123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996 |
- #ifndef SSE2NEON_H
- #define SSE2NEON_H
- // This header file provides a simple API translation layer
- // between SSE intrinsics to their corresponding Arm/Aarch64 NEON versions
- //
- // This header file does not yet translate all of the SSE intrinsics.
- //
- // Contributors to this work are:
- // John W. Ratcliff <[email protected]>
- // Brandon Rowlett <[email protected]>
- // Ken Fast <[email protected]>
- // Eric van Beurden <[email protected]>
- // Alexander Potylitsin <[email protected]>
- // Hasindu Gamaarachchi <[email protected]>
- // Jim Huang <[email protected]>
- // Mark Cheng <[email protected]>
- // Malcolm James MacLeod <[email protected]>
- // Devin Hussey (easyaspi314) <[email protected]>
- // Sebastian Pop <[email protected]>
- // Developer Ecosystem Engineering <[email protected]>
- // Danila Kutenin <[email protected]>
- // François Turban (JishinMaster) <[email protected]>
- // Pei-Hsuan Hung <[email protected]>
- // Yang-Hao Yuan <[email protected]>
- // Syoyo Fujita <[email protected]>
- // Brecht Van Lommel <[email protected]>
- /*
- * sse2neon is freely redistributable under the MIT License.
- *
- * Permission is hereby granted, free of charge, to any person obtaining a copy
- * of this software and associated documentation files (the "Software"), to deal
- * in the Software without restriction, including without limitation the rights
- * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- * copies of the Software, and to permit persons to whom the Software is
- * furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included in
- * all copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- * SOFTWARE.
- */
- /* Tunable configurations */
- /* Enable precise implementation of math operations
- * This would slow down the computation a bit, but gives consistent result with
- * x86 SSE2. (e.g. would solve a hole or NaN pixel in the rendering result)
- */
- /* _mm_min_ps and _mm_max_ps */
- #ifndef SSE2NEON_PRECISE_MINMAX
- #define SSE2NEON_PRECISE_MINMAX (0)
- #endif
- /* _mm_rcp_ps and _mm_div_ps */
- #ifndef SSE2NEON_PRECISE_DIV
- #define SSE2NEON_PRECISE_DIV (0)
- #endif
- /* _mm_sqrt_ps and _mm_rsqrt_ps */
- #ifndef SSE2NEON_PRECISE_SQRT
- #define SSE2NEON_PRECISE_SQRT (0)
- #endif
- #ifndef SSE2NEON_PRECISE_RSQRT
- #define SSE2NEON_PRECISE_RSQRT (0)
- #endif
- #if defined(__GNUC__) || defined(__clang__)
- #pragma push_macro("FORCE_INLINE")
- #pragma push_macro("ALIGN_STRUCT")
- #define FORCE_INLINE static inline __attribute__((always_inline))
- #define ALIGN_STRUCT(x) __attribute__((aligned(x)))
- #ifndef likely
- #define likely(x) __builtin_expect(!!(x), 1)
- #endif
- #ifndef unlikely
- #define unlikely(x) __builtin_expect(!!(x), 0)
- #endif
- #else
- #error "Macro name collisions may happen with unsupported compiler."
- #ifdef FORCE_INLINE
- #undef FORCE_INLINE
- #endif
- #define FORCE_INLINE static inline
- #ifndef ALIGN_STRUCT
- #define ALIGN_STRUCT(x) __declspec(align(x))
- #endif
- #endif
- #ifndef likely
- #define likely(x) (x)
- #endif
- #ifndef unlikely
- #define unlikely(x) (x)
- #endif
- #include <stdint.h>
- #include <stdlib.h>
- /* Architecture-specific build options */
- /* FIXME: #pragma GCC push_options is only available on GCC */
- #if defined(__GNUC__)
- #if defined(__arm__) && __ARM_ARCH == 7
- /* According to ARM C Language Extensions Architecture specification,
- * __ARM_NEON is defined to a value indicating the Advanced SIMD (NEON)
- * architecture supported.
- */
- #if !defined(__ARM_NEON) || !defined(__ARM_NEON__)
- #error "You must enable NEON instructions (e.g. -mfpu=neon) to use SSE2NEON."
- #endif
- #if !defined(__clang__)
- #pragma GCC push_options
- #pragma GCC target("fpu=neon")
- #endif
- #elif defined(__aarch64__)
- #if !defined(__clang__)
- #pragma GCC push_options
- #pragma GCC target("+simd")
- #endif
- #else
- #error "Unsupported target. Must be either ARMv7-A+NEON or ARMv8-A."
- #endif
- #endif
- #include <arm_neon.h>
- /* Rounding functions require either Aarch64 instructions or libm failback */
- #if !defined(__aarch64__)
- #include <math.h>
- #endif
- /* "__has_builtin" can be used to query support for built-in functions
- * provided by gcc/clang and other compilers that support it.
- */
- #ifndef __has_builtin /* GCC prior to 10 or non-clang compilers */
- /* Compatibility with gcc <= 9 */
- #if __GNUC__ <= 9
- #define __has_builtin(x) HAS##x
- #define HAS__builtin_popcount 1
- #define HAS__builtin_popcountll 1
- #else
- #define __has_builtin(x) 0
- #endif
- #endif
- /**
- * MACRO for shuffle parameter for _mm_shuffle_ps().
- * Argument fp3 is a digit[0123] that represents the fp from argument "b"
- * of mm_shuffle_ps that will be placed in fp3 of result. fp2 is the same
- * for fp2 in result. fp1 is a digit[0123] that represents the fp from
- * argument "a" of mm_shuffle_ps that will be places in fp1 of result.
- * fp0 is the same for fp0 of result.
- */
- #define _MM_SHUFFLE(fp3, fp2, fp1, fp0) \
- (((fp3) << 6) | ((fp2) << 4) | ((fp1) << 2) | ((fp0)))
- /* Rounding mode macros. */
- #define _MM_FROUND_TO_NEAREST_INT 0x00
- #define _MM_FROUND_TO_NEG_INF 0x01
- #define _MM_FROUND_TO_POS_INF 0x02
- #define _MM_FROUND_TO_ZERO 0x03
- #define _MM_FROUND_CUR_DIRECTION 0x04
- #define _MM_FROUND_NO_EXC 0x08
- #define _MM_ROUND_NEAREST 0x0000
- #define _MM_ROUND_DOWN 0x2000
- #define _MM_ROUND_UP 0x4000
- #define _MM_ROUND_TOWARD_ZERO 0x6000
- /* indicate immediate constant argument in a given range */
- #define __constrange(a, b) const
- /* A few intrinsics accept traditional data types like ints or floats, but
- * most operate on data types that are specific to SSE.
- * If a vector type ends in d, it contains doubles, and if it does not have
- * a suffix, it contains floats. An integer vector type can contain any type
- * of integer, from chars to shorts to unsigned long longs.
- */
- typedef int64x1_t __m64;
- typedef float32x4_t __m128; /* 128-bit vector containing 4 floats */
- // On ARM 32-bit architecture, the float64x2_t is not supported.
- // The data type __m128d should be represented in a different way for related
- // intrinsic conversion.
- #if defined(__aarch64__)
- typedef float64x2_t __m128d; /* 128-bit vector containing 2 doubles */
- #else
- typedef float32x4_t __m128d;
- #endif
- typedef int64x2_t __m128i; /* 128-bit vector containing integers */
- /* type-safe casting between types */
- #define vreinterpretq_m128_f16(x) vreinterpretq_f32_f16(x)
- #define vreinterpretq_m128_f32(x) (x)
- #define vreinterpretq_m128_f64(x) vreinterpretq_f32_f64(x)
- #define vreinterpretq_m128_u8(x) vreinterpretq_f32_u8(x)
- #define vreinterpretq_m128_u16(x) vreinterpretq_f32_u16(x)
- #define vreinterpretq_m128_u32(x) vreinterpretq_f32_u32(x)
- #define vreinterpretq_m128_u64(x) vreinterpretq_f32_u64(x)
- #define vreinterpretq_m128_s8(x) vreinterpretq_f32_s8(x)
- #define vreinterpretq_m128_s16(x) vreinterpretq_f32_s16(x)
- #define vreinterpretq_m128_s32(x) vreinterpretq_f32_s32(x)
- #define vreinterpretq_m128_s64(x) vreinterpretq_f32_s64(x)
- #define vreinterpretq_f16_m128(x) vreinterpretq_f16_f32(x)
- #define vreinterpretq_f32_m128(x) (x)
- #define vreinterpretq_f64_m128(x) vreinterpretq_f64_f32(x)
- #define vreinterpretq_u8_m128(x) vreinterpretq_u8_f32(x)
- #define vreinterpretq_u16_m128(x) vreinterpretq_u16_f32(x)
- #define vreinterpretq_u32_m128(x) vreinterpretq_u32_f32(x)
- #define vreinterpretq_u64_m128(x) vreinterpretq_u64_f32(x)
- #define vreinterpretq_s8_m128(x) vreinterpretq_s8_f32(x)
- #define vreinterpretq_s16_m128(x) vreinterpretq_s16_f32(x)
- #define vreinterpretq_s32_m128(x) vreinterpretq_s32_f32(x)
- #define vreinterpretq_s64_m128(x) vreinterpretq_s64_f32(x)
- #define vreinterpretq_m128i_s8(x) vreinterpretq_s64_s8(x)
- #define vreinterpretq_m128i_s16(x) vreinterpretq_s64_s16(x)
- #define vreinterpretq_m128i_s32(x) vreinterpretq_s64_s32(x)
- #define vreinterpretq_m128i_s64(x) (x)
- #define vreinterpretq_m128i_u8(x) vreinterpretq_s64_u8(x)
- #define vreinterpretq_m128i_u16(x) vreinterpretq_s64_u16(x)
- #define vreinterpretq_m128i_u32(x) vreinterpretq_s64_u32(x)
- #define vreinterpretq_m128i_u64(x) vreinterpretq_s64_u64(x)
- #define vreinterpretq_f32_m128i(x) vreinterpretq_f32_s64(x)
- #define vreinterpretq_f64_m128i(x) vreinterpretq_f64_s64(x)
- #define vreinterpretq_s8_m128i(x) vreinterpretq_s8_s64(x)
- #define vreinterpretq_s16_m128i(x) vreinterpretq_s16_s64(x)
- #define vreinterpretq_s32_m128i(x) vreinterpretq_s32_s64(x)
- #define vreinterpretq_s64_m128i(x) (x)
- #define vreinterpretq_u8_m128i(x) vreinterpretq_u8_s64(x)
- #define vreinterpretq_u16_m128i(x) vreinterpretq_u16_s64(x)
- #define vreinterpretq_u32_m128i(x) vreinterpretq_u32_s64(x)
- #define vreinterpretq_u64_m128i(x) vreinterpretq_u64_s64(x)
- #define vreinterpret_m64_s8(x) vreinterpret_s64_s8(x)
- #define vreinterpret_m64_s16(x) vreinterpret_s64_s16(x)
- #define vreinterpret_m64_s32(x) vreinterpret_s64_s32(x)
- #define vreinterpret_m64_s64(x) (x)
- #define vreinterpret_m64_u8(x) vreinterpret_s64_u8(x)
- #define vreinterpret_m64_u16(x) vreinterpret_s64_u16(x)
- #define vreinterpret_m64_u32(x) vreinterpret_s64_u32(x)
- #define vreinterpret_m64_u64(x) vreinterpret_s64_u64(x)
- #define vreinterpret_m64_f16(x) vreinterpret_s64_f16(x)
- #define vreinterpret_m64_f32(x) vreinterpret_s64_f32(x)
- #define vreinterpret_m64_f64(x) vreinterpret_s64_f64(x)
- #define vreinterpret_u8_m64(x) vreinterpret_u8_s64(x)
- #define vreinterpret_u16_m64(x) vreinterpret_u16_s64(x)
- #define vreinterpret_u32_m64(x) vreinterpret_u32_s64(x)
- #define vreinterpret_u64_m64(x) vreinterpret_u64_s64(x)
- #define vreinterpret_s8_m64(x) vreinterpret_s8_s64(x)
- #define vreinterpret_s16_m64(x) vreinterpret_s16_s64(x)
- #define vreinterpret_s32_m64(x) vreinterpret_s32_s64(x)
- #define vreinterpret_s64_m64(x) (x)
- #define vreinterpret_f32_m64(x) vreinterpret_f32_s64(x)
- #if defined(__aarch64__)
- #define vreinterpretq_m128d_s32(x) vreinterpretq_f64_s32(x)
- #define vreinterpretq_m128d_s64(x) vreinterpretq_f64_s64(x)
- #define vreinterpretq_m128d_u64(x) vreinterpretq_f64_u64(x)
- #define vreinterpretq_m128d_f32(x) vreinterpretq_f64_f32(x)
- #define vreinterpretq_m128d_f64(x) (x)
- #define vreinterpretq_s64_m128d(x) vreinterpretq_s64_f64(x)
- #define vreinterpretq_u64_m128d(x) vreinterpretq_u64_f64(x)
- #define vreinterpretq_f64_m128d(x) (x)
- #define vreinterpretq_f32_m128d(x) vreinterpretq_f32_f64(x)
- #else
- #define vreinterpretq_m128d_s32(x) vreinterpretq_f32_s32(x)
- #define vreinterpretq_m128d_s64(x) vreinterpretq_f32_s64(x)
- #define vreinterpretq_m128d_u32(x) vreinterpretq_f32_u32(x)
- #define vreinterpretq_m128d_u64(x) vreinterpretq_f32_u64(x)
- #define vreinterpretq_m128d_f32(x) (x)
- #define vreinterpretq_s64_m128d(x) vreinterpretq_s64_f32(x)
- #define vreinterpretq_u32_m128d(x) vreinterpretq_u32_f32(x)
- #define vreinterpretq_u64_m128d(x) vreinterpretq_u64_f32(x)
- #define vreinterpretq_f32_m128d(x) (x)
- #endif
- // A struct is defined in this header file called 'SIMDVec' which can be used
- // by applications which attempt to access the contents of an _m128 struct
- // directly. It is important to note that accessing the __m128 struct directly
- // is bad coding practice by Microsoft: @see:
- // https://msdn.microsoft.com/en-us/library/ayeb3ayc.aspx
- //
- // However, some legacy source code may try to access the contents of an __m128
- // struct directly so the developer can use the SIMDVec as an alias for it. Any
- // casting must be done manually by the developer, as you cannot cast or
- // otherwise alias the base NEON data type for intrinsic operations.
- //
- // union intended to allow direct access to an __m128 variable using the names
- // that the MSVC compiler provides. This union should really only be used when
- // trying to access the members of the vector as integer values. GCC/clang
- // allow native access to the float members through a simple array access
- // operator (in C since 4.6, in C++ since 4.8).
- //
- // Ideally direct accesses to SIMD vectors should not be used since it can cause
- // a performance hit. If it really is needed however, the original __m128
- // variable can be aliased with a pointer to this union and used to access
- // individual components. The use of this union should be hidden behind a macro
- // that is used throughout the codebase to access the members instead of always
- // declaring this type of variable.
- typedef union ALIGN_STRUCT(16) SIMDVec {
- float m128_f32[4]; // as floats - DON'T USE. Added for convenience.
- int8_t m128_i8[16]; // as signed 8-bit integers.
- int16_t m128_i16[8]; // as signed 16-bit integers.
- int32_t m128_i32[4]; // as signed 32-bit integers.
- int64_t m128_i64[2]; // as signed 64-bit integers.
- uint8_t m128_u8[16]; // as unsigned 8-bit integers.
- uint16_t m128_u16[8]; // as unsigned 16-bit integers.
- uint32_t m128_u32[4]; // as unsigned 32-bit integers.
- uint64_t m128_u64[2]; // as unsigned 64-bit integers.
