor(xl, xr);
  654. }
  655. #endif
  656. #if defined(SIMD_SSE) || defined(SIMD_AVX) || defined(SIMD_NEON) || defined(SIMD_WASM)
  657. SIMD_TARGET
  658. static const unsigned char* decodeBytesSimd(const unsigned char* data, const unsigned char* data_end, unsigned char* buffer, size_t buffer_size)
  659. {
  660. assert(buffer_size % kByteGroupSize == 0);
  661. assert(kByteGroupSize == 16);
  662. const unsigned char* header = data;
  663. // round number of groups to 4 to get number of header bytes
  664. size_t header_size = (buffer_size / kByteGroupSize + 3) / 4;
  665. if (size_t(data_end - data) < header_size)
  666. return 0;
  667. data += header_size;
  668. size_t i = 0;
  669. // fast-path: process 4 groups at a time, do a shared bounds check - each group reads <=24b
  670. for (; i + kByteGroupSize * 4 <= buffer_size && size_t(data_end - data) >= kByteGroupDecodeLimit * 4; i += kByteGroupSize * 4)
  671. {
  672. size_t header_offset = i / kByteGroupSize;
  673. unsigned char header_byte = header[header_offset / 4];
  674. data = decodeBytesGroupSimd(data, buffer + i + kByteGroupSize * 0, (header_byte >> 0) & 3);
  675. data = decodeBytesGroupSimd(data, buffer + i + kByteGroupSize * 1, (header_byte >> 2) & 3);
  676. data = decodeBytesGroupSimd(data, buffer + i + kByteGroupSize * 2, (header_byte >> 4) & 3);
  677. data = decodeBytesGroupSimd(data, buffer + i + kByteGroupSize * 3, (header_byte >> 6) & 3);
  678. }
  679. // slow-path: process remaining groups
  680. for (; i < buffer_size; i += kByteGroupSize)
  681. {
  682. if (size_t(data_end - data) < kByteGroupDecodeLimit)
  683. return 0;
  684. size_t header_offset = i / kByteGroupSize;
  685. int bitslog2 = (header[header_offset / 4] >> ((header_offset % 4) * 2)) & 3;
  686. data = decodeBytesGroupSimd(data, buffer + i, bitslog2);
  687. }
  688. return data;
  689. }
  690. SIMD_TARGET
  691. static const unsigned char* decodeVertexBlockSimd(const unsigned char* data, const unsigned char* data_end, unsigned char* vertex_data, size_t vertex_count, size_t vertex_size, unsigned char last_vertex[256])
  692. {
  693. assert(vertex_count > 0 && vertex_count <= kVertexBlockMaxSize);
  694. unsigned char buffer[kVertexBlockMaxSize * 4];
  695. unsigned char transposed[kVertexBlockSizeBytes];
  696. size_t vertex_count_aligned = (vertex_count + kByteGroupSize - 1) & ~(kByteGroupSize - 1);
  697. for (size_t k = 0; k < vertex_size; k += 4)
  698. {
  699. for (size_t j = 0; j < 4; ++j)
  700. {
  701. data = decodeBytesSimd(data, data_end, buffer + j * vertex_count_aligned, vertex_count_aligned);
  702. if (!data)
  703. return 0;
  704. }
  705. #if defined(SIMD_SSE) || defined(SIMD_AVX)
  706. #define TEMP __m128i
  707. #define PREP() __m128i pi = _mm_cvtsi32_si128(*reinterpret_cast<const int*>(last_vertex + k))
  708. #define LOAD(i) __m128i r##i = _mm_loadu_si128(reinterpret_cast<const __m128i*>(buffer + j + i * vertex_count_aligned))
  709. #define GRP4(i) t0 = _mm_shuffle_epi32(r##i, 0), t1 = _mm_shuffle_epi32(r##i, 1), t2 = _mm_shuffle_epi32(r##i, 2), t3 = _mm_shuffle_epi32(r##i, 3)
  710. #define FIXD(i) t##i = pi = _mm_add_epi8(pi, t##i)
  711. #define SAVE(i) *reinterpret_cast<int*>(savep) = _mm_cvtsi128_si32(t##i), savep += vertex_size
  712. #endif
  713. #ifdef SIMD_NEON
  714. #define TEMP uint8x8_t
  715. #define PREP() uint8x8_t pi = vreinterpret_u8_u32(vld1_lane_u32(reinterpret_cast<uint32_t*>(last_vertex + k), vdup_n_u32(0), 0))
  716. #define LOAD(i) uint8x16_t r##i = vld1q_u8(buffer + j + i * vertex_count_aligned)
  717. #define GRP4(i) t0 = vget_low_u8(r##i), t1 = vreinterpret_u8_u32(vdup_lane_u32(vreinterpret_u32_u8(t0), 1)), t2 = vget_high_u8(r##i), t3 = vreinterpret_u8_u32(vdup_lane_u32(vreinterpret_u32_u8(t2), 1))
