quat.cpp 8.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232
  1. /*************************************************************************/
  2. /* quat.cpp */
  3. /*************************************************************************/
  4. /* This file is part of: */
  5. /* GODOT ENGINE */
  6. /* https://godotengine.org */
  7. /*************************************************************************/
  8. /* Copyright (c) 2007-2021 Juan Linietsky, Ariel Manzur. */
  9. /* Copyright (c) 2014-2021 Godot Engine contributors (cf. AUTHORS.md). */
  10. /* */
  11. /* Permission is hereby granted, free of charge, to any person obtaining */
  12. /* a copy of this software and associated documentation files (the */
  13. /* "Software"), to deal in the Software without restriction, including */
  14. /* without limitation the rights to use, copy, modify, merge, publish, */
  15. /* distribute, sublicense, and/or sell copies of the Software, and to */
  16. /* permit persons to whom the Software is furnished to do so, subject to */
  17. /* the following conditions: */
  18. /* */
  19. /* The above copyright notice and this permission notice shall be */
  20. /* included in all copies or substantial portions of the Software. */
  21. /* */
  22. /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
  23. /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
  24. /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
  25. /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
  26. /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
  27. /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
  28. /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
  29. /*************************************************************************/
  30. #include "quat.h"
  31. #include "core/math/basis.h"
  32. #include "core/string/print_string.h"
  33. // get_euler_xyz returns a vector containing the Euler angles in the format
  34. // (ax,ay,az), where ax is the angle of rotation around x axis,
  35. // and similar for other axes.
  36. // This implementation uses XYZ convention (Z is the first rotation).
  37. Vector3 Quat::get_euler_xyz() const {
  38. Basis m(*this);
  39. return m.get_euler_xyz();
  40. }
  41. // get_euler_yxz returns a vector containing the Euler angles in the format
  42. // (ax,ay,az), where ax is the angle of rotation around x axis,
  43. // and similar for other axes.
  44. // This implementation uses YXZ convention (Z is the first rotation).
  45. Vector3 Quat::get_euler_yxz() const {
  46. #ifdef MATH_CHECKS
  47. ERR_FAIL_COND_V_MSG(!is_normalized(), Vector3(0, 0, 0), "The quaternion must be normalized.");
  48. #endif
  49. Basis m(*this);
  50. return m.get_euler_yxz();
  51. }
  52. void Quat::operator*=(const Quat &p_q) {
  53. real_t xx = w * p_q.x + x * p_q.w + y * p_q.z - z * p_q.y;
  54. real_t yy = w * p_q.y + y * p_q.w + z * p_q.x - x * p_q.z;
  55. real_t zz = w * p_q.z + z * p_q.w + x * p_q.y - y * p_q.x;
  56. w = w * p_q.w - x * p_q.x - y * p_q.y - z * p_q.z;
  57. x = xx;
  58. y = yy;
  59. z = zz;
  60. }
  61. Quat Quat::operator*(const Quat &p_q) const {
  62. Quat r = *this;
  63. r *= p_q;
  64. return r;
  65. }
  66. bool Quat::is_equal_approx(const Quat &p_quat) const {
  67. return Math::is_equal_approx(x, p_quat.x) && Math::is_equal_approx(y, p_quat.y) && Math::is_equal_approx(z, p_quat.z) && Math::is_equal_approx(w, p_quat.w);
  68. }
  69. real_t Quat::length() const {
  70. return Math::sqrt(length_squared());
  71. }
  72. void Quat::normalize() {
  73. *this /= length();
  74. }
  75. Quat Quat::normalized() const {
  76. return *this / length();
  77. }
  78. bool Quat::is_normalized() const {
  79. return Math::is_equal_approx(length_squared(), 1.0, UNIT_EPSILON); //use less epsilon
  80. }
  81. Quat Quat::inverse() const {
  82. #ifdef MATH_CHECKS
  83. ERR_FAIL_COND_V_MSG(!is_normalized(), Quat(), "The quaternion must be normalized.");
  84. #endif
  85. return Quat(-x, -y, -z, w);
  86. }
  87. Quat Quat::slerp(const Quat &p_to, const real_t &p_weight) const {
  88. #ifdef MATH_CHECKS
  89. ERR_FAIL_COND_V_MSG(!is_normalized(), Quat(), "The start quaternion must be normalized.");
  90. ERR_FAIL_COND_V_MSG(!p_to.is_normalized(), Quat(), "The end quaternion must be normalized.");
  91. #endif
  92. Quat to1;
  93. real_t omega, cosom, sinom, scale0, scale1;
  94. // calc cosine