- } SIMDVec;
- // casting using SIMDVec
- #define vreinterpretq_nth_u64_m128i(x, n) (((SIMDVec *) &x)->m128_u64[n])
- #define vreinterpretq_nth_u32_m128i(x, n) (((SIMDVec *) &x)->m128_u32[n])
- #define vreinterpretq_nth_u8_m128i(x, n) (((SIMDVec *) &x)->m128_u8[n])
- /* Backwards compatibility for compilers with lack of specific type support */
- // Older gcc does not define vld1q_u8_x4 type
- #if defined(__GNUC__) && !defined(__clang__) && \
- ((__GNUC__ == 10 && (__GNUC_MINOR__ <= 1)) || \
- (__GNUC__ == 9 && (__GNUC_MINOR__ <= 3)) || \
- (__GNUC__ == 8 && (__GNUC_MINOR__ <= 4)) || __GNUC__ <= 7)
- FORCE_INLINE uint8x16x4_t _sse2neon_vld1q_u8_x4(const uint8_t *p)
- {
- uint8x16x4_t ret;
- ret.val[0] = vld1q_u8(p + 0);
- ret.val[1] = vld1q_u8(p + 16);
- ret.val[2] = vld1q_u8(p + 32);
- ret.val[3] = vld1q_u8(p + 48);
- return ret;
- }
- #else
- // Wraps vld1q_u8_x4
- FORCE_INLINE uint8x16x4_t _sse2neon_vld1q_u8_x4(const uint8_t *p)
- {
- return vld1q_u8_x4(p);
- }
- #endif
- /* Function Naming Conventions
- * The naming convention of SSE intrinsics is straightforward. A generic SSE
- * intrinsic function is given as follows:
- * _mm_<name>_<data_type>
- *
- * The parts of this format are given as follows:
- * 1. <name> describes the operation performed by the intrinsic
- * 2. <data_type> identifies the data type of the function's primary arguments
- *
- * This last part, <data_type>, is a little complicated. It identifies the
- * content of the input values, and can be set to any of the following values:
- * + ps - vectors contain floats (ps stands for packed single-precision)
- * + pd - vectors cantain doubles (pd stands for packed double-precision)
- * + epi8/epi16/epi32/epi64 - vectors contain 8-bit/16-bit/32-bit/64-bit
- * signed integers
- * + epu8/epu16/epu32/epu64 - vectors contain 8-bit/16-bit/32-bit/64-bit
- * unsigned integers
- * + si128 - unspecified 128-bit vector or 256-bit vector
- * + m128/m128i/m128d - identifies input vector types when they are different
- * than the type of the returned vector
- *
- * For example, _mm_setzero_ps. The _mm implies that the function returns
- * a 128-bit vector. The _ps at the end implies that the argument vectors
- * contain floats.
- *
- * A complete example: Byte Shuffle - pshufb (_mm_shuffle_epi8)
- * // Set packed 16-bit integers. 128 bits, 8 short, per 16 bits
- * __m128i v_in = _mm_setr_epi16(1, 2, 3, 4, 5, 6, 7, 8);
- * // Set packed 8-bit integers
- * // 128 bits, 16 chars, per 8 bits
- * __m128i v_perm = _mm_setr_epi8(1, 0, 2, 3, 8, 9, 10, 11,
- * 4, 5, 12, 13, 6, 7, 14, 15);
- * // Shuffle packed 8-bit integers
- * __m128i v_out = _mm_shuffle_epi8(v_in, v_perm); // pshufb
- *
- * Data (Number, Binary, Byte Index):
- +------+------+-------------+------+------+-------------+
- | 1 | 2 | 3 | 4 | Number
- +------+------+------+------+------+------+------+------+
- | 0000 | 0001 | 0000 | 0010 | 0000 | 0011 | 0000 | 0100 | Binary
- +------+------+------+------+------+------+------+------+
- | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | Index
- +------+------+------+------+------+------+------+------+
- +------+------+------+------+------+------+------+------+
- | 5 | 6 | 7 | 8 | Number
- +------+------+------+------+------+------+------+------+
- | 0000 | 0101 | 0000 | 0110 | 0000 | 0111 | 0000 | 1000 | Binary
- +------+------+------+------+------+------+------+------+
- | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | Index
- +------+------+------+------+------+------+------+------+
- * Index (Byte Index):
- +------+------+------+------+------+------+------+------+
- | 1 | 0 | 2 | 3 | 8 | 9 | 10 | 11 |
- +------+------+------+------+------+------+------+------+
- +------+------+------+------+------+------+------+------+
- | 4 | 5 | 12 | 13 | 6 | 7 | 14 | 15 |
- +------+------+------+------+------+------+------+------+
- * Result:
- +------+------+------+------+------+------+------+------+
- | 1 | 0 | 2 | 3 | 8 | 9 | 10 | 11 | Index
- +------+------+------+------+------+------+------+------+
- | 0001 | 0000 | 0000 | 0010 | 0000 | 0101 | 0000 | 0110 | Binary
- +------+------+------+------+------+------+------+------+
- | 256 | 2 | 5 | 6 | Number
- +------+------+------+------+------+------+------+------+
- +------+------+------+------+------+------+------+------+
- | 4 | 5 | 12 | 13 | 6 | 7 | 14 | 15 | Index
- +------+------+------+------+------+------+------+------+
- | 0000 | 0011 | 0000 | 0111 | 0000 | 0100 | 0000 | 1000 | Binary
- +------+------+------+------+------+------+------+------+
- | 3 | 7 | 4 | 8 | Number
- +------+------+------+------+------+------+-------------+
- */
- /* Set/get methods */
- /* Constants for use with _mm_prefetch. */
- enum _mm_hint {
- _MM_HINT_NTA = 0, /* load data to L1 and L2 cache, mark it as NTA */
- _MM_HINT_T0 = 1, /* load data to L1 and L2 cache */
- _MM_HINT_T1 = 2, /* load data to L2 cache only */
- _MM_HINT_T2 = 3, /* load data to L2 cache only, mark it as NTA */
- _MM_HINT_ENTA = 4, /* exclusive version of _MM_HINT_NTA */
- _MM_HINT_ET0 = 5, /* exclusive version of _MM_HINT_T0 */
- _MM_HINT_ET1 = 6, /* exclusive version of _MM_HINT_T1 */
- _MM_HINT_ET2 = 7 /* exclusive version of _MM_HINT_T2 */
- };
- // Loads one cache line of data from address p to a location closer to the
- // processor. https://msdn.microsoft.com/en-us/library/84szxsww(v=vs.100).aspx
- FORCE_INLINE void _mm_prefetch(const void *p, int i)
- {
- (void) i;
- __builtin_prefetch(p);
- }
- // Pause the processor. This is typically used in spin-wait loops and depending
- // on the x86 processor typical values are in the 40-100 cycle range. The
- // 'yield' instruction isn't a good fit beacuse it's effectively a nop on most
- // Arm cores. Experience with several databases has shown has shown an 'isb' is
- // a reasonable approximation.
- FORCE_INLINE void _mm_pause()
- {
- __asm__ __volatile__("isb\n");
- }
- // Copy the lower single-precision (32-bit) floating-point element of a to dst.
- //
- // dst[31:0] := a[31:0]
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtss_f32
- FORCE_INLINE float _mm_cvtss_f32(__m128 a)
- {
- return vgetq_lane_f32(vreinterpretq_f32_m128(a), 0);
- }
- // Convert the lower single-precision (32-bit) floating-point element in b to a
- // double-precision (64-bit) floating-point element, store the result in the
- // lower element of dst, and copy the upper element from a to the upper element
- // of dst.
- //
- // dst[63:0] := Convert_FP32_To_FP64(b[31:0])
- // dst[127:64] := a[127:64]
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtss_sd
- FORCE_INLINE __m128d _mm_cvtss_sd(__m128d a, __m128 b)
- {
- double d = (double) vgetq_lane_f32(vreinterpretq_f32_m128(b), 0);
- #if defined(__aarch64__)
- return vreinterpretq_m128d_f64(
- vsetq_lane_f64(d, vreinterpretq_f64_m128d(a), 0));
- #else
- return vreinterpretq_m128d_s64(
- vsetq_lane_s64(*(int64_t *) &d, vreinterpretq_s64_m128d(a), 0));
- #endif
- }
- // Convert the lower single-precision (32-bit) floating-point element in a to a
- // 32-bit integer, and store the result in dst.
- //
- // dst[31:0] := Convert_FP32_To_Int32(a[31:0])
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtss_si32
- #define _mm_cvtss_si32(a) _mm_cvt_ss2si(a)
- // Convert the lower single-precision (32-bit) floating-point element in a to a
- // 64-bit integer, and store the result in dst.
- //
- // dst[63:0] := Convert_FP32_To_Int64(a[31:0])
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtss_si64
- FORCE_INLINE int _mm_cvtss_si64(__m128 a)
- {
- #if defined(__aarch64__)
- return vgetq_lane_s64(
- vreinterpretq_s64_s32(vcvtnq_s32_f32(vreinterpretq_f32_m128(a))), 0);
- #else
- float32_t data = vgetq_lane_f32(vreinterpretq_f32_m128(a), 0);
- float32_t diff = data - floor(data);
- if (diff > 0.5)
- return (int64_t) ceil(data);
- if (unlikely(diff == 0.5)) {
- int64_t f = (int64_t) floor(data);
- int64_t c = (int64_t) ceil(data);
- return c & 1 ? f : c;
- }
- return (int64_t) floor(data);
- #endif
- }
- // Convert packed single-precision (32-bit) floating-point elements in a to
- // packed 32-bit integers with truncation, and store the results in dst.
- //
- // FOR j := 0 to 1
- // i := 32*j
- // dst[i+31:i] := Convert_FP32_To_Int32_Truncate(a[i+31:i])
- // ENDFOR
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtt_ps2pi
- FORCE_INLINE __m64 _mm_cvtt_ps2pi(__m128 a)
- {
- return vreinterpret_m64_s32(
- vget_low_s32(vcvtq_s32_f32(vreinterpretq_f32_m128(a))));
- }
- // Convert the lower single-precision (32-bit) floating-point element in a to a
- // 32-bit integer with truncation, and store the result in dst.
- //
- // dst[31:0] := Convert_FP32_To_Int32_Truncate(a[31:0])
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtt_ss2si
- FORCE_INLINE int _mm_cvtt_ss2si(__m128 a)
- {
- return vgetq_lane_s32(vcvtq_s32_f32(vreinterpretq_f32_m128(a)), 0);
- }
- // Convert packed single-precision (32-bit) floating-point elements in a to
- // packed 32-bit integers with truncation, and store the results in dst.
- //
- // FOR j := 0 to 1
- // i := 32*j
- // dst[i+31:i] := Convert_FP32_To_Int32_Truncate(a[i+31:i])
- // ENDFOR
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvttps_pi32
- #define _mm_cvttps_pi32(a) _mm_cvtt_ps2pi(a)
- // Convert the lower single-precision (32-bit) floating-point element in a to a
- // 32-bit integer with truncation, and store the result in dst.
- //
- // dst[31:0] := Convert_FP32_To_Int32_Truncate(a[31:0])
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvttss_si32
- #define _mm_cvttss_si32(a) _mm_cvtt_ss2si(a)
- // Convert the lower single-precision (32-bit) floating-point element in a to a
- // 64-bit integer with truncation, and store the result in dst.
- //
- // dst[63:0] := Convert_FP32_To_Int64_Truncate(a[31:0])
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvttss_si64
- FORCE_INLINE int64_t _mm_cvttss_si64(__m128 a)
- {
- return vgetq_lane_s64(
- vmovl_s32(vget_low_s32(vcvtq_s32_f32(vreinterpretq_f32_m128(a)))), 0);
- }
- // Sets the 128-bit value to zero
- // https://msdn.microsoft.com/en-us/library/vstudio/ys7dw0kh(v=vs.100).aspx
- FORCE_INLINE __m128i _mm_setzero_si128(void)
- {
- return vreinterpretq_m128i_s32(vdupq_n_s32(0));
- }
- // Clears the four single-precision, floating-point values.
- // https://msdn.microsoft.com/en-us/library/vstudio/tk1t2tbz(v=vs.100).aspx
- FORCE_INLINE __m128 _mm_setzero_ps(void)
- {
- return vreinterpretq_m128_f32(vdupq_n_f32(0));
- }
- // Return vector of type __m128d with all elements set to zero.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_setzero_pd
- FORCE_INLINE __m128d _mm_setzero_pd(void)
- {
- #if defined(__aarch64__)
- return vreinterpretq_m128d_f64(vdupq_n_f64(0));
- #else
- return vreinterpretq_m128d_f32(vdupq_n_f32(0));
- #endif
- }
- // Sets the four single-precision, floating-point values to w.
- //
- // r0 := r1 := r2 := r3 := w
- //
- // https://msdn.microsoft.com/en-us/library/vstudio/2x1se8ha(v=vs.100).aspx
- FORCE_INLINE __m128 _mm_set1_ps(float _w)
- {
- return vreinterpretq_m128_f32(vdupq_n_f32(_w));
- }
- // Sets the four single-precision, floating-point values to w.
- // https://msdn.microsoft.com/en-us/library/vstudio/2x1se8ha(v=vs.100).aspx
- FORCE_INLINE __m128 _mm_set_ps1(float _w)
- {
- return vreinterpretq_m128_f32(vdupq_n_f32(_w));
- }
- // Sets the four single-precision, floating-point values to the four inputs.
- // https://msdn.microsoft.com/en-us/library/vstudio/afh0zf75(v=vs.100).aspx
- FORCE_INLINE __m128 _mm_set_ps(float w, float z, float y, float x)
- {
- float ALIGN_STRUCT(16) data[4] = {x, y, z, w};
- return vreinterpretq_m128_f32(vld1q_f32(data));
- }
- // Copy single-precision (32-bit) floating-point element a to the lower element
- // of dst, and zero the upper 3 elements.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_set_ss
- FORCE_INLINE __m128 _mm_set_ss(float a)
- {
- float ALIGN_STRUCT(16) data[4] = {a, 0, 0, 0};
- return vreinterpretq_m128_f32(vld1q_f32(data));
- }
- // Sets the four single-precision, floating-point values to the four inputs in
- // reverse order.
- // https://msdn.microsoft.com/en-us/library/vstudio/d2172ct3(v=vs.100).aspx
- FORCE_INLINE __m128 _mm_setr_ps(float w, float z, float y, float x)
- {
- float ALIGN_STRUCT(16) data[4] = {w, z, y, x};
- return vreinterpretq_m128_f32(vld1q_f32(data));
- }
- // Sets the 8 signed 16-bit integer values in reverse order.
- //
- // Return Value
- // r0 := w0
- // r1 := w1
- // ...
- // r7 := w7
- FORCE_INLINE __m128i _mm_setr_epi16(short w0,
- short w1,
- short w2,
- short w3,
- short w4,
- short w5,
- short w6,
- short w7)
- {
- int16_t ALIGN_STRUCT(16) data[8] = {w0, w1, w2, w3, w4, w5, w6, w7};
- return vreinterpretq_m128i_s16(vld1q_s16((int16_t *) data));
- }
- // Sets the 4 signed 32-bit integer values in reverse order
- // https://technet.microsoft.com/en-us/library/security/27yb3ee5(v=vs.90).aspx
- FORCE_INLINE __m128i _mm_setr_epi32(int i3, int i2, int i1, int i0)
- {
- int32_t ALIGN_STRUCT(16) data[4] = {i3, i2, i1, i0};
- return vreinterpretq_m128i_s32(vld1q_s32(data));
- }
- // Set packed 64-bit integers in dst with the supplied values in reverse order.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_setr_epi64
- FORCE_INLINE __m128i _mm_setr_epi64(__m64 e1, __m64 e0)
- {
- return vreinterpretq_m128i_s64(vcombine_s64(e1, e0));
- }
- // Sets the 16 signed 8-bit integer values to b.
- //
- // r0 := b
- // r1 := b
- // ...
- // r15 := b
- //
- // https://msdn.microsoft.com/en-us/library/6e14xhyf(v=vs.100).aspx
- FORCE_INLINE __m128i _mm_set1_epi8(signed char w)
- {
- return vreinterpretq_m128i_s8(vdupq_n_s8(w));
- }
- // Broadcast double-precision (64-bit) floating-point value a to all elements of
- // dst.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_set1_pd
- FORCE_INLINE __m128d _mm_set1_pd(double d)
- {
- #if defined(__aarch64__)
- return vreinterpretq_m128d_f64(vdupq_n_f64(d));
- #else
- return vreinterpretq_m128d_s64(vdupq_n_s64(*(int64_t *) &d));
- #endif
- }
- // Sets the 8 signed 16-bit integer values to w.
- //
- // r0 := w
- // r1 := w
- // ...
- // r7 := w
- //
- // https://msdn.microsoft.com/en-us/library/k0ya3x0e(v=vs.90).aspx
- FORCE_INLINE __m128i _mm_set1_epi16(short w)
- {
- return vreinterpretq_m128i_s16(vdupq_n_s16(w));
- }
- // Sets the 16 signed 8-bit integer values.
- // https://msdn.microsoft.com/en-us/library/x0cx8zd3(v=vs.90).aspx
- FORCE_INLINE __m128i _mm_set_epi8(signed char b15,
- signed char b14,
- signed char b13,
- signed char b12,
- signed char b11,
- signed char b10,
- signed char b9,
- signed char b8,
- signed char b7,
- signed char b6,
- signed char b5,
- signed char b4,
- signed char b3,
- signed char b2,
- signed char b1,
- signed char b0)
- {
- int8_t ALIGN_STRUCT(16)
- data[16] = {(int8_t) b0, (int8_t) b1, (int8_t) b2, (int8_t) b3,
- (int8_t) b4, (int8_t) b5, (int8_t) b6, (int8_t) b7,
- (int8_t) b8, (int8_t) b9, (int8_t) b10, (int8_t) b11,
- (int8_t) b12, (int8_t) b13, (int8_t) b14, (int8_t) b15};
- return (__m128i) vld1q_s8(data);
- }
- // Sets the 8 signed 16-bit integer values.