  718. #define FIXD(i) t##i = pi = vadd_u8(pi, t##i)
  719. #define SAVE(i) vst1_lane_u32(reinterpret_cast<uint32_t*>(savep), vreinterpret_u32_u8(t##i), 0), savep += vertex_size
  720. #endif
  721. #ifdef SIMD_WASM
  722. #define TEMP v128_t
  723. #define PREP() v128_t pi = wasm_v128_load(last_vertex + k)
  724. #define LOAD(i) v128_t r##i = wasm_v128_load(buffer + j + i * vertex_count_aligned)
  725. #define GRP4(i) t0 = wasmx_splat_v32x4(r##i, 0), t1 = wasmx_splat_v32x4(r##i, 1), t2 = wasmx_splat_v32x4(r##i, 2), t3 = wasmx_splat_v32x4(r##i, 3)
  726. #define FIXD(i) t##i = pi = wasm_i8x16_add(pi, t##i)
  727. #define SAVE(i) *reinterpret_cast<int*>(savep) = wasm_i32x4_extract_lane(t##i, 0), savep += vertex_size
  728. #endif
  729. PREP();
  730. unsigned char* savep = transposed + k;
  731. for (size_t j = 0; j < vertex_count_aligned; j += 16)
  732. {
  733. LOAD(0);
  734. LOAD(1);
  735. LOAD(2);
  736. LOAD(3);
  737. r0 = unzigzag8(r0);
  738. r1 = unzigzag8(r1);
  739. r2 = unzigzag8(r2);
  740. r3 = unzigzag8(r3);
  741. transpose8(r0, r1, r2, r3);
  742. TEMP t0, t1, t2, t3;
  743. GRP4(0);
  744. FIXD(0), FIXD(1), FIXD(2), FIXD(3);
  745. SAVE(0), SAVE(1), SAVE(2), SAVE(3);
  746. GRP4(1);
  747. FIXD(0), FIXD(1), FIXD(2), FIXD(3);
  748. SAVE(0), SAVE(1), SAVE(2), SAVE(3);
  749. GRP4(2);
  750. FIXD(0), FIXD(1), FIXD(2), FIXD(3);
  751. SAVE(0), SAVE(1), SAVE(2), SAVE(3);
  752. GRP4(3);
  753. FIXD(0), FIXD(1), FIXD(2), FIXD(3);
  754. SAVE(0), SAVE(1), SAVE(2), SAVE(3);
  755. #undef TEMP
  756. #undef PREP
  757. #undef LOAD
  758. #undef GRP4
  759. #undef FIXD
  760. #undef SAVE
  761. }
  762. }
  763. memcpy(vertex_data, transposed, vertex_count * vertex_size);
  764. memcpy(last_vertex, &transposed[vertex_size * (vertex_count - 1)], vertex_size);
  765. return data;
  766. }
  767. #endif
  768. #if defined(SIMD_SSE) && defined(SIMD_FALLBACK)
  769. static unsigned int getCpuFeatures()
  770. {
  771. int cpuinfo[4] = {};
  772. #ifdef _MSC_VER
  773. __cpuid(cpuinfo, 1);
  774. #else
  775. __cpuid(1, cpuinfo[0], cpuinfo[1], cpuinfo[2], cpuinfo[3]);
  776. #endif
  777. return cpuinfo[2];
  778. }
  779. static unsigned int cpuid = getCpuFeatures();
  780. #endif
  781. } // namespace meshopt
  782. size_t meshopt_encodeVertexBuffer(unsigned char* buffer, size_t buffer_size, const void* vertices, size_t vertex_count, size_t vertex_size)
  783. {
  784. using namespace meshopt;
  785. assert(vertex_size > 0 && vertex_size <= 256);
  786. assert(vertex_size % 4 == 0);
  787. const unsigned char* vertex_data = static_cast<const unsigned char*>(vertices);
  788. unsigned char* data = buffer;
  789. unsigned char* data_end = buffer + buffer_size;
  790. if (size_t(data_end - data) < 1 + vertex_size)
  791. return 0;
  792. int version = gEncodeVertexVersion;
  793. *data++ = (unsigned char)(kVertexHeader | version);
  794. unsigned char first_vertex[256] = {};
  795. if (vertex_count > 0)
  796. memcpy(first_vertex, vertex_data, vertex_size);
  797. unsigned char last_vertex[256] = {};
  798. memcpy(last_vertex, first_vertex, vertex_size);
  799. size_t vertex_block_size = getVertexBlockSize(vertex_size);
  800. size_t vertex_offset = 0;
  801. while (vertex_offset < vertex_count)
  802. {
  803. size_t block_size = (vertex_offset + vertex_block_size < vertex_count) ? vertex_block_size : vertex_count - vertex_offset;
  804. data = encodeVertexBlock(data, data_end, vertex_data + vertex_offset * vertex_size, block_size, vertex_size, last_vertex);
  805. if (!data)
  806. return 0;
  807. vertex_offset += block_size;
  808. }
  809. size_t tail_size = vertex_size < kTailMaxSize ? kTailMaxSize : vertex_size;