  95. cosom = dot(p_to);
  96. // adjust signs (if necessary)
  97. if (cosom < 0.0) {
  98. cosom = -cosom;
  99. to1.x = -p_to.x;
  100. to1.y = -p_to.y;
  101. to1.z = -p_to.z;
  102. to1.w = -p_to.w;
  103. } else {
  104. to1.x = p_to.x;
  105. to1.y = p_to.y;
  106. to1.z = p_to.z;
  107. to1.w = p_to.w;
  108. }
  109. // calculate coefficients
  110. if ((1.0 - cosom) > CMP_EPSILON) {
  111. // standard case (slerp)
  112. omega = Math::acos(cosom);
  113. sinom = Math::sin(omega);
  114. scale0 = Math::sin((1.0 - p_weight) * omega) / sinom;
  115. scale1 = Math::sin(p_weight * omega) / sinom;
  116. } else {
  117. // "from" and "to" quaternions are very close
  118. // ... so we can do a linear interpolation
  119. scale0 = 1.0 - p_weight;
  120. scale1 = p_weight;
  121. }
  122. // calculate final values
  123. return Quat(
  124. scale0 * x + scale1 * to1.x,
  125. scale0 * y + scale1 * to1.y,
  126. scale0 * z + scale1 * to1.z,
  127. scale0 * w + scale1 * to1.w);
  128. }
  129. Quat Quat::slerpni(const Quat &p_to, const real_t &p_weight) const {
  130. #ifdef MATH_CHECKS
  131. ERR_FAIL_COND_V_MSG(!is_normalized(), Quat(), "The start quaternion must be normalized.");
  132. ERR_FAIL_COND_V_MSG(!p_to.is_normalized(), Quat(), "The end quaternion must be normalized.");
  133. #endif
  134. const Quat &from = *this;
  135. real_t dot = from.dot(p_to);
  136. if (Math::absf(dot) > 0.9999) {
  137. return from;
  138. }
  139. real_t theta = Math::acos(dot),
  140. sinT = 1.0 / Math::sin(theta),
  141. newFactor = Math::sin(p_weight * theta) * sinT,
  142. invFactor = Math::sin((1.0 - p_weight) * theta) * sinT;
  143. return Quat(invFactor * from.x + newFactor * p_to.x,
  144. invFactor * from.y + newFactor * p_to.y,
  145. invFactor * from.z + newFactor * p_to.z,
  146. invFactor * from.w + newFactor * p_to.w);
  147. }
  148. Quat Quat::cubic_slerp(const Quat &p_b, const Quat &p_pre_a, const Quat &p_post_b, const real_t &p_weight) const {
  149. #ifdef MATH_CHECKS
  150. ERR_FAIL_COND_V_MSG(!is_normalized(), Quat(), "The start quaternion must be normalized.");
  151. ERR_FAIL_COND_V_MSG(!p_b.is_normalized(), Quat(), "The end quaternion must be normalized.");
  152. #endif
  153. //the only way to do slerp :|
  154. real_t t2 = (1.0 - p_weight) * p_weight * 2;
  155. Quat sp = this->slerp(p_b, p_weight);
  156. Quat sq = p_pre_a.slerpni(p_post_b, p_weight);
  157. return sp.slerpni(sq, t2);
  158. }
  159. Quat::operator String() const {
  160. return String::num(x) + ", " + String::num(y) + ", " + String::num(z) + ", " + String::num(w);
  161. }
  162. Quat::Quat(const Vector3 &p_axis, real_t p_angle) {
  163. #ifdef MATH_CHECKS
  164. ERR_FAIL_COND_MSG(!p_axis.is_normalized(), "The axis Vector3 must be normalized.");
  165. #endif
  166. real_t d = p_axis.length();
  167. if (d == 0) {
  168. x = 0;
  169. y = 0;
  170. z = 0;
  171. w = 0;
  172. } else {
  173. real_t sin_angle = Math::sin(p_angle * 0.5);
  174. real_t cos_angle = Math::cos(p_angle * 0.5);
  175. real_t s = sin_angle / d;
  176. x = p_axis.x * s;
  177. y = p_axis.y * s;
  178. z = p_axis.z * s;
  179. w = cos_angle;
  180. }
  181. }
  182. // Euler constructor expects a vector containing the Euler angles in the format
  183. // (ax, ay, az), where ax is the angle of rotation around x axis,
  184. // and similar for other axes.
  185. // This implementation uses YXZ convention (Z is the first rotation).
  186. Quat::Quat(const Vector3 &p_euler) {
  187. real_t half_a1 = p_euler.y * 0.5;
  188. real_t half_a2 = p_euler.x * 0.5;
  189. real_t half_a3 = p_euler.z * 0.5;
  190. // R = Y(a1).X(a2).Z(a3) convention for Euler angles.
  191. // Conversion to quaternion as listed in https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19770024290.pdf (page A-6)
  192. // a3 is the angle of the first rotation, following the notation in this reference.
  193. real_t cos_a1 = Math::cos(half_a1);
  194. real_t sin_a1 = Math::sin(half_a1);
  195. real_t cos_a2 = Math::cos(half_a2);
  196. real_t sin_a2 = Math::sin(half_a2);
  197. real_t cos_a3 = Math::cos(half_a3);
  198. real_t sin_a3 = Math::sin(half_a3);
  199. x = sin_a1 * cos_a2 * sin_a3 + cos_a1 * sin_a2 * cos_a3;
  200. y = sin_a1 * cos_a2 * cos_a3 - cos_a1 * sin_a2 * sin_a3;
  201. z = -sin_a1 * sin_a2 * cos_a3 + cos_a1 * cos_a2 * sin_a3;
  202. w = sin_a1 * sin_a2 * sin_a3 + cos_a1 * cos_a2 * cos_a3;
  203. }