- // https://msdn.microsoft.com/en-au/library/3e0fek84(v=vs.90).aspx
- FORCE_INLINE __m128i _mm_set_epi16(short i7,
- short i6,
- short i5,
- short i4,
- short i3,
- short i2,
- short i1,
- short i0)
- {
- int16_t ALIGN_STRUCT(16) data[8] = {i0, i1, i2, i3, i4, i5, i6, i7};
- return vreinterpretq_m128i_s16(vld1q_s16(data));
- }
- // Sets the 16 signed 8-bit integer values in reverse order.
- // https://msdn.microsoft.com/en-us/library/2khb9c7k(v=vs.90).aspx
- FORCE_INLINE __m128i _mm_setr_epi8(signed char b0,
- signed char b1,
- signed char b2,
- signed char b3,
- signed char b4,
- signed char b5,
- signed char b6,
- signed char b7,
- signed char b8,
- signed char b9,
- signed char b10,
- signed char b11,
- signed char b12,
- signed char b13,
- signed char b14,
- signed char b15)
- {
- int8_t ALIGN_STRUCT(16)
- data[16] = {(int8_t) b0, (int8_t) b1, (int8_t) b2, (int8_t) b3,
- (int8_t) b4, (int8_t) b5, (int8_t) b6, (int8_t) b7,
- (int8_t) b8, (int8_t) b9, (int8_t) b10, (int8_t) b11,
- (int8_t) b12, (int8_t) b13, (int8_t) b14, (int8_t) b15};
- return (__m128i) vld1q_s8(data);
- }
- // Sets the 4 signed 32-bit integer values to i.
- //
- // r0 := i
- // r1 := i
- // r2 := i
- // r3 := I
- //
- // https://msdn.microsoft.com/en-us/library/vstudio/h4xscxat(v=vs.100).aspx
- FORCE_INLINE __m128i _mm_set1_epi32(int _i)
- {
- return vreinterpretq_m128i_s32(vdupq_n_s32(_i));
- }
- // Sets the 2 signed 64-bit integer values to i.
- // https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/whtfzhzk(v=vs.100)
- FORCE_INLINE __m128i _mm_set1_epi64(__m64 _i)
- {
- return vreinterpretq_m128i_s64(vdupq_n_s64((int64_t) _i));
- }
- // Sets the 2 signed 64-bit integer values to i.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_set1_epi64x
- FORCE_INLINE __m128i _mm_set1_epi64x(int64_t _i)
- {
- return vreinterpretq_m128i_s64(vdupq_n_s64(_i));
- }
- // Sets the 4 signed 32-bit integer values.
- // https://msdn.microsoft.com/en-us/library/vstudio/019beekt(v=vs.100).aspx
- FORCE_INLINE __m128i _mm_set_epi32(int i3, int i2, int i1, int i0)
- {
- int32_t ALIGN_STRUCT(16) data[4] = {i0, i1, i2, i3};
- return vreinterpretq_m128i_s32(vld1q_s32(data));
- }
- // Returns the __m128i structure with its two 64-bit integer values
- // initialized to the values of the two 64-bit integers passed in.
- // https://msdn.microsoft.com/en-us/library/dk2sdw0h(v=vs.120).aspx
- FORCE_INLINE __m128i _mm_set_epi64x(int64_t i1, int64_t i2)
- {
- return vreinterpretq_m128i_s64(
- vcombine_s64(vcreate_s64(i2), vcreate_s64(i1)));
- }
- // Returns the __m128i structure with its two 64-bit integer values
- // initialized to the values of the two 64-bit integers passed in.
- // https://msdn.microsoft.com/en-us/library/dk2sdw0h(v=vs.120).aspx
- FORCE_INLINE __m128i _mm_set_epi64(__m64 i1, __m64 i2)
- {
- return _mm_set_epi64x((int64_t) i1, (int64_t) i2);
- }
- // Set packed double-precision (64-bit) floating-point elements in dst with the
- // supplied values.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_set_pd
- FORCE_INLINE __m128d _mm_set_pd(double e1, double e0)
- {
- double ALIGN_STRUCT(16) data[2] = {e0, e1};
- #if defined(__aarch64__)
- return vreinterpretq_m128d_f64(vld1q_f64((float64_t *) data));
- #else
- return vreinterpretq_m128d_f32(vld1q_f32((float32_t *) data));
- #endif
- }
- // Set packed double-precision (64-bit) floating-point elements in dst with the
- // supplied values in reverse order.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_setr_pd
- FORCE_INLINE __m128d _mm_setr_pd(double e1, double e0)
- {
- return _mm_set_pd(e0, e1);
- }
- // Copy double-precision (64-bit) floating-point element a to the lower element
- // of dst, and zero the upper element.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_set_sd
- FORCE_INLINE __m128d _mm_set_sd(double a)
- {
- return _mm_set_pd(0, a);
- }
- // Broadcast double-precision (64-bit) floating-point value a to all elements of
- // dst.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_set_pd1
- #define _mm_set_pd1 _mm_set1_pd
- // Stores four single-precision, floating-point values.
- // https://msdn.microsoft.com/en-us/library/vstudio/s3h4ay6y(v=vs.100).aspx
- FORCE_INLINE void _mm_store_ps(float *p, __m128 a)
- {
- vst1q_f32(p, vreinterpretq_f32_m128(a));
- }
- // Store the lower single-precision (32-bit) floating-point element from a into
- // 4 contiguous elements in memory. mem_addr must be aligned on a 16-byte
- // boundary or a general-protection exception may be generated.
- //
- // MEM[mem_addr+31:mem_addr] := a[31:0]
- // MEM[mem_addr+63:mem_addr+32] := a[31:0]
- // MEM[mem_addr+95:mem_addr+64] := a[31:0]
- // MEM[mem_addr+127:mem_addr+96] := a[31:0]
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_store_ps1
- FORCE_INLINE void _mm_store_ps1(float *p, __m128 a)
- {
- float32_t a0 = vgetq_lane_f32(vreinterpretq_f32_m128(a), 0);
- vst1q_f32(p, vdupq_n_f32(a0));
- }
- // Store the lower single-precision (32-bit) floating-point element from a into
- // 4 contiguous elements in memory. mem_addr must be aligned on a 16-byte
- // boundary or a general-protection exception may be generated.
- //
- // MEM[mem_addr+31:mem_addr] := a[31:0]
- // MEM[mem_addr+63:mem_addr+32] := a[31:0]
- // MEM[mem_addr+95:mem_addr+64] := a[31:0]
- // MEM[mem_addr+127:mem_addr+96] := a[31:0]
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_store1_ps
- #define _mm_store1_ps _mm_store_ps1
- // Store 4 single-precision (32-bit) floating-point elements from a into memory
- // in reverse order. mem_addr must be aligned on a 16-byte boundary or a
- // general-protection exception may be generated.
- //
- // MEM[mem_addr+31:mem_addr] := a[127:96]
- // MEM[mem_addr+63:mem_addr+32] := a[95:64]
- // MEM[mem_addr+95:mem_addr+64] := a[63:32]
- // MEM[mem_addr+127:mem_addr+96] := a[31:0]
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_storer_ps
- FORCE_INLINE void _mm_storer_ps(float *p, __m128 a)
- {
- float32x4_t tmp = vrev64q_f32(vreinterpretq_f32_m128(a));
- float32x4_t rev = vextq_f32(tmp, tmp, 2);
- vst1q_f32(p, rev);
- }
- // Stores four single-precision, floating-point values.
- // https://msdn.microsoft.com/en-us/library/44e30x22(v=vs.100).aspx
- FORCE_INLINE void _mm_storeu_ps(float *p, __m128 a)
- {
- vst1q_f32(p, vreinterpretq_f32_m128(a));
- }
- // Stores four 32-bit integer values as (as a __m128i value) at the address p.
- // https://msdn.microsoft.com/en-us/library/vstudio/edk11s13(v=vs.100).aspx
- FORCE_INLINE void _mm_store_si128(__m128i *p, __m128i a)
- {
- vst1q_s32((int32_t *) p, vreinterpretq_s32_m128i(a));
- }
- // Stores four 32-bit integer values as (as a __m128i value) at the address p.
- // https://msdn.microsoft.com/en-us/library/vstudio/edk11s13(v=vs.100).aspx
- FORCE_INLINE void _mm_storeu_si128(__m128i *p, __m128i a)
- {
- vst1q_s32((int32_t *) p, vreinterpretq_s32_m128i(a));
- }
- // Stores the lower single - precision, floating - point value.
- // https://msdn.microsoft.com/en-us/library/tzz10fbx(v=vs.100).aspx
- FORCE_INLINE void _mm_store_ss(float *p, __m128 a)
- {
- vst1q_lane_f32(p, vreinterpretq_f32_m128(a), 0);
- }
- // Store 128-bits (composed of 2 packed double-precision (64-bit) floating-point
- // elements) from a into memory. mem_addr must be aligned on a 16-byte boundary
- // or a general-protection exception may be generated.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_store_pd
- FORCE_INLINE void _mm_store_pd(double *mem_addr, __m128d a)
- {
- #if defined(__aarch64__)
- vst1q_f64((float64_t *) mem_addr, vreinterpretq_f64_m128d(a));
- #else
- vst1q_f32((float32_t *) mem_addr, vreinterpretq_f32_m128d(a));
- #endif
- }
- // Store the upper double-precision (64-bit) floating-point element from a into
- // memory.
- //
- // MEM[mem_addr+63:mem_addr] := a[127:64]
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_storeh_pd
- FORCE_INLINE void _mm_storeh_pd(double *mem_addr, __m128d a)
- {
- #if defined(__aarch64__)
- vst1_f64((float64_t *) mem_addr, vget_high_f64(vreinterpretq_f64_m128d(a)));
- #else
- vst1_f32((float32_t *) mem_addr, vget_high_f32(vreinterpretq_f32_m128d(a)));
- #endif
- }
- // Store the lower double-precision (64-bit) floating-point element from a into
- // memory.
- //
- // MEM[mem_addr+63:mem_addr] := a[63:0]
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_storel_pd
- FORCE_INLINE void _mm_storel_pd(double *mem_addr, __m128d a)
- {
- #if defined(__aarch64__)
- vst1_f64((float64_t *) mem_addr, vget_low_f64(vreinterpretq_f64_m128d(a)));
- #else
- vst1_f32((float32_t *) mem_addr, vget_low_f32(vreinterpretq_f32_m128d(a)));
- #endif
- }
- // Store 2 double-precision (64-bit) floating-point elements from a into memory
- // in reverse order. mem_addr must be aligned on a 16-byte boundary or a
- // general-protection exception may be generated.
- //
- // MEM[mem_addr+63:mem_addr] := a[127:64]
- // MEM[mem_addr+127:mem_addr+64] := a[63:0]
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_storer_pd
- FORCE_INLINE void _mm_storer_pd(double *mem_addr, __m128d a)
- {
- float32x4_t f = vreinterpretq_f32_m128d(a);
- _mm_store_pd(mem_addr, vreinterpretq_m128d_f32(vextq_f32(f, f, 2)));
- }
- // Store the lower double-precision (64-bit) floating-point element from a into
- // 2 contiguous elements in memory. mem_addr must be aligned on a 16-byte
- // boundary or a general-protection exception may be generated.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_store_pd1
- FORCE_INLINE void _mm_store_pd1(double *mem_addr, __m128d a)
- {
- #if defined(__aarch64__)
- float64x1_t a_low = vget_low_f64(vreinterpretq_f64_m128d(a));
- vst1q_f64((float64_t *) mem_addr,
- vreinterpretq_f64_m128d(vcombine_f64(a_low, a_low)));
- #else
- float32x2_t a_low = vget_low_f32(vreinterpretq_f32_m128d(a));
- vst1q_f32((float32_t *) mem_addr,
- vreinterpretq_f32_m128d(vcombine_f32(a_low, a_low)));
- #endif
- }
- // Store the lower double-precision (64-bit) floating-point element from a into
- // 2 contiguous elements in memory. mem_addr must be aligned on a 16-byte
- // boundary or a general-protection exception may be generated.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#expand=9,526,5601&text=_mm_store1_pd
- #define _mm_store1_pd _mm_store_pd1
- // Store 128-bits (composed of 2 packed double-precision (64-bit) floating-point
- // elements) from a into memory. mem_addr does not need to be aligned on any
- // particular boundary.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_storeu_pd
- FORCE_INLINE void _mm_storeu_pd(double *mem_addr, __m128d a)
- {
- _mm_store_pd(mem_addr, a);
- }
- // Reads the lower 64 bits of b and stores them into the lower 64 bits of a.
- // https://msdn.microsoft.com/en-us/library/hhwf428f%28v=vs.90%29.aspx
- FORCE_INLINE void _mm_storel_epi64(__m128i *a, __m128i b)
- {
- uint64x1_t hi = vget_high_u64(vreinterpretq_u64_m128i(*a));
- uint64x1_t lo = vget_low_u64(vreinterpretq_u64_m128i(b));
- *a = vreinterpretq_m128i_u64(vcombine_u64(lo, hi));
- }
- // Stores the lower two single-precision floating point values of a to the
- // address p.
- //
- // *p0 := a0
- // *p1 := a1
- //
- // https://msdn.microsoft.com/en-us/library/h54t98ks(v=vs.90).aspx
- FORCE_INLINE void _mm_storel_pi(__m64 *p, __m128 a)
- {
- *p = vreinterpret_m64_f32(vget_low_f32(a));
- }
- // Stores the upper two single-precision, floating-point values of a to the
- // address p.
- //
- // *p0 := a2
- // *p1 := a3
- //
- // https://msdn.microsoft.com/en-us/library/a7525fs8(v%3dvs.90).aspx
- FORCE_INLINE void _mm_storeh_pi(__m64 *p, __m128 a)
- {
- *p = vreinterpret_m64_f32(vget_high_f32(a));
- }
- // Loads a single single-precision, floating-point value, copying it into all
- // four words
- // https://msdn.microsoft.com/en-us/library/vstudio/5cdkf716(v=vs.100).aspx
- FORCE_INLINE __m128 _mm_load1_ps(const float *p)
- {
- return vreinterpretq_m128_f32(vld1q_dup_f32(p));
- }
- // Load a single-precision (32-bit) floating-point element from memory into all
- // elements of dst.
- //
- // dst[31:0] := MEM[mem_addr+31:mem_addr]
- // dst[63:32] := MEM[mem_addr+31:mem_addr]
- // dst[95:64] := MEM[mem_addr+31:mem_addr]
- // dst[127:96] := MEM[mem_addr+31:mem_addr]
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_load_ps1
- #define _mm_load_ps1 _mm_load1_ps
- // Sets the lower two single-precision, floating-point values with 64
- // bits of data loaded from the address p; the upper two values are passed
- // through from a.
- //
- // Return Value
- // r0 := *p0
- // r1 := *p1
- // r2 := a2
- // r3 := a3
- //
- // https://msdn.microsoft.com/en-us/library/s57cyak2(v=vs.100).aspx
- FORCE_INLINE __m128 _mm_loadl_pi(__m128 a, __m64 const *p)
- {
- return vreinterpretq_m128_f32(
- vcombine_f32(vld1_f32((const float32_t *) p), vget_high_f32(a)));
- }
- // Load 4 single-precision (32-bit) floating-point elements from memory into dst
- // in reverse order. mem_addr must be aligned on a 16-byte boundary or a
- // general-protection exception may be generated.
- //
- // dst[31:0] := MEM[mem_addr+127:mem_addr+96]
- // dst[63:32] := MEM[mem_addr+95:mem_addr+64]
- // dst[95:64] := MEM[mem_addr+63:mem_addr+32]
- // dst[127:96] := MEM[mem_addr+31:mem_addr]
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_loadr_ps
- FORCE_INLINE __m128 _mm_loadr_ps(const float *p)
- {
- float32x4_t v = vrev64q_f32(vld1q_f32(p));
- return vreinterpretq_m128_f32(vextq_f32(v, v, 2));
- }
- // Sets the upper two single-precision, floating-point values with 64
- // bits of data loaded from the address p; the lower two values are passed
- // through from a.
- //
- // r0 := a0
- // r1 := a1
- // r2 := *p0
- // r3 := *p1
- //
- // https://msdn.microsoft.com/en-us/library/w92wta0x(v%3dvs.100).aspx
- FORCE_INLINE __m128 _mm_loadh_pi(__m128 a, __m64 const *p)
- {
- return vreinterpretq_m128_f32(
- vcombine_f32(vget_low_f32(a), vld1_f32((const float32_t *) p)));
- }
- // Loads four single-precision, floating-point values.
- // https://msdn.microsoft.com/en-us/library/vstudio/zzd50xxt(v=vs.100).aspx
- FORCE_INLINE __m128 _mm_load_ps(const float *p)
- {
- return vreinterpretq_m128_f32(vld1q_f32(p));
- }
- // Loads four single-precision, floating-point values.
- // https://msdn.microsoft.com/en-us/library/x1b16s7z%28v=vs.90%29.aspx
- FORCE_INLINE __m128 _mm_loadu_ps(const float *p)
- {
- // for neon, alignment doesn't matter, so _mm_load_ps and _mm_loadu_ps are
- // equivalent for neon
- return vreinterpretq_m128_f32(vld1q_f32(p));
- }
- // Load unaligned 16-bit integer from memory into the first element of dst.