  810. if (size_t(data_end - data) < tail_size)
  811. return 0;
  812. // write first vertex to the end of the stream and pad it to 32 bytes; this is important to simplify bounds checks in decoder
  813. if (vertex_size < kTailMaxSize)
  814. {
  815. memset(data, 0, kTailMaxSize - vertex_size);
  816. data += kTailMaxSize - vertex_size;
  817. }
  818. memcpy(data, first_vertex, vertex_size);
  819. data += vertex_size;
  820. assert(data >= buffer + tail_size);
  821. assert(data <= buffer + buffer_size);
  822. return data - buffer;
  823. }
  824. size_t meshopt_encodeVertexBufferBound(size_t vertex_count, size_t vertex_size)
  825. {
  826. using namespace meshopt;
  827. assert(vertex_size > 0 && vertex_size <= 256);
  828. assert(vertex_size % 4 == 0);
  829. size_t vertex_block_size = getVertexBlockSize(vertex_size);
  830. size_t vertex_block_count = (vertex_count + vertex_block_size - 1) / vertex_block_size;
  831. size_t vertex_block_header_size = (vertex_block_size / kByteGroupSize + 3) / 4;
  832. size_t vertex_block_data_size = vertex_block_size;
  833. size_t tail_size = vertex_size < kTailMaxSize ? kTailMaxSize : vertex_size;
  834. return 1 + vertex_block_count * vertex_size * (vertex_block_header_size + vertex_block_data_size) + tail_size;
  835. }
  836. void meshopt_encodeVertexVersion(int version)
  837. {
  838. assert(unsigned(version) <= 0);
  839. meshopt::gEncodeVertexVersion = version;
  840. }
  841. int meshopt_decodeVertexBuffer(void* destination, size_t vertex_count, size_t vertex_size, const unsigned char* buffer, size_t buffer_size)
  842. {
  843. using namespace meshopt;
  844. assert(vertex_size > 0 && vertex_size <= 256);
  845. assert(vertex_size % 4 == 0);
  846. const unsigned char* (*decode)(const unsigned char*, const unsigned char*, unsigned char*, size_t, size_t, unsigned char[256]) = 0;
  847. #if defined(SIMD_SSE) && defined(SIMD_FALLBACK)
  848. decode = (cpuid & (1 << 9)) ? decodeVertexBlockSimd : decodeVertexBlock;
  849. #elif defined(SIMD_SSE) || defined(SIMD_AVX) || defined(SIMD_NEON) || defined(SIMD_WASM)
  850. decode = decodeVertexBlockSimd;
  851. #else
  852. decode = decodeVertexBlock;
  853. #endif
  854. #if defined(SIMD_SSE) || defined(SIMD_NEON) || defined(SIMD_WASM)
  855. assert(gDecodeBytesGroupInitialized);
  856. (void)gDecodeBytesGroupInitialized;
  857. #endif
  858. unsigned char* vertex_data = static_cast<unsigned char*>(destination);
  859. const unsigned char* data = buffer;
  860. const unsigned char* data_end = buffer + buffer_size;
  861. if (size_t(data_end - data) < 1 + vertex_size)
  862. return -2;
  863. unsigned char data_header = *data++;
  864. if ((data_header & 0xf0) != kVertexHeader)
  865. return -1;
  866. int version = data_header & 0x0f;
  867. if (version > 0)
  868. return -1;
  869. unsigned char last_vertex[256];
  870. memcpy(last_vertex, data_end - vertex_size, vertex_size);
  871. size_t vertex_block_size = getVertexBlockSize(vertex_size);
  872. size_t vertex_offset = 0;
  873. while (vertex_offset < vertex_count)
  874. {
  875. size_t block_size = (vertex_offset + vertex_block_size < vertex_count) ? vertex_block_size : vertex_count - vertex_offset;
  876. data = decode(data, data_end, vertex_data + vertex_offset * vertex_size, block_size, vertex_size, last_vertex);
  877. if (!data)
  878. return -2;
  879. vertex_offset += block_size;
  880. }
  881. size_t tail_size = vertex_size < kTailMaxSize ? kTailMaxSize : vertex_size;
  882. if (size_t(data_end - data) != tail_size)
  883. return -3;
  884. return 0;
  885. }
  886. #undef SIMD_NEON
  887. #undef SIMD_SSE
  888. #undef SIMD_AVX
  889. #undef SIMD_WASM
  890. #undef SIMD_FALLBACK
  891. #undef SIMD_TARGET