- //
- // dst[15:0] := MEM[mem_addr+15:mem_addr]
- // dst[MAX:16] := 0
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_loadu_si16
- FORCE_INLINE __m128i _mm_loadu_si16(const void *p)
- {
- return vreinterpretq_m128i_s16(
- vsetq_lane_s16(*(const int16_t *) p, vdupq_n_s16(0), 0));
- }
- // Load unaligned 64-bit integer from memory into the first element of dst.
- //
- // dst[63:0] := MEM[mem_addr+63:mem_addr]
- // dst[MAX:64] := 0
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_loadu_si64
- FORCE_INLINE __m128i _mm_loadu_si64(const void *p)
- {
- return vreinterpretq_m128i_s64(
- vcombine_s64(vld1_s64((const int64_t *) p), vdup_n_s64(0)));
- }
- // Load a double-precision (64-bit) floating-point element from memory into the
- // lower of dst, and zero the upper element. mem_addr does not need to be
- // aligned on any particular boundary.
- //
- // dst[63:0] := MEM[mem_addr+63:mem_addr]
- // dst[127:64] := 0
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_load_sd
- FORCE_INLINE __m128d _mm_load_sd(const double *p)
- {
- #if defined(__aarch64__)
- return vreinterpretq_m128d_f64(vsetq_lane_f64(*p, vdupq_n_f64(0), 0));
- #else
- const float *fp = (const float *) p;
- float ALIGN_STRUCT(16) data[4] = {fp[0], fp[1], 0, 0};
- return vreinterpretq_m128d_f32(vld1q_f32(data));
- #endif
- }
- // Loads two double-precision from 16-byte aligned memory, floating-point
- // values.
- //
- // dst[127:0] := MEM[mem_addr+127:mem_addr]
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_load_pd
- FORCE_INLINE __m128d _mm_load_pd(const double *p)
- {
- #if defined(__aarch64__)
- return vreinterpretq_m128d_f64(vld1q_f64(p));
- #else
- const float *fp = (const float *) p;
- float ALIGN_STRUCT(16) data[4] = {fp[0], fp[1], fp[2], fp[3]};
- return vreinterpretq_m128d_f32(vld1q_f32(data));
- #endif
- }
- // Loads two double-precision from unaligned memory, floating-point values.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_loadu_pd
- FORCE_INLINE __m128d _mm_loadu_pd(const double *p)
- {
- return _mm_load_pd(p);
- }
- // Loads an single - precision, floating - point value into the low word and
- // clears the upper three words.
- // https://msdn.microsoft.com/en-us/library/548bb9h4%28v=vs.90%29.aspx
- FORCE_INLINE __m128 _mm_load_ss(const float *p)
- {
- return vreinterpretq_m128_f32(vsetq_lane_f32(*p, vdupq_n_f32(0), 0));
- }
- // Load 64-bit integer from memory into the first element of dst.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_loadl_epi64
- FORCE_INLINE __m128i _mm_loadl_epi64(__m128i const *p)
- {
- /* Load the lower 64 bits of the value pointed to by p into the
- * lower 64 bits of the result, zeroing the upper 64 bits of the result.
- */
- return vreinterpretq_m128i_s32(
- vcombine_s32(vld1_s32((int32_t const *) p), vcreate_s32(0)));
- }
- // Load a double-precision (64-bit) floating-point element from memory into the
- // lower element of dst, and copy the upper element from a to dst. mem_addr does
- // not need to be aligned on any particular boundary.
- //
- // dst[63:0] := MEM[mem_addr+63:mem_addr]
- // dst[127:64] := a[127:64]
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_loadl_pd
- FORCE_INLINE __m128d _mm_loadl_pd(__m128d a, const double *p)
- {
- #if defined(__aarch64__)
- return vreinterpretq_m128d_f64(
- vcombine_f64(vld1_f64(p), vget_high_f64(vreinterpretq_f64_m128d(a))));
- #else
- return vreinterpretq_m128d_f32(
- vcombine_f32(vld1_f32((const float *) p),
- vget_high_f32(vreinterpretq_f32_m128d(a))));
- #endif
- }
- // Load 2 double-precision (64-bit) floating-point elements from memory into dst
- // in reverse order. mem_addr must be aligned on a 16-byte boundary or a
- // general-protection exception may be generated.
- //
- // dst[63:0] := MEM[mem_addr+127:mem_addr+64]
- // dst[127:64] := MEM[mem_addr+63:mem_addr]
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_loadr_pd
- FORCE_INLINE __m128d _mm_loadr_pd(const double *p)
- {
- #if defined(__aarch64__)
- float64x2_t v = vld1q_f64(p);
- return vreinterpretq_m128d_f64(vextq_f64(v, v, 1));
- #else
- int64x2_t v = vld1q_s64((const int64_t *) p);
- return vreinterpretq_m128d_s64(vextq_s64(v, v, 1));
- #endif
- }
- // Sets the low word to the single-precision, floating-point value of b
- // https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/35hdzazd(v=vs.100)
- FORCE_INLINE __m128 _mm_move_ss(__m128 a, __m128 b)
- {
- return vreinterpretq_m128_f32(
- vsetq_lane_f32(vgetq_lane_f32(vreinterpretq_f32_m128(b), 0),
- vreinterpretq_f32_m128(a), 0));
- }
- // Move the lower double-precision (64-bit) floating-point element from b to the
- // lower element of dst, and copy the upper element from a to the upper element
- // of dst.
- //
- // dst[63:0] := b[63:0]
- // dst[127:64] := a[127:64]
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_move_sd
- FORCE_INLINE __m128d _mm_move_sd(__m128d a, __m128d b)
- {
- return vreinterpretq_m128d_f32(
- vcombine_f32(vget_low_f32(vreinterpretq_f32_m128d(b)),
- vget_high_f32(vreinterpretq_f32_m128d(a))));
- }
- // Copy the lower 64-bit integer in a to the lower element of dst, and zero the
- // upper element.
- //
- // dst[63:0] := a[63:0]
- // dst[127:64] := 0
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_move_epi64
- FORCE_INLINE __m128i _mm_move_epi64(__m128i a)
- {
- return vreinterpretq_m128i_s64(
- vsetq_lane_s64(0, vreinterpretq_s64_m128i(a), 1));
- }
- // Return vector of type __m128 with undefined elements.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_undefined_ps
- FORCE_INLINE __m128 _mm_undefined_ps(void)
- {
- #if defined(__GNUC__) || defined(__clang__)
- #pragma GCC diagnostic push
- #pragma GCC diagnostic ignored "-Wuninitialized"
- #endif
- __m128 a;
- return a;
- #if defined(__GNUC__) || defined(__clang__)
- #pragma GCC diagnostic pop
- #endif
- }
- /* Logic/Binary operations */
- // Computes the bitwise AND-NOT of the four single-precision, floating-point
- // values of a and b.
- //
- // r0 := ~a0 & b0
- // r1 := ~a1 & b1
- // r2 := ~a2 & b2
- // r3 := ~a3 & b3
- //
- // https://msdn.microsoft.com/en-us/library/vstudio/68h7wd02(v=vs.100).aspx
- FORCE_INLINE __m128 _mm_andnot_ps(__m128 a, __m128 b)
- {
- return vreinterpretq_m128_s32(
- vbicq_s32(vreinterpretq_s32_m128(b),
- vreinterpretq_s32_m128(a))); // *NOTE* argument swap
- }
- // Compute the bitwise NOT of packed double-precision (64-bit) floating-point
- // elements in a and then AND with b, and store the results in dst.
- //
- // FOR j := 0 to 1
- // i := j*64
- // dst[i+63:i] := ((NOT a[i+63:i]) AND b[i+63:i])
- // ENDFOR
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_andnot_pd
- FORCE_INLINE __m128d _mm_andnot_pd(__m128d a, __m128d b)
- {
- // *NOTE* argument swap
- return vreinterpretq_m128d_s64(
- vbicq_s64(vreinterpretq_s64_m128d(b), vreinterpretq_s64_m128d(a)));
- }
- // Computes the bitwise AND of the 128-bit value in b and the bitwise NOT of the
- // 128-bit value in a.
- //
- // r := (~a) & b
- //
- // https://msdn.microsoft.com/en-us/library/vstudio/1beaceh8(v=vs.100).aspx
- FORCE_INLINE __m128i _mm_andnot_si128(__m128i a, __m128i b)
- {
- return vreinterpretq_m128i_s32(
- vbicq_s32(vreinterpretq_s32_m128i(b),
- vreinterpretq_s32_m128i(a))); // *NOTE* argument swap
- }
- // Computes the bitwise AND of the 128-bit value in a and the 128-bit value in
- // b.
- //
- // r := a & b
- //
- // https://msdn.microsoft.com/en-us/library/vstudio/6d1txsa8(v=vs.100).aspx
- FORCE_INLINE __m128i _mm_and_si128(__m128i a, __m128i b)
- {
- return vreinterpretq_m128i_s32(
- vandq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b)));
- }
- // Computes the bitwise AND of the four single-precision, floating-point values
- // of a and b.
- //
- // r0 := a0 & b0
- // r1 := a1 & b1
- // r2 := a2 & b2
- // r3 := a3 & b3
- //
- // https://msdn.microsoft.com/en-us/library/vstudio/73ck1xc5(v=vs.100).aspx
- FORCE_INLINE __m128 _mm_and_ps(__m128 a, __m128 b)
- {
- return vreinterpretq_m128_s32(
- vandq_s32(vreinterpretq_s32_m128(a), vreinterpretq_s32_m128(b)));
- }
- // Compute the bitwise AND of packed double-precision (64-bit) floating-point
- // elements in a and b, and store the results in dst.
- //
- // FOR j := 0 to 1
- // i := j*64
- // dst[i+63:i] := a[i+63:i] AND b[i+63:i]
- // ENDFOR
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_and_pd
- FORCE_INLINE __m128d _mm_and_pd(__m128d a, __m128d b)
- {
- return vreinterpretq_m128d_s64(
- vandq_s64(vreinterpretq_s64_m128d(a), vreinterpretq_s64_m128d(b)));
- }
- // Computes the bitwise OR of the four single-precision, floating-point values
- // of a and b.
- // https://msdn.microsoft.com/en-us/library/vstudio/7ctdsyy0(v=vs.100).aspx
- FORCE_INLINE __m128 _mm_or_ps(__m128 a, __m128 b)
- {
- return vreinterpretq_m128_s32(
- vorrq_s32(vreinterpretq_s32_m128(a), vreinterpretq_s32_m128(b)));
- }
- // Computes bitwise EXOR (exclusive-or) of the four single-precision,
- // floating-point values of a and b.
- // https://msdn.microsoft.com/en-us/library/ss6k3wk8(v=vs.100).aspx
- FORCE_INLINE __m128 _mm_xor_ps(__m128 a, __m128 b)
- {
- return vreinterpretq_m128_s32(
- veorq_s32(vreinterpretq_s32_m128(a), vreinterpretq_s32_m128(b)));
- }
- // Compute the bitwise XOR of packed double-precision (64-bit) floating-point
- // elements in a and b, and store the results in dst.
- //
- // FOR j := 0 to 1
- // i := j*64
- // dst[i+63:i] := a[i+63:i] XOR b[i+63:i]
- // ENDFOR
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_xor_pd
- FORCE_INLINE __m128d _mm_xor_pd(__m128d a, __m128d b)
- {
- return vreinterpretq_m128d_s64(
- veorq_s64(vreinterpretq_s64_m128d(a), vreinterpretq_s64_m128d(b)));
- }
- // Compute the bitwise OR of packed double-precision (64-bit) floating-point
- // elements in a and b, and store the results in dst.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=mm_or_pd
- FORCE_INLINE __m128d _mm_or_pd(__m128d a, __m128d b)
- {
- return vreinterpretq_m128d_s64(
- vorrq_s64(vreinterpretq_s64_m128d(a), vreinterpretq_s64_m128d(b)));
- }
- // Computes the bitwise OR of the 128-bit value in a and the 128-bit value in b.
- //
- // r := a | b
- //
- // https://msdn.microsoft.com/en-us/library/vstudio/ew8ty0db(v=vs.100).aspx
- FORCE_INLINE __m128i _mm_or_si128(__m128i a, __m128i b)
- {
- return vreinterpretq_m128i_s32(
- vorrq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b)));
- }
- // Computes the bitwise XOR of the 128-bit value in a and the 128-bit value in
- // b. https://msdn.microsoft.com/en-us/library/fzt08www(v=vs.100).aspx
- FORCE_INLINE __m128i _mm_xor_si128(__m128i a, __m128i b)
- {
- return vreinterpretq_m128i_s32(
- veorq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b)));
- }
- // Duplicate the low double-precision (64-bit) floating-point element from a,
- // and store the results in dst.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_movedup_pd
- FORCE_INLINE __m128d _mm_movedup_pd(__m128d a)
- {
- #if (__aarch64__)
- return vreinterpretq_m128d_f64(
- vdupq_laneq_f64(vreinterpretq_f64_m128d(a), 0));
- #else
- return vreinterpretq_m128d_u64(
- vdupq_n_u64(vgetq_lane_u64(vreinterpretq_u64_m128d(a), 0)));
- #endif
- }
- // Duplicate odd-indexed single-precision (32-bit) floating-point elements
- // from a, and store the results in dst.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_movehdup_ps
- FORCE_INLINE __m128 _mm_movehdup_ps(__m128 a)
- {
- #if __has_builtin(__builtin_shufflevector)
- return vreinterpretq_m128_f32(__builtin_shufflevector(
- vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a), 1, 1, 3, 3));
- #else
- float32_t a1 = vgetq_lane_f32(vreinterpretq_f32_m128(a), 1);
- float32_t a3 = vgetq_lane_f32(vreinterpretq_f32_m128(a), 3);
- float ALIGN_STRUCT(16) data[4] = {a1, a1, a3, a3};
- return vreinterpretq_m128_f32(vld1q_f32(data));
- #endif
- }
- // Duplicate even-indexed single-precision (32-bit) floating-point elements
- // from a, and store the results in dst.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_moveldup_ps
- FORCE_INLINE __m128 _mm_moveldup_ps(__m128 a)
- {
- #if __has_builtin(__builtin_shufflevector)
- return vreinterpretq_m128_f32(__builtin_shufflevector(
- vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a), 0, 0, 2, 2));
- #else
- float32_t a0 = vgetq_lane_f32(vreinterpretq_f32_m128(a), 0);
- float32_t a2 = vgetq_lane_f32(vreinterpretq_f32_m128(a), 2);
- float ALIGN_STRUCT(16) data[4] = {a0, a0, a2, a2};
- return vreinterpretq_m128_f32(vld1q_f32(data));
- #endif
- }
- // Moves the upper two values of B into the lower two values of A.
- //
- // r3 := a3
- // r2 := a2
- // r1 := b3
- // r0 := b2
- FORCE_INLINE __m128 _mm_movehl_ps(__m128 __A, __m128 __B)
- {
- float32x2_t a32 = vget_high_f32(vreinterpretq_f32_m128(__A));
- float32x2_t b32 = vget_high_f32(vreinterpretq_f32_m128(__B));
- return vreinterpretq_m128_f32(vcombine_f32(b32, a32));
- }
- // Moves the lower two values of B into the upper two values of A.
- //
- // r3 := b1
- // r2 := b0
- // r1 := a1
- // r0 := a0
- FORCE_INLINE __m128 _mm_movelh_ps(__m128 __A, __m128 __B)
- {
- float32x2_t a10 = vget_low_f32(vreinterpretq_f32_m128(__A));
- float32x2_t b10 = vget_low_f32(vreinterpretq_f32_m128(__B));
- return vreinterpretq_m128_f32(vcombine_f32(a10, b10));
- }
- // Compute the absolute value of packed signed 32-bit integers in a, and store
- // the unsigned results in dst.
- //
- // FOR j := 0 to 3
- // i := j*32
- // dst[i+31:i] := ABS(a[i+31:i])
- // ENDFOR
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_abs_epi32
- FORCE_INLINE __m128i _mm_abs_epi32(__m128i a)
- {
- return vreinterpretq_m128i_s32(vabsq_s32(vreinterpretq_s32_m128i(a)));
- }
- // Compute the absolute value of packed signed 16-bit integers in a, and store
- // the unsigned results in dst.
- //
- // FOR j := 0 to 7
- // i := j*16
- // dst[i+15:i] := ABS(a[i+15:i])
- // ENDFOR
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_abs_epi16
- FORCE_INLINE __m128i _mm_abs_epi16(__m128i a)
- {
- return vreinterpretq_m128i_s16(vabsq_s16(vreinterpretq_s16_m128i(a)));
- }
- // Compute the absolute value of packed signed 8-bit integers in a, and store
- // the unsigned results in dst.
- //
- // FOR j := 0 to 15
- // i := j*8
- // dst[i+7:i] := ABS(a[i+7:i])
- // ENDFOR
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_abs_epi8
- FORCE_INLINE __m128i _mm_abs_epi8(__m128i a)
- {
- return vreinterpretq_m128i_s8(vabsq_s8(vreinterpretq_s8_m128i(a)));
- }
- // Compute the absolute value of packed signed 32-bit integers in a, and store
- // the unsigned results in dst.
- //
- // FOR j := 0 to 1
- // i := j*32
- // dst[i+31:i] := ABS(a[i+31:i])
- // ENDFOR
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_abs_pi32
- FORCE_INLINE __m64 _mm_abs_pi32(__m64 a)
- {
- return vreinterpret_m64_s32(vabs_s32(vreinterpret_s32_m64(a)));
- }
- // Compute the absolute value of packed signed 16-bit integers in a, and store
- // the unsigned results in dst.
- //
- // FOR j := 0 to 3
- // i := j*16
- // dst[i+15:i] := ABS(a[i+15:i])
- // ENDFOR
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_abs_pi16
- FORCE_INLINE __m64 _mm_abs_pi16(__m64 a)
- {
- return vreinterpret_m64_s16(vabs_s16(vreinterpret_s16_m64(a)));
- }
- // Compute the absolute value of packed signed 8-bit integers in a, and store
- // the unsigned results in dst.
- //
- // FOR j := 0 to 7
- // i := j*8
- // dst[i+7:i] := ABS(a[i+7:i])
- // ENDFOR
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_abs_pi8
- FORCE_INLINE __m64 _mm_abs_pi8(__m64 a)
- {
- return vreinterpret_m64_s8(vabs_s8(vreinterpret_s8_m64(a)));
- }
- // Concatenate 16-byte blocks in a and b into a 32-byte temporary result, shift
- // the result right by imm8 bytes, and store the low 16 bytes in dst.
- //
- // tmp[255:0] := ((a[127:0] << 128)[255:0] OR b[127:0]) >> (imm8*8)
- // dst[127:0] := tmp[127:0]
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_alignr_epi8
- #define _mm_alignr_epi8(a, b, imm) \
- __extension__({ \
- __m128i ret; \
- if (unlikely((imm) >= 32)) { \
- ret = _mm_setzero_si128(); \
- } else { \
- uint8x16_t tmp_low, tmp_high; \
- if (imm >= 16) { \
- const int idx = imm - 16; \
- tmp_low = vreinterpretq_u8_m128i(a); \
- tmp_high = vdupq_n_u8(0); \
- ret = \
- vreinterpretq_m128i_u8(vextq_u8(tmp_low, tmp_high, idx)); \
- } else { \
- const int idx = imm; \
- tmp_low = vreinterpretq_u8_m128i(b); \
- tmp_high = vreinterpretq_u8_m128i(a); \
- ret = \
- vreinterpretq_m128i_u8(vextq_u8(tmp_low, tmp_high, idx)); \
- } \
- } \
- ret; \
- })
- // Concatenate 8-byte blocks in a and b into a 16-byte temporary result, shift
- // the result right by imm8 bytes, and store the low 8 bytes in dst.
- //
- // tmp[127:0] := ((a[63:0] << 64)[127:0] OR b[63:0]) >> (imm8*8)
- // dst[63:0] := tmp[63:0]
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_alignr_pi8
- #define _mm_alignr_pi8(a, b, imm) \
- __extension__({ \
- __m64 ret; \
- if (unlikely((imm) >= 16)) { \
- ret = vreinterpret_m64_s8(vdup_n_s8(0)); \
- } else { \
- uint8x8_t tmp_low, tmp_high; \
- if (imm >= 8) { \
- const int idx = imm - 8; \
- tmp_low = vreinterpret_u8_m64(a); \
- tmp_high = vdup_n_u8(0); \
- ret = vreinterpret_m64_u8(vext_u8(tmp_low, tmp_high, idx)); \
- } else { \
- const int idx = imm; \
- tmp_low = vreinterpret_u8_m64(b); \
- tmp_high = vreinterpret_u8_m64(a); \
- ret = vreinterpret_m64_u8(vext_u8(tmp_low, tmp_high, idx)); \
- } \
- } \
- ret; \
- })
- // Takes the upper 64 bits of a and places it in the low end of the result
- // Takes the lower 64 bits of b and places it into the high end of the result.
- FORCE_INLINE __m128 _mm_shuffle_ps_1032(__m128 a, __m128 b)
- {
- float32x2_t a32 = vget_high_f32(vreinterpretq_f32_m128(a));
- float32x2_t b10 = vget_low_f32(vreinterpretq_f32_m128(b));
- return vreinterpretq_m128_f32(vcombine_f32(a32, b10));
- }
- // takes the lower two 32-bit values from a and swaps them and places in high
- // end of result takes the higher two 32 bit values from b and swaps them and
- // places in low end of result.
- FORCE_INLINE __m128 _mm_shuffle_ps_2301(__m128 a, __m128 b)
- {
- float32x2_t a01 = vrev64_f32(vget_low_f32(vreinterpretq_f32_m128(a)));
- float32x2_t b23 = vrev64_f32(vget_high_f32(vreinterpretq_f32_m128(b)));
- return vreinterpretq_m128_f32(vcombine_f32(a01, b23));
- }
- FORCE_INLINE __m128 _mm_shuffle_ps_0321(__m128 a, __m128 b)
- {
- float32x2_t a21 = vget_high_f32(
- vextq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a), 3));
- float32x2_t b03 = vget_low_f32(
- vextq_f32(vreinterpretq_f32_m128(b), vreinterpretq_f32_m128(b), 3));
- return vreinterpretq_m128_f32(vcombine_f32(a21, b03));
- }
- FORCE_INLINE __m128 _mm_shuffle_ps_2103(__m128 a, __m128 b)
- {
- float32x2_t a03 = vget_low_f32(
- vextq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a), 3));
- float32x2_t b21 = vget_high_f32(
- vextq_f32(vreinterpretq_f32_m128(b), vreinterpretq_f32_m128(b), 3));
- return vreinterpretq_m128_f32(vcombine_f32(a03, b21));
- }
- FORCE_INLINE __m128 _mm_shuffle_ps_1010(__m128 a, __m128 b)
- {
- float32x2_t a10 = vget_low_f32(vreinterpretq_f32_m128(a));
- float32x2_t b10 = vget_low_f32(vreinterpretq_f32_m128(b));
- return vreinterpretq_m128_f32(vcombine_f32(a10, b10));
- }
- FORCE_INLINE __m128 _mm_shuffle_ps_1001(__m128 a, __m128 b)
- {
- float32x2_t a01 = vrev64_f32(vget_low_f32(vreinterpretq_f32_m128(a)));
- float32x2_t b10 = vget_low_f32(vreinterpretq_f32_m128(b));
- return vreinterpretq_m128_f32(vcombine_f32(a01, b10));
- }
- FORCE_INLINE __m128 _mm_shuffle_ps_0101(__m128 a, __m128 b)
- {
- float32x2_t a01 = vrev64_f32(vget_low_f32(vreinterpretq_f32_m128(a)));
- float32x2_t b01 = vrev64_f32(vget_low_f32(vreinterpretq_f32_m128(b)));
- return vreinterpretq_m128_f32(vcombine_f32(a01, b01));
- }
- // keeps the low 64 bits of b in the low and puts the high 64 bits of a in the
- // high
- FORCE_INLINE __m128 _mm_shuffle_ps_3210(__m128 a, __m128 b)
- {
- float32x2_t a10 = vget_low_f32(vreinterpretq_f32_m128(a));
- float32x2_t b32 = vget_high_f32(vreinterpretq_f32_m128(b));
- return vreinterpretq_m128_f32(vcombine_f32(a10, b32));
- }
- FORCE_INLINE __m128 _mm_shuffle_ps_0011(__m128 a, __m128 b)
- {
- float32x2_t a11 = vdup_lane_f32(vget_low_f32(vreinterpretq_f32_m128(a)), 1);
- float32x2_t b00 = vdup_lane_f32(vget_low_f32(vreinterpretq_f32_m128(b)), 0);
- return vreinterpretq_m128_f32(vcombine_f32(a11, b00));
- }
- FORCE_INLINE __m128 _mm_shuffle_ps_0022(__m128 a, __m128 b)
- {
- float32x2_t a22 =
- vdup_lane_f32(vget_high_f32(vreinterpretq_f32_m128(a)), 0);
- float32x2_t b00 = vdup_lane_f32(vget_low_f32(vreinterpretq_f32_m128(b)), 0);
- return vreinterpretq_m128_f32(vcombine_f32(a22, b00));
- }
- FORCE_INLINE __m128 _mm_shuffle_ps_2200(__m128 a, __m128 b)
- {
- float32x2_t a00 = vdup_lane_f32(vget_low_f32(vreinterpretq_f32_m128(a)), 0);
- float32x2_t b22 =
- vdup_lane_f32(vget_high_f32(vreinterpretq_f32_m128(b)), 0);
- return vreinterpretq_m128_f32(vcombine_f32(a00, b22));
- }
- FORCE_INLINE __m128 _mm_shuffle_ps_3202(__m128 a, __m128 b)
- {
- float32_t a0 = vgetq_lane_f32(vreinterpretq_f32_m128(a), 0);
- float32x2_t a22 =
- vdup_lane_f32(vget_high_f32(vreinterpretq_f32_m128(a)), 0);
- float32x2_t a02 = vset_lane_f32(a0, a22, 1); /* TODO: use vzip ?*/
- float32x2_t b32 = vget_high_f32(vreinterpretq_f32_m128(b));
- return vreinterpretq_m128_f32(vcombine_f32(a02, b32));
- }
- FORCE_INLINE __m128 _mm_shuffle_ps_1133(__m128 a, __m128 b)
- {
- float32x2_t a33 =
- vdup_lane_f32(vget_high_f32(vreinterpretq_f32_m128(a)), 1);
- float32x2_t b11 = vdup_lane_f32(vget_low_f32(vreinterpretq_f32_m128(b)), 1);
- return vreinterpretq_m128_f32(vcombine_f32(a33, b11));
- }
- FORCE_INLINE __m128 _mm_shuffle_ps_2010(__m128 a, __m128 b)
- {
- float32x2_t a10 = vget_low_f32(vreinterpretq_f32_m128(a));
- float32_t b2 = vgetq_lane_f32(vreinterpretq_f32_m128(b), 2);
- float32x2_t b00 = vdup_lane_f32(vget_low_f32(vreinterpretq_f32_m128(b)), 0);
- float32x2_t b20 = vset_lane_f32(b2, b00, 1);
- return vreinterpretq_m128_f32(vcombine_f32(a10, b20));
- }
- FORCE_INLINE __m128 _mm_shuffle_ps_2001(__m128 a, __m128 b)
- {
- float32x2_t a01 = vrev64_f32(vget_low_f32(vreinterpretq_f32_m128(a)));
- float32_t b2 = vgetq_lane_f32(b, 2);
- float32x2_t b00 = vdup_lane_f32(vget_low_f32(vreinterpretq_f32_m128(b)), 0);
- float32x2_t b20 = vset_lane_f32(b2, b00, 1);
- return vreinterpretq_m128_f32(vcombine_f32(a01, b20));
- }
- FORCE_INLINE __m128 _mm_shuffle_ps_2032(__m128 a, __m128 b)
- {
- float32x2_t a32 = vget_high_f32(vreinterpretq_f32_m128(a));
- float32_t b2 = vgetq_lane_f32(b, 2);
- float32x2_t b00 = vdup_lane_f32(vget_low_f32(vreinterpretq_f32_m128(b)), 0);
- float32x2_t b20 = vset_lane_f32(b2, b00, 1);
- return vreinterpretq_m128_f32(vcombine_f32(a32, b20));
- }
- // NEON does not support a general purpose permute intrinsic
- // Selects four specific single-precision, floating-point values from a and b,
- // based on the mask i.
- //
- // C equivalent:
- // __m128 _mm_shuffle_ps_default(__m128 a, __m128 b,
- // __constrange(0, 255) int imm) {
- // __m128 ret;
- // ret[0] = a[imm & 0x3]; ret[1] = a[(imm >> 2) & 0x3];
- // ret[2] = b[(imm >> 4) & 0x03]; ret[3] = b[(imm >> 6) & 0x03];
- // return ret;
- // }
- //
- // https://msdn.microsoft.com/en-us/library/vstudio/5f0858x0(v=vs.100).aspx
- #define _mm_shuffle_ps_default(a, b, imm) \
- __extension__({ \
- float32x4_t ret; \
- ret = vmovq_n_f32( \
- vgetq_lane_f32(vreinterpretq_f32_m128(a), (imm) & (0x3))); \
- ret = vsetq_lane_f32( \
- vgetq_lane_f32(vreinterpretq_f32_m128(a), ((imm) >> 2) & 0x3), \
- ret, 1); \
- ret = vsetq_lane_f32( \
- vgetq_lane_f32(vreinterpretq_f32_m128(b), ((imm) >> 4) & 0x3), \
- ret, 2); \
- ret = vsetq_lane_f32( \
- vgetq_lane_f32(vreinterpretq_f32_m128(b), ((imm) >> 6) & 0x3), \
- ret, 3); \
- vreinterpretq_m128_f32(ret); \
- })
- // FORCE_INLINE __m128 _mm_shuffle_ps(__m128 a, __m128 b, __constrange(0,255)
- // int imm)
- #if __has_builtin(__builtin_shufflevector)
- #define _mm_shuffle_ps(a, b, imm) \
- __extension__({ \
- float32x4_t _input1 = vreinterpretq_f32_m128(a); \
- float32x4_t _input2 = vreinterpretq_f32_m128(b); \
- float32x4_t _shuf = __builtin_shufflevector( \
- _input1, _input2, (imm) & (0x3), ((imm) >> 2) & 0x3, \
- (((imm) >> 4) & 0x3) + 4, (((imm) >> 6) & 0x3) + 4); \
- vreinterpretq_m128_f32(_shuf); \
- })
- #else // generic
- #define _mm_shuffle_ps(a, b, imm) \
- __extension__({ \
- __m128 ret; \
- switch (imm) { \
- case _MM_SHUFFLE(1, 0, 3, 2): \
- ret = _mm_shuffle_ps_1032((a), (b)); \
- break; \
- case _MM_SHUFFLE(2, 3, 0, 1): \
- ret = _mm_shuffle_ps_2301((a), (b)); \
- break; \
- case _MM_SHUFFLE(0, 3, 2, 1): \
- ret = _mm_shuffle_ps_0321((a), (b)); \
- break; \
- case _MM_SHUFFLE(2, 1, 0, 3): \
- ret = _mm_shuffle_ps_2103((a), (b)); \
- break; \
- case _MM_SHUFFLE(1, 0, 1, 0): \
- ret = _mm_movelh_ps((a), (b)); \
- break; \
- case _MM_SHUFFLE(1, 0, 0, 1): \
- ret = _mm_shuffle_ps_1001((a), (b)); \
- break; \
- case _MM_SHUFFLE(0, 1, 0, 1): \
- ret = _mm_shuffle_ps_0101((a), (b)); \
- break; \
- case _MM_SHUFFLE(3, 2, 1, 0): \
- ret = _mm_shuffle_ps_3210((a), (b)); \
- break; \
- case _MM_SHUFFLE(0, 0, 1, 1): \
- ret = _mm_shuffle_ps_0011((a), (b)); \
- break; \
- case _MM_SHUFFLE(0, 0, 2, 2): \
- ret = _mm_shuffle_ps_0022((a), (b)); \
- break; \
- case _MM_SHUFFLE(2, 2, 0, 0): \
- ret = _mm_shuffle_ps_2200((a), (b)); \
- break; \
- case _MM_SHUFFLE(3, 2, 0, 2): \
- ret = _mm_shuffle_ps_3202((a), (b)); \
- break; \
- case _MM_SHUFFLE(3, 2, 3, 2): \
- ret = _mm_movehl_ps((b), (a)); \
- break; \
- case _MM_SHUFFLE(1, 1, 3, 3): \
- ret = _mm_shuffle_ps_1133((a), (b)); \
- break; \
- case _MM_SHUFFLE(2, 0, 1, 0): \
- ret = _mm_shuffle_ps_2010((a), (b)); \
- break; \
- case _MM_SHUFFLE(2, 0, 0, 1): \
- ret = _mm_shuffle_ps_2001((a), (b)); \
- break; \
- case _MM_SHUFFLE(2, 0, 3, 2): \
- ret = _mm_shuffle_ps_2032((a), (b)); \
- break; \
- default: \
- ret = _mm_shuffle_ps_default((a), (b), (imm)); \
- break; \
- } \
- ret; \
- })
- #endif
- // Takes the upper 64 bits of a and places it in the low end of the result
- // Takes the lower 64 bits of a and places it into the high end of the result.
- FORCE_INLINE __m128i _mm_shuffle_epi_1032(__m128i a)
- {
- int32x2_t a32 = vget_high_s32(vreinterpretq_s32_m128i(a));
- int32x2_t a10 = vget_low_s32(vreinterpretq_s32_m128i(a));
- return vreinterpretq_m128i_s32(vcombine_s32(a32, a10));
- }
- // takes the lower two 32-bit values from a and swaps them and places in low end
- // of result takes the higher two 32 bit values from a and swaps them and places
- // in high end of result.
- FORCE_INLINE __m128i _mm_shuffle_epi_2301(__m128i a)
- {
- int32x2_t a01 = vrev64_s32(vget_low_s32(vreinterpretq_s32_m128i(a)));
- int32x2_t a23 = vrev64_s32(vget_high_s32(vreinterpretq_s32_m128i(a)));
- return vreinterpretq_m128i_s32(vcombine_s32(a01, a23));
- }
- // rotates the least significant 32 bits into the most signficant 32 bits, and
- // shifts the rest down
- FORCE_INLINE __m128i _mm_shuffle_epi_0321(__m128i a)
- {
- return vreinterpretq_m128i_s32(
- vextq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(a), 1));
- }
- // rotates the most significant 32 bits into the least signficant 32 bits, and
- // shifts the rest up
- FORCE_INLINE __m128i _mm_shuffle_epi_2103(__m128i a)
- {
- return vreinterpretq_m128i_s32(
- vextq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(a), 3));
- }
- // gets the lower 64 bits of a, and places it in the upper 64 bits
- // gets the lower 64 bits of a and places it in the lower 64 bits
- FORCE_INLINE __m128i _mm_shuffle_epi_1010(__m128i a)
- {
- int32x2_t a10 = vget_low_s32(vreinterpretq_s32_m128i(a));
- return vreinterpretq_m128i_s32(vcombine_s32(a10, a10));
- }
- // gets the lower 64 bits of a, swaps the 0 and 1 elements, and places it in the
- // lower 64 bits gets the lower 64 bits of a, and places it in the upper 64 bits
- FORCE_INLINE __m128i _mm_shuffle_epi_1001(__m128i a)
- {
- int32x2_t a01 = vrev64_s32(vget_low_s32(vreinterpretq_s32_m128i(a)));
- int32x2_t a10 = vget_low_s32(vreinterpretq_s32_m128i(a));
- return vreinterpretq_m128i_s32(vcombine_s32(a01, a10));
- }
- // gets the lower 64 bits of a, swaps the 0 and 1 elements and places it in the
- // upper 64 bits gets the lower 64 bits of a, swaps the 0 and 1 elements, and
- // places it in the lower 64 bits
- FORCE_INLINE __m128i _mm_shuffle_epi_0101(__m128i a)
- {
- int32x2_t a01 = vrev64_s32(vget_low_s32(vreinterpretq_s32_m128i(a)));
- return vreinterpretq_m128i_s32(vcombine_s32(a01, a01));
- }
- FORCE_INLINE __m128i _mm_shuffle_epi_2211(__m128i a)
- {
- int32x2_t a11 = vdup_lane_s32(vget_low_s32(vreinterpretq_s32_m128i(a)), 1);
- int32x2_t a22 = vdup_lane_s32(vget_high_s32(vreinterpretq_s32_m128i(a)), 0);
- return vreinterpretq_m128i_s32(vcombine_s32(a11, a22));
- }
- FORCE_INLINE __m128i _mm_shuffle_epi_0122(__m128i a)
- {
- int32x2_t a22 = vdup_lane_s32(vget_high_s32(vreinterpretq_s32_m128i(a)), 0);
- int32x2_t a01 = vrev64_s32(vget_low_s32(vreinterpretq_s32_m128i(a)));
- return vreinterpretq_m128i_s32(vcombine_s32(a22, a01));
- }
- FORCE_INLINE __m128i _mm_shuffle_epi_3332(__m128i a)
- {
- int32x2_t a32 = vget_high_s32(vreinterpretq_s32_m128i(a));
- int32x2_t a33 = vdup_lane_s32(vget_high_s32(vreinterpretq_s32_m128i(a)), 1);
- return vreinterpretq_m128i_s32(vcombine_s32(a32, a33));
- }
- // Shuffle packed 8-bit integers in a according to shuffle control mask in the
- // corresponding 8-bit element of b, and store the results in dst.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_shuffle_epi8
- FORCE_INLINE __m128i _mm_shuffle_epi8(__m128i a, __m128i b)
- {
- int8x16_t tbl = vreinterpretq_s8_m128i(a); // input a
- uint8x16_t idx = vreinterpretq_u8_m128i(b); // input b
- uint8x16_t idx_masked =
- vandq_u8(idx, vdupq_n_u8(0x8F)); // avoid using meaningless bits
- #if defined(__aarch64__)
- return vreinterpretq_m128i_s8(vqtbl1q_s8(tbl, idx_masked));
- #elif defined(__GNUC__)
- int8x16_t ret;
- // %e and %f represent the even and odd D registers
- // respectively.
- __asm__ __volatile__(
- "vtbl.8 %e[ret], {%e[tbl], %f[tbl]}, %e[idx]\n"
- "vtbl.8 %f[ret], {%e[tbl], %f[tbl]}, %f[idx]\n"
- : [ret] "=&w"(ret)
- : [tbl] "w"(tbl), [idx] "w"(idx_masked));
- return vreinterpretq_m128i_s8(ret);
- #else
- // use this line if testing on aarch64
- int8x8x2_t a_split = {vget_low_s8(tbl), vget_high_s8(tbl)};
- return vreinterpretq_m128i_s8(
- vcombine_s8(vtbl2_s8(a_split, vget_low_u8(idx_masked)),
- vtbl2_s8(a_split, vget_high_u8(idx_masked))));
- #endif
- }
- // C equivalent:
- // __m128i _mm_shuffle_epi32_default(__m128i a,
- // __constrange(0, 255) int imm) {
- // __m128i ret;
- // ret[0] = a[imm & 0x3]; ret[1] = a[(imm >> 2) & 0x3];
- // ret[2] = a[(imm >> 4) & 0x03]; ret[3] = a[(imm >> 6) & 0x03];
- // return ret;
- // }
- #define _mm_shuffle_epi32_default(a, imm) \
- __extension__({ \
- int32x4_t ret; \
- ret = vmovq_n_s32( \
- vgetq_lane_s32(vreinterpretq_s32_m128i(a), (imm) & (0x3))); \
- ret = vsetq_lane_s32( \
- vgetq_lane_s32(vreinterpretq_s32_m128i(a), ((imm) >> 2) & 0x3), \
- ret, 1); \
- ret = vsetq_lane_s32( \
- vgetq_lane_s32(vreinterpretq_s32_m128i(a), ((imm) >> 4) & 0x3), \
- ret, 2); \
- ret = vsetq_lane_s32( \
- vgetq_lane_s32(vreinterpretq_s32_m128i(a), ((imm) >> 6) & 0x3), \
- ret, 3); \
- vreinterpretq_m128i_s32(ret); \
- })
- // FORCE_INLINE __m128i _mm_shuffle_epi32_splat(__m128i a, __constrange(0,255)
- // int imm)
- #if defined(__aarch64__)
- #define _mm_shuffle_epi32_splat(a, imm) \
- __extension__({ \
- vreinterpretq_m128i_s32( \
- vdupq_laneq_s32(vreinterpretq_s32_m128i(a), (imm))); \
- })
- #else
- #define _mm_shuffle_epi32_splat(a, imm) \
- __extension__({ \
- vreinterpretq_m128i_s32( \
- vdupq_n_s32(vgetq_lane_s32(vreinterpretq_s32_m128i(a), (imm)))); \
- })
- #endif
- // Shuffles the 4 signed or unsigned 32-bit integers in a as specified by imm.
- // https://msdn.microsoft.com/en-us/library/56f67xbk%28v=vs.90%29.aspx
- // FORCE_INLINE __m128i _mm_shuffle_epi32(__m128i a,
- // __constrange(0,255) int imm)
- #if __has_builtin(__builtin_shufflevector)
- #define _mm_shuffle_epi32(a, imm) \
- __extension__({ \
- int32x4_t _input = vreinterpretq_s32_m128i(a); \
- int32x4_t _shuf = __builtin_shufflevector( \
- _input, _input, (imm) & (0x3), ((imm) >> 2) & 0x3, \
- ((imm) >> 4) & 0x3, ((imm) >> 6) & 0x3); \
- vreinterpretq_m128i_s32(_shuf); \
- })
- #else // generic
- #define _mm_shuffle_epi32(a, imm) \
- __extension__({ \
- __m128i ret; \
- switch (imm) { \
- case _MM_SHUFFLE(1, 0, 3, 2): \
- ret = _mm_shuffle_epi_1032((a)); \
- break; \
- case _MM_SHUFFLE(2, 3, 0, 1): \
- ret = _mm_shuffle_epi_2301((a)); \
- break; \
- case _MM_SHUFFLE(0, 3, 2, 1): \
- ret = _mm_shuffle_epi_0321((a)); \
- break; \
- case _MM_SHUFFLE(2, 1, 0, 3): \
- ret = _mm_shuffle_epi_2103((a)); \
- break; \
- case _MM_SHUFFLE(1, 0, 1, 0): \
- ret = _mm_shuffle_epi_1010((a)); \
- break; \
- case _MM_SHUFFLE(1, 0, 0, 1): \
- ret = _mm_shuffle_epi_1001((a)); \
- break; \
- case _MM_SHUFFLE(0, 1, 0, 1): \
- ret = _mm_shuffle_epi_0101((a)); \
- break; \
- case _MM_SHUFFLE(2, 2, 1, 1): \
- ret = _mm_shuffle_epi_2211((a)); \
- break; \
- case _MM_SHUFFLE(0, 1, 2, 2): \
- ret = _mm_shuffle_epi_0122((a)); \
- break; \
- case _MM_SHUFFLE(3, 3, 3, 2): \
- ret = _mm_shuffle_epi_3332((a)); \
- break; \
- case _MM_SHUFFLE(0, 0, 0, 0): \
- ret = _mm_shuffle_epi32_splat((a), 0); \
- break; \
- case _MM_SHUFFLE(1, 1, 1, 1): \
- ret = _mm_shuffle_epi32_splat((a), 1); \
- break; \
- case _MM_SHUFFLE(2, 2, 2, 2): \
- ret = _mm_shuffle_epi32_splat((a), 2); \
- break; \
- case _MM_SHUFFLE(3, 3, 3, 3): \
- ret = _mm_shuffle_epi32_splat((a), 3); \
- break; \
- default: \
- ret = _mm_shuffle_epi32_default((a), (imm)); \
- break; \
- } \
- ret; \
- })
- #endif
- // Shuffles the lower 4 signed or unsigned 16-bit integers in a as specified
- // by imm.
- // https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/y41dkk37(v=vs.100)
- // FORCE_INLINE __m128i _mm_shufflelo_epi16_function(__m128i a,
- // __constrange(0,255) int
- // imm)
- #define _mm_shufflelo_epi16_function(a, imm) \
- __extension__({ \
- int16x8_t ret = vreinterpretq_s16_m128i(a); \
- int16x4_t lowBits = vget_low_s16(ret); \
- ret = vsetq_lane_s16(vget_lane_s16(lowBits, (imm) & (0x3)), ret, 0); \
- ret = vsetq_lane_s16(vget_lane_s16(lowBits, ((imm) >> 2) & 0x3), ret, \
- 1); \
- ret = vsetq_lane_s16(vget_lane_s16(lowBits, ((imm) >> 4) & 0x3), ret, \
- 2); \
- ret = vsetq_lane_s16(vget_lane_s16(lowBits, ((imm) >> 6) & 0x3), ret, \
- 3); \
- vreinterpretq_m128i_s16(ret); \
- })
- // FORCE_INLINE __m128i _mm_shufflelo_epi16(__m128i a,
- // __constrange(0,255) int imm)
- #if __has_builtin(__builtin_shufflevector)
- #define _mm_shufflelo_epi16(a, imm) \
- __extension__({ \
- int16x8_t _input = vreinterpretq_s16_m128i(a); \
- int16x8_t _shuf = __builtin_shufflevector( \
- _input, _input, ((imm) & (0x3)), (((imm) >> 2) & 0x3), \
- (((imm) >> 4) & 0x3), (((imm) >> 6) & 0x3), 4, 5, 6, 7); \
- vreinterpretq_m128i_s16(_shuf); \
- })
- #else // generic
- #define _mm_shufflelo_epi16(a, imm) _mm_shufflelo_epi16_function((a), (imm))
- #endif
- // Shuffles the upper 4 signed or unsigned 16-bit integers in a as specified
- // by imm.
- // https://msdn.microsoft.com/en-us/library/13ywktbs(v=vs.100).aspx
- // FORCE_INLINE __m128i _mm_shufflehi_epi16_function(__m128i a,
- // __constrange(0,255) int
- // imm)
- #define _mm_shufflehi_epi16_function(a, imm) \
- __extension__({ \
- int16x8_t ret = vreinterpretq_s16_m128i(a); \
- int16x4_t highBits = vget_high_s16(ret); \
- ret = vsetq_lane_s16(vget_lane_s16(highBits, (imm) & (0x3)), ret, 4); \
- ret = vsetq_lane_s16(vget_lane_s16(highBits, ((imm) >> 2) & 0x3), ret, \
- 5); \
- ret = vsetq_lane_s16(vget_lane_s16(highBits, ((imm) >> 4) & 0x3), ret, \
- 6); \
- ret = vsetq_lane_s16(vget_lane_s16(highBits, ((imm) >> 6) & 0x3), ret, \
- 7); \
- vreinterpretq_m128i_s16(ret); \
- })
- // FORCE_INLINE __m128i _mm_shufflehi_epi16(__m128i a,
- // __constrange(0,255) int imm)
- #if __has_builtin(__builtin_shufflevector)
- #define _mm_shufflehi_epi16(a, imm) \
- __extension__({ \
- int16x8_t _input = vreinterpretq_s16_m128i(a); \
- int16x8_t _shuf = __builtin_shufflevector( \
- _input, _input, 0, 1, 2, 3, ((imm) & (0x3)) + 4, \
- (((imm) >> 2) & 0x3) + 4, (((imm) >> 4) & 0x3) + 4, \
- (((imm) >> 6) & 0x3) + 4); \
- vreinterpretq_m128i_s16(_shuf); \
- })
- #else // generic
- #define _mm_shufflehi_epi16(a, imm) _mm_shufflehi_epi16_function((a), (imm))
- #endif
- // Shuffle double-precision (64-bit) floating-point elements using the control
- // in imm8, and store the results in dst.
- //
- // dst[63:0] := (imm8[0] == 0) ? a[63:0] : a[127:64]
- // dst[127:64] := (imm8[1] == 0) ? b[63:0] : b[127:64]
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_shuffle_pd
- #if __has_builtin(__builtin_shufflevector)
- #define _mm_shuffle_pd(a, b, imm8) \
- vreinterpretq_m128d_s64(__builtin_shufflevector( \
- vreinterpretq_s64_m128d(a), vreinterpretq_s64_m128d(b), imm8 & 0x1, \
- ((imm8 & 0x2) >> 1) + 2))
- #else
- #define _mm_shuffle_pd(a, b, imm8) \
- _mm_castsi128_pd(_mm_set_epi64x( \
- vgetq_lane_s64(vreinterpretq_s64_m128d(b), (imm8 & 0x2) >> 1), \
- vgetq_lane_s64(vreinterpretq_s64_m128d(a), imm8 & 0x1)))
- #endif
- // Blend packed 16-bit integers from a and b using control mask imm8, and store
- // the results in dst.
- //
- // FOR j := 0 to 7
- // i := j*16
- // IF imm8[j]
- // dst[i+15:i] := b[i+15:i]
- // ELSE
- // dst[i+15:i] := a[i+15:i]
- // FI
- // ENDFOR
- // FORCE_INLINE __m128i _mm_blend_epi16(__m128i a, __m128i b,
- // __constrange(0,255) int imm)
- #define _mm_blend_epi16(a, b, imm) \
- __extension__({ \
- const uint16_t _mask[8] = {((imm) & (1 << 0)) ? 0xFFFF : 0x0000, \
- ((imm) & (1 << 1)) ? 0xFFFF : 0x0000, \
- ((imm) & (1 << 2)) ? 0xFFFF : 0x0000, \
- ((imm) & (1 << 3)) ? 0xFFFF : 0x0000, \
- ((imm) & (1 << 4)) ? 0xFFFF : 0x0000, \
- ((imm) & (1 << 5)) ? 0xFFFF : 0x0000, \
- ((imm) & (1 << 6)) ? 0xFFFF : 0x0000, \
- ((imm) & (1 << 7)) ? 0xFFFF : 0x0000}; \
- uint16x8_t _mask_vec = vld1q_u16(_mask); \
- uint16x8_t _a = vreinterpretq_u16_m128i(a); \
- uint16x8_t _b = vreinterpretq_u16_m128i(b); \
- vreinterpretq_m128i_u16(vbslq_u16(_mask_vec, _b, _a)); \
- })
- // Blend packed 8-bit integers from a and b using mask, and store the results in
- // dst.
- //
- // FOR j := 0 to 15
- // i := j*8
- // IF mask[i+7]
- // dst[i+7:i] := b[i+7:i]
- // ELSE
- // dst[i+7:i] := a[i+7:i]
- // FI
- // ENDFOR
- FORCE_INLINE __m128i _mm_blendv_epi8(__m128i _a, __m128i _b, __m128i _mask)
- {
- // Use a signed shift right to create a mask with the sign bit
- uint8x16_t mask =
- vreinterpretq_u8_s8(vshrq_n_s8(vreinterpretq_s8_m128i(_mask), 7));
- uint8x16_t a = vreinterpretq_u8_m128i(_a);
- uint8x16_t b = vreinterpretq_u8_m128i(_b);
- return vreinterpretq_m128i_u8(vbslq_u8(mask, b, a));
- }
- /* Shifts */
- // Shift packed 16-bit integers in a right by imm while shifting in sign
- // bits, and store the results in dst.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_srai_epi16
- FORCE_INLINE __m128i _mm_srai_epi16(__m128i a, int imm)
- {
- const int count = (imm & ~15) ? 15 : imm;
- return (__m128i) vshlq_s16((int16x8_t) a, vdupq_n_s16(-count));
- }
- // Shifts the 8 signed or unsigned 16-bit integers in a left by count bits while
- // shifting in zeros.
- //
- // r0 := a0 << count
- // r1 := a1 << count
- // ...
- // r7 := a7 << count
- //
- // https://msdn.microsoft.com/en-us/library/es73bcsy(v=vs.90).aspx
- #define _mm_slli_epi16(a, imm) \
- __extension__({ \
- __m128i ret; \
- if (unlikely((imm)) <= 0) { \
- ret = a; \
- } \
- if (unlikely((imm) > 15)) { \
- ret = _mm_setzero_si128(); \
- } else { \
- ret = vreinterpretq_m128i_s16( \
- vshlq_n_s16(vreinterpretq_s16_m128i(a), (imm))); \
- } \
- ret; \
- })
- // Shifts the 4 signed or unsigned 32-bit integers in a left by count bits while
- // shifting in zeros. :
- // https://msdn.microsoft.com/en-us/library/z2k3bbtb%28v=vs.90%29.aspx
- // FORCE_INLINE __m128i _mm_slli_epi32(__m128i a, __constrange(0,255) int imm)
- FORCE_INLINE __m128i _mm_slli_epi32(__m128i a, int imm)
- {
- if (unlikely(imm <= 0)) /* TODO: add constant range macro: [0, 255] */
- return a;
- if (unlikely(imm > 31))
- return _mm_setzero_si128();
- return vreinterpretq_m128i_s32(
- vshlq_s32(vreinterpretq_s32_m128i(a), vdupq_n_s32(imm)));
- }
- // Shift packed 64-bit integers in a left by imm8 while shifting in zeros, and
- // store the results in dst.
- FORCE_INLINE __m128i _mm_slli_epi64(__m128i a, int imm)
- {
- if (unlikely(imm <= 0)) /* TODO: add constant range macro: [0, 255] */
- return a;
- if (unlikely(imm > 63))
- return _mm_setzero_si128();
- return vreinterpretq_m128i_s64(
- vshlq_s64(vreinterpretq_s64_m128i(a), vdupq_n_s64(imm)));
- }
- // Shift packed 16-bit integers in a right by imm8 while shifting in zeros, and
- // store the results in dst.
- //
- // FOR j := 0 to 7
- // i := j*16
- // IF imm8[7:0] > 15
- // dst[i+15:i] := 0
- // ELSE
- // dst[i+15:i] := ZeroExtend16(a[i+15:i] >> imm8[7:0])
- // FI
- // ENDFOR
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_srli_epi16
- #define _mm_srli_epi16(a, imm) \
- __extension__({ \
- __m128i ret; \
- if (unlikely(imm) == 0) { \
- ret = a; \
- } \
- if (likely(0 < (imm) && (imm) < 16)) { \
- ret = vreinterpretq_m128i_u16( \
- vshlq_u16(vreinterpretq_u16_m128i(a), vdupq_n_s16(-imm))); \
- } else { \
- ret = _mm_setzero_si128(); \
- } \
- ret; \
- })
- // Shift packed 32-bit integers in a right by imm8 while shifting in zeros, and
- // store the results in dst.
- //
- // FOR j := 0 to 3
- // i := j*32
- // IF imm8[7:0] > 31
- // dst[i+31:i] := 0
- // ELSE
- // dst[i+31:i] := ZeroExtend32(a[i+31:i] >> imm8[7:0])
- // FI
- // ENDFOR
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_srli_epi32
- // FORCE_INLINE __m128i _mm_srli_epi32(__m128i a, __constrange(0,255) int imm)
- #define _mm_srli_epi32(a, imm) \
- __extension__({ \
- __m128i ret; \
- if (unlikely((imm) == 0)) { \
- ret = a; \
- } \
- if (likely(0 < (imm) && (imm) < 32)) { \
- ret = vreinterpretq_m128i_u32( \
- vshlq_u32(vreinterpretq_u32_m128i(a), vdupq_n_s32(-imm))); \
- } else { \
- ret = _mm_setzero_si128(); \
- } \
- ret; \
- })
- // Shift packed 64-bit integers in a right by imm8 while shifting in zeros, and
- // store the results in dst.
- //
- // FOR j := 0 to 1
- // i := j*64
- // IF imm8[7:0] > 63
- // dst[i+63:i] := 0
- // ELSE
- // dst[i+63:i] := ZeroExtend64(a[i+63:i] >> imm8[7:0])
- // FI
- // ENDFOR
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_srli_epi64
- #define _mm_srli_epi64(a, imm) \
- __extension__({ \
- __m128i ret; \
- if (unlikely((imm) == 0)) { \
- ret = a; \
- } \
- if (likely(0 < (imm) && (imm) < 64)) { \
- ret = vreinterpretq_m128i_u64( \
- vshlq_u64(vreinterpretq_u64_m128i(a), vdupq_n_s64(-imm))); \
- } else { \
- ret = _mm_setzero_si128(); \
- } \
- ret; \
- })
- // Shift packed 32-bit integers in a right by imm8 while shifting in sign bits,
- // and store the results in dst.
- //
- // FOR j := 0 to 3
- // i := j*32
- // IF imm8[7:0] > 31
- // dst[i+31:i] := (a[i+31] ? 0xFFFFFFFF : 0x0)
- // ELSE
- // dst[i+31:i] := SignExtend32(a[i+31:i] >> imm8[7:0])
- // FI
- // ENDFOR
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_srai_epi32
- // FORCE_INLINE __m128i _mm_srai_epi32(__m128i a, __constrange(0,255) int imm)
- #define _mm_srai_epi32(a, imm) \
- __extension__({ \
- __m128i ret; \
- if (unlikely((imm) == 0)) { \
- ret = a; \
- } \
- if (likely(0 < (imm) && (imm) < 32)) { \
- ret = vreinterpretq_m128i_s32( \
- vshlq_s32(vreinterpretq_s32_m128i(a), vdupq_n_s32(-imm))); \
- } else { \
- ret = vreinterpretq_m128i_s32( \
- vshrq_n_s32(vreinterpretq_s32_m128i(a), 31)); \
- } \
- ret; \
- })
- // Shifts the 128 - bit value in a right by imm bytes while shifting in
- // zeros.imm must be an immediate.
- //
- // r := srl(a, imm*8)
- //
- // https://msdn.microsoft.com/en-us/library/305w28yz(v=vs.100).aspx
- // FORCE_INLINE _mm_srli_si128(__m128i a, __constrange(0,255) int imm)
- #define _mm_srli_si128(a, imm) \
- __extension__({ \
- __m128i ret; \
- if (unlikely((imm) <= 0)) { \
- ret = a; \
- } \
- if (unlikely((imm) > 15)) { \
- ret = _mm_setzero_si128(); \
- } else { \
- ret = vreinterpretq_m128i_s8( \
- vextq_s8(vreinterpretq_s8_m128i(a), vdupq_n_s8(0), (imm))); \
- } \
- ret; \
- })
- // Shifts the 128-bit value in a left by imm bytes while shifting in zeros. imm
- // must be an immediate.
- //
- // r := a << (imm * 8)
- //
- // https://msdn.microsoft.com/en-us/library/34d3k2kt(v=vs.100).aspx
- // FORCE_INLINE __m128i _mm_slli_si128(__m128i a, __constrange(0,255) int imm)
- #define _mm_slli_si128(a, imm) \
- __extension__({ \
- __m128i ret; \
- if (unlikely((imm) <= 0)) { \
- ret = a; \
- } \
- if (unlikely((imm) > 15)) { \
- ret = _mm_setzero_si128(); \
- } else { \
- ret = vreinterpretq_m128i_s8(vextq_s8( \
- vdupq_n_s8(0), vreinterpretq_s8_m128i(a), 16 - (imm))); \
- } \
- ret; \
- })
- // Shifts the 8 signed or unsigned 16-bit integers in a left by count bits while
- // shifting in zeros.
- //
- // r0 := a0 << count
- // r1 := a1 << count
- // ...
- // r7 := a7 << count
- //
- // https://msdn.microsoft.com/en-us/library/c79w388h(v%3dvs.90).aspx
- FORCE_INLINE __m128i _mm_sll_epi16(__m128i a, __m128i count)
- {
- uint64_t c = vreinterpretq_nth_u64_m128i(count, 0);
- if (unlikely(c > 15))
- return _mm_setzero_si128();
- int16x8_t vc = vdupq_n_s16((int16_t) c);
- return vreinterpretq_m128i_s16(vshlq_s16(vreinterpretq_s16_m128i(a), vc));
- }
- // Shifts the 4 signed or unsigned 32-bit integers in a left by count bits while
- // shifting in zeros.
- //
- // r0 := a0 << count
- // r1 := a1 << count
- // r2 := a2 << count
- // r3 := a3 << count
- //
- // https://msdn.microsoft.com/en-us/library/6fe5a6s9(v%3dvs.90).aspx
- FORCE_INLINE __m128i _mm_sll_epi32(__m128i a, __m128i count)
- {
- uint64_t c = vreinterpretq_nth_u64_m128i(count, 0);
- if (unlikely(c > 31))
- return _mm_setzero_si128();
- int32x4_t vc = vdupq_n_s32((int32_t) c);
- return vreinterpretq_m128i_s32(vshlq_s32(vreinterpretq_s32_m128i(a), vc));
- }
- // Shifts the 2 signed or unsigned 64-bit integers in a left by count bits while
- // shifting in zeros.
- //
- // r0 := a0 << count
- // r1 := a1 << count
- //
- // https://msdn.microsoft.com/en-us/library/6ta9dffd(v%3dvs.90).aspx
- FORCE_INLINE __m128i _mm_sll_epi64(__m128i a, __m128i count)
- {
- uint64_t c = vreinterpretq_nth_u64_m128i(count, 0);
- if (unlikely(c > 63))
- return _mm_setzero_si128();
- int64x2_t vc = vdupq_n_s64((int64_t) c);
- return vreinterpretq_m128i_s64(vshlq_s64(vreinterpretq_s64_m128i(a), vc));
- }
- // Shifts the 8 signed or unsigned 16-bit integers in a right by count bits
- // while shifting in zeros.
- //
- // r0 := srl(a0, count)
- // r1 := srl(a1, count)
- // ...
- // r7 := srl(a7, count)
- //
- // https://msdn.microsoft.com/en-us/library/wd5ax830(v%3dvs.90).aspx
- FORCE_INLINE __m128i _mm_srl_epi16(__m128i a, __m128i count)
- {
- uint64_t c = vreinterpretq_nth_u64_m128i(count, 0);
- if (unlikely(c > 15))
- return _mm_setzero_si128();
- int16x8_t vc = vdupq_n_s16(-(int16_t) c);
- return vreinterpretq_m128i_u16(vshlq_u16(vreinterpretq_u16_m128i(a), vc));
- }
- // Shifts the 4 signed or unsigned 32-bit integers in a right by count bits
- // while shifting in zeros.
- //
- // r0 := srl(a0, count)
- // r1 := srl(a1, count)
- // r2 := srl(a2, count)
- // r3 := srl(a3, count)
- //
- // https://msdn.microsoft.com/en-us/library/a9cbttf4(v%3dvs.90).aspx
- FORCE_INLINE __m128i _mm_srl_epi32(__m128i a, __m128i count)
- {
- uint64_t c = vreinterpretq_nth_u64_m128i(count, 0);
- if (unlikely(c > 31))
- return _mm_setzero_si128();
- int32x4_t vc = vdupq_n_s32(-(int32_t) c);
- return vreinterpretq_m128i_u32(vshlq_u32(vreinterpretq_u32_m128i(a), vc));
- }
- // Shifts the 2 signed or unsigned 64-bit integers in a right by count bits
- // while shifting in zeros.
- //
- // r0 := srl(a0, count)
- // r1 := srl(a1, count)
- //
- // https://msdn.microsoft.com/en-us/library/yf6cf9k8(v%3dvs.90).aspx
- FORCE_INLINE __m128i _mm_srl_epi64(__m128i a, __m128i count)
- {
- uint64_t c = vreinterpretq_nth_u64_m128i(count, 0);
- if (unlikely(c > 63))
- return _mm_setzero_si128();
- int64x2_t vc = vdupq_n_s64(-(int64_t) c);
- return vreinterpretq_m128i_u64(vshlq_u64(vreinterpretq_u64_m128i(a), vc));
- }
- // NEON does not provide a version of this function.
- // Creates a 16-bit mask from the most significant bits of the 16 signed or
- // unsigned 8-bit integers in a and zero extends the upper bits.
- // https://msdn.microsoft.com/en-us/library/vstudio/s090c8fk(v=vs.100).aspx
- FORCE_INLINE int _mm_movemask_epi8(__m128i a)
- {
- // Use increasingly wide shifts+adds to collect the sign bits
- // together.
- // Since the widening shifts would be rather confusing to follow in little
- // endian, everything will be illustrated in big endian order instead. This
- // has a different result - the bits would actually be reversed on a big
- // endian machine.
- // Starting input (only half the elements are shown):
- // 89 ff 1d c0 00 10 99 33
- uint8x16_t input = vreinterpretq_u8_m128i(a);
- // Shift out everything but the sign bits with an unsigned shift right.
- //
- // Bytes of the vector::
- // 89 ff 1d c0 00 10 99 33
- // \ \ \ \ \ \ \ \ high_bits = (uint16x4_t)(input >> 7)
- // | | | | | | | |
- // 01 01 00 01 00 00 01 00
- //
- // Bits of first important lane(s):
- // 10001001 (89)
- // \______
- // |
- // 00000001 (01)
- uint16x8_t high_bits = vreinterpretq_u16_u8(vshrq_n_u8(input, 7));
- // Merge the even lanes together with a 16-bit unsigned shift right + add.
- // 'xx' represents garbage data which will be ignored in the final result.
- // In the important bytes, the add functions like a binary OR.
- //
- // 01 01 00 01 00 00 01 00
- // \_ | \_ | \_ | \_ | paired16 = (uint32x4_t)(input + (input >> 7))
- // \| \| \| \|
- // xx 03 xx 01 xx 00 xx 02
- //
- // 00000001 00000001 (01 01)
- // \_______ |
- // \|
- // xxxxxxxx xxxxxx11 (xx 03)
- uint32x4_t paired16 =
- vreinterpretq_u32_u16(vsraq_n_u16(high_bits, high_bits, 7));
- // Repeat with a wider 32-bit shift + add.
- // xx 03 xx 01 xx 00 xx 02
- // \____ | \____ | paired32 = (uint64x1_t)(paired16 + (paired16 >>
- // 14))
- // \| \|
- // xx xx xx 0d xx xx xx 02
- //
- // 00000011 00000001 (03 01)
- // \\_____ ||
- // '----.\||
- // xxxxxxxx xxxx1101 (xx 0d)
- uint64x2_t paired32 =
- vreinterpretq_u64_u32(vsraq_n_u32(paired16, paired16, 14));
- // Last, an even wider 64-bit shift + add to get our result in the low 8 bit
- // lanes. xx xx xx 0d xx xx xx 02
- // \_________ | paired64 = (uint8x8_t)(paired32 + (paired32 >>
- // 28))
- // \|
- // xx xx xx xx xx xx xx d2
- //
- // 00001101 00000010 (0d 02)
- // \ \___ | |
- // '---. \| |
- // xxxxxxxx 11010010 (xx d2)
- uint8x16_t paired64 =
- vreinterpretq_u8_u64(vsraq_n_u64(paired32, paired32, 28));
- // Extract the low 8 bits from each 64-bit lane with 2 8-bit extracts.
- // xx xx xx xx xx xx xx d2
- // || return paired64[0]
- // d2
- // Note: Little endian would return the correct value 4b (01001011) instead.
- return vgetq_lane_u8(paired64, 0) | ((int) vgetq_lane_u8(paired64, 8) << 8);
- }
- // Copy the lower 64-bit integer in a to dst.
- //
- // dst[63:0] := a[63:0]
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_movepi64_pi64
- FORCE_INLINE __m64 _mm_movepi64_pi64(__m128i a)
- {
- return vreinterpret_m64_s64(vget_low_s64(vreinterpretq_s64_m128i(a)));
- }
- // Copy the 64-bit integer a to the lower element of dst, and zero the upper
- // element.
- //
- // dst[63:0] := a[63:0]
- // dst[127:64] := 0
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_movpi64_epi64
- FORCE_INLINE __m128i _mm_movpi64_epi64(__m64 a)
- {
- return vreinterpretq_m128i_s64(
- vcombine_s64(vreinterpret_s64_m64(a), vdup_n_s64(0)));
- }
- // NEON does not provide this method
- // Creates a 4-bit mask from the most significant bits of the four
- // single-precision, floating-point values.
- // https://msdn.microsoft.com/en-us/library/vstudio/4490ys29(v=vs.100).aspx
- FORCE_INLINE int _mm_movemask_ps(__m128 a)
- {
- uint32x4_t input = vreinterpretq_u32_m128(a);
- #if defined(__aarch64__)
- static const int32x4_t shift = {0, 1, 2, 3};
- uint32x4_t tmp = vshrq_n_u32(input, 31);
- return vaddvq_u32(vshlq_u32(tmp, shift));
- #else
- // Uses the exact same method as _mm_movemask_epi8, see that for details.
- // Shift out everything but the sign bits with a 32-bit unsigned shift
- // right.
- uint64x2_t high_bits = vreinterpretq_u64_u32(vshrq_n_u32(input, 31));
- // Merge the two pairs together with a 64-bit unsigned shift right + add.
- uint8x16_t paired =
- vreinterpretq_u8_u64(vsraq_n_u64(high_bits, high_bits, 31));
- // Extract the result.
- return vgetq_lane_u8(paired, 0) | (vgetq_lane_u8(paired, 8) << 2);
- #endif
- }
- // Compute the bitwise NOT of a and then AND with a 128-bit vector containing
- // all 1's, and return 1 if the result is zero, otherwise return 0.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_test_all_ones
- FORCE_INLINE int _mm_test_all_ones(__m128i a)
- {
- return (uint64_t)(vgetq_lane_s64(a, 0) & vgetq_lane_s64(a, 1)) ==
- ~(uint64_t) 0;
- }
- // Compute the bitwise AND of 128 bits (representing integer data) in a and
- // mask, and return 1 if the result is zero, otherwise return 0.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_test_all_zeros
- FORCE_INLINE int _mm_test_all_zeros(__m128i a, __m128i mask)
- {
- int64x2_t a_and_mask =
- vandq_s64(vreinterpretq_s64_m128i(a), vreinterpretq_s64_m128i(mask));
- return (vgetq_lane_s64(a_and_mask, 0) | vgetq_lane_s64(a_and_mask, 1)) ? 0
- : 1;
- }
- /* Math operations */
- // Subtracts the four single-precision, floating-point values of a and b.
- //
- // r0 := a0 - b0
- // r1 := a1 - b1
- // r2 := a2 - b2
- // r3 := a3 - b3
- //
- // https://msdn.microsoft.com/en-us/library/vstudio/1zad2k61(v=vs.100).aspx
- FORCE_INLINE __m128 _mm_sub_ps(__m128 a, __m128 b)
- {
- return vreinterpretq_m128_f32(
- vsubq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)));
- }
- // Subtract the lower single-precision (32-bit) floating-point element in b from
- // the lower single-precision (32-bit) floating-point element in a, store the
- // result in the lower element of dst, and copy the upper 3 packed elements from
- // a to the upper elements of dst.
- //
- // dst[31:0] := a[31:0] - b[31:0]
- // dst[127:32] := a[127:32]
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sub_ss
- FORCE_INLINE __m128 _mm_sub_ss(__m128 a, __m128 b)
- {
- return _mm_move_ss(a, _mm_sub_ps(a, b));
- }
- // Subtract 2 packed 64-bit integers in b from 2 packed 64-bit integers in a,
- // and store the results in dst.
- // r0 := a0 - b0
- // r1 := a1 - b1
- FORCE_INLINE __m128i _mm_sub_epi64(__m128i a, __m128i b)
- {
- return vreinterpretq_m128i_s64(
- vsubq_s64(vreinterpretq_s64_m128i(a), vreinterpretq_s64_m128i(b)));
- }
- // Subtracts the 4 signed or unsigned 32-bit integers of b from the 4 signed or
- // unsigned 32-bit integers of a.
- //
- // r0 := a0 - b0
- // r1 := a1 - b1
- // r2 := a2 - b2
- // r3 := a3 - b3
- //
- // https://msdn.microsoft.com/en-us/library/vstudio/fhh866h0(v=vs.100).aspx
- FORCE_INLINE __m128i _mm_sub_epi32(__m128i a, __m128i b)
- {
- return vreinterpretq_m128i_s32(
- vsubq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b)));
- }
- // Subtract packed 16-bit integers in b from packed 16-bit integers in a, and
- // store the results in dst.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sub_epi16
- FORCE_INLINE __m128i _mm_sub_epi16(__m128i a, __m128i b)
- {
- return vreinterpretq_m128i_s16(
- vsubq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b)));
- }
- // Subtract packed 8-bit integers in b from packed 8-bit integers in a, and
- // store the results in dst.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sub_epi8
- FORCE_INLINE __m128i _mm_sub_epi8(__m128i a, __m128i b)
- {
- return vreinterpretq_m128i_s8(
- vsubq_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b)));
- }
- // Subtract 64-bit integer b from 64-bit integer a, and store the result in dst.
- //
- // dst[63:0] := a[63:0] - b[63:0]
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sub_si64
- FORCE_INLINE __m64 _mm_sub_si64(__m64 a, __m64 b)
- {
- return vreinterpret_m64_s64(
- vsub_s64(vreinterpret_s64_m64(a), vreinterpret_s64_m64(b)));
- }
- // Subtracts the 8 unsigned 16-bit integers of bfrom the 8 unsigned 16-bit
- // integers of a and saturates..
- // https://technet.microsoft.com/en-us/subscriptions/index/f44y0s19(v=vs.90).aspx
- FORCE_INLINE __m128i _mm_subs_epu16(__m128i a, __m128i b)
- {
- return vreinterpretq_m128i_u16(
- vqsubq_u16(vreinterpretq_u16_m128i(a), vreinterpretq_u16_m128i(b)));
- }
- // Subtracts the 16 unsigned 8-bit integers of b from the 16 unsigned 8-bit
- // integers of a and saturates.
- //
- // r0 := UnsignedSaturate(a0 - b0)
- // r1 := UnsignedSaturate(a1 - b1)
- // ...
- // r15 := UnsignedSaturate(a15 - b15)
- //
- // https://technet.microsoft.com/en-us/subscriptions/yadkxc18(v=vs.90)
- FORCE_INLINE __m128i _mm_subs_epu8(__m128i a, __m128i b)
- {
- return vreinterpretq_m128i_u8(
- vqsubq_u8(vreinterpretq_u8_m128i(a), vreinterpretq_u8_m128i(b)));
- }
- // Subtracts the 16 signed 8-bit integers of b from the 16 signed 8-bit integers
- // of a and saturates.
- //
- // r0 := SignedSaturate(a0 - b0)
- // r1 := SignedSaturate(a1 - b1)
- // ...
- // r15 := SignedSaturate(a15 - b15)
- //
- // https://technet.microsoft.com/en-us/subscriptions/by7kzks1(v=vs.90)
- FORCE_INLINE __m128i _mm_subs_epi8(__m128i a, __m128i b)
- {
- return vreinterpretq_m128i_s8(
- vqsubq_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b)));
- }
- // Subtracts the 8 signed 16-bit integers of b from the 8 signed 16-bit integers
- // of a and saturates.
- //
- // r0 := SignedSaturate(a0 - b0)
- // r1 := SignedSaturate(a1 - b1)
- // ...
- // r7 := SignedSaturate(a7 - b7)
- //
- // https://technet.microsoft.com/en-us/subscriptions/3247z5b8(v=vs.90)
- FORCE_INLINE __m128i _mm_subs_epi16(__m128i a, __m128i b)
- {
- return vreinterpretq_m128i_s16(
- vqsubq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b)));
- }
- // Subtract packed double-precision (64-bit) floating-point elements in b from
- // packed double-precision (64-bit) floating-point elements in a, and store the
- // results in dst.
- //
- // FOR j := 0 to 1
- // i := j*64
- // dst[i+63:i] := a[i+63:i] - b[i+63:i]
- // ENDFOR
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=mm_sub_pd
- FORCE_INLINE __m128d _mm_sub_pd(__m128d a, __m128d b)
- {
- #if defined(__aarch64__)
- return vreinterpretq_m128d_f64(
- vsubq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)));
- #else
- double *da = (double *) &a;
- double *db = (double *) &b;
- double c[2];
- c[0] = da[0] - db[0];
- c[1] = da[1] - db[1];
- return vld1q_f32((float32_t *) c);
- #endif
- }
- // Subtract the lower double-precision (64-bit) floating-point element in b from
- // the lower double-precision (64-bit) floating-point element in a, store the
- // result in the lower element of dst, and copy the upper element from a to the
- // upper element of dst.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sub_sd
- FORCE_INLINE __m128d _mm_sub_sd(__m128d a, __m128d b)
- {
- return _mm_move_sd(a, _mm_sub_pd(a, b));
- }
- // Add packed unsigned 16-bit integers in a and b using saturation, and store
- // the results in dst.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_adds_epu16
- FORCE_INLINE __m128i _mm_adds_epu16(__m128i a, __m128i b)
- {
- return vreinterpretq_m128i_u16(
- vqaddq_u16(vreinterpretq_u16_m128i(a), vreinterpretq_u16_m128i(b)));
- }
- // Negate packed 8-bit integers in a when the corresponding signed
- // 8-bit integer in b is negative, and store the results in dst.
- // Element in dst are zeroed out when the corresponding element
- // in b is zero.
- //
- // for i in 0..15
- // if b[i] < 0
- // r[i] := -a[i]
- // else if b[i] == 0
- // r[i] := 0
- // else
- // r[i] := a[i]
- // fi
- // done
- FORCE_INLINE __m128i _mm_sign_epi8(__m128i _a, __m128i _b)
- {
- int8x16_t a = vreinterpretq_s8_m128i(_a);
- int8x16_t b = vreinterpretq_s8_m128i(_b);
- // signed shift right: faster than vclt
- // (b < 0) ? 0xFF : 0
- uint8x16_t ltMask = vreinterpretq_u8_s8(vshrq_n_s8(b, 7));
- // (b == 0) ? 0xFF : 0
- #if defined(__aarch64__)
- int8x16_t zeroMask = vreinterpretq_s8_u8(vceqzq_s8(b));
- #else
- int8x16_t zeroMask = vreinterpretq_s8_u8(vceqq_s8(b, vdupq_n_s8(0)));
- #endif
- // bitwise select either a or nagative 'a' (vnegq_s8(a) return nagative 'a')
- // based on ltMask
- int8x16_t masked = vbslq_s8(ltMask, vnegq_s8(a), a);
- // res = masked & (~zeroMask)
- int8x16_t res = vbicq_s8(masked, zeroMask);
- return vreinterpretq_m128i_s8(res);
- }
- // Negate packed 16-bit integers in a when the corresponding signed
- // 16-bit integer in b is negative, and store the results in dst.
- // Element in dst are zeroed out when the corresponding element
- // in b is zero.
- //
- // for i in 0..7
- // if b[i] < 0
- // r[i] := -a[i]
- // else if b[i] == 0
- // r[i] := 0
- // else
- // r[i] := a[i]
- // fi
- // done
- FORCE_INLINE __m128i _mm_sign_epi16(__m128i _a, __m128i _b)
- {
- int16x8_t a = vreinterpretq_s16_m128i(_a);
- int16x8_t b = vreinterpretq_s16_m128i(_b);
- // signed shift right: faster than vclt
- // (b < 0) ? 0xFFFF : 0
- uint16x8_t ltMask = vreinterpretq_u16_s16(vshrq_n_s16(b, 15));
- // (b == 0) ? 0xFFFF : 0
- #if defined(__aarch64__)
- int16x8_t zeroMask = vreinterpretq_s16_u16(vceqzq_s16(b));
- #else
- int16x8_t zeroMask = vreinterpretq_s16_u16(vceqq_s16(b, vdupq_n_s16(0)));
- #endif
- // bitwise select either a or negative 'a' (vnegq_s16(a) equals to negative
- // 'a') based on ltMask
- int16x8_t masked = vbslq_s16(ltMask, vnegq_s16(a), a);
- // res = masked & (~zeroMask)
- int16x8_t res = vbicq_s16(masked, zeroMask);
- return vreinterpretq_m128i_s16(res);
- }
- // Negate packed 32-bit integers in a when the corresponding signed
- // 32-bit integer in b is negative, and store the results in dst.
- // Element in dst are zeroed out when the corresponding element
- // in b is zero.
- //
- // for i in 0..3
- // if b[i] < 0
- // r[i] := -a[i]
- // else if b[i] == 0
- // r[i] := 0
- // else
- // r[i] := a[i]
- // fi
- // done
- FORCE_INLINE __m128i _mm_sign_epi32(__m128i _a, __m128i _b)
- {
- int32x4_t a = vreinterpretq_s32_m128i(_a);
- int32x4_t b = vreinterpretq_s32_m128i(_b);
- // signed shift right: faster than vclt
- // (b < 0) ? 0xFFFFFFFF : 0
- uint32x4_t ltMask = vreinterpretq_u32_s32(vshrq_n_s32(b, 31));
- // (b == 0) ? 0xFFFFFFFF : 0
- #if defined(__aarch64__)
- int32x4_t zeroMask = vreinterpretq_s32_u32(vceqzq_s32(b));
- #else
- int32x4_t zeroMask = vreinterpretq_s32_u32(vceqq_s32(b, vdupq_n_s32(0)));
- #endif
- // bitwise select either a or negative 'a' (vnegq_s32(a) equals to negative
- // 'a') based on ltMask
- int32x4_t masked = vbslq_s32(ltMask, vnegq_s32(a), a);
- // res = masked & (~zeroMask)
- int32x4_t res = vbicq_s32(masked, zeroMask);
- return vreinterpretq_m128i_s32(res);
- }
- // Negate packed 16-bit integers in a when the corresponding signed 16-bit
- // integer in b is negative, and store the results in dst. Element in dst are
- // zeroed out when the corresponding element in b is zero.
- //
- // FOR j := 0 to 3
- // i := j*16
- // IF b[i+15:i] < 0
- // dst[i+15:i] := -(a[i+15:i])
- // ELSE IF b[i+15:i] == 0
- // dst[i+15:i] := 0
- // ELSE
- // dst[i+15:i] := a[i+15:i]
- // FI
- // ENDFOR
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sign_pi16
- FORCE_INLINE __m64 _mm_sign_pi16(__m64 _a, __m64 _b)
- {
- int16x4_t a = vreinterpret_s16_m64(_a);
- int16x4_t b = vreinterpret_s16_m64(_b);
- // signed shift right: faster than vclt
- // (b < 0) ? 0xFFFF : 0
- uint16x4_t ltMask = vreinterpret_u16_s16(vshr_n_s16(b, 15));
- // (b == 0) ? 0xFFFF : 0
- #if defined(__aarch64__)
- int16x4_t zeroMask = vreinterpret_s16_u16(vceqz_s16(b));
- #else
- int16x4_t zeroMask = vreinterpret_s16_u16(vceq_s16(b, vdup_n_s16(0)));
- #endif
- // bitwise select either a or nagative 'a' (vneg_s16(a) return nagative 'a')
- // based on ltMask
- int16x4_t masked = vbsl_s16(ltMask, vneg_s16(a), a);
- // res = masked & (~zeroMask)
- int16x4_t res = vbic_s16(masked, zeroMask);
- return vreinterpret_m64_s16(res);
- }
- // Negate packed 32-bit integers in a when the corresponding signed 32-bit
- // integer in b is negative, and store the results in dst. Element in dst are
- // zeroed out when the corresponding element in b is zero.
- //
- // FOR j := 0 to 1
- // i := j*32
- // IF b[i+31:i] < 0
- // dst[i+31:i] := -(a[i+31:i])
- // ELSE IF b[i+31:i] == 0
- // dst[i+31:i] := 0
- // ELSE
- // dst[i+31:i] := a[i+31:i]
- // FI
- // ENDFOR
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sign_pi32
- FORCE_INLINE __m64 _mm_sign_pi32(__m64 _a, __m64 _b)
- {
- int32x2_t a = vreinterpret_s32_m64(_a);
- int32x2_t b = vreinterpret_s32_m64(_b);
- // signed shift right: faster than vclt
- // (b < 0) ? 0xFFFFFFFF : 0
- uint32x2_t ltMask = vreinterpret_u32_s32(vshr_n_s32(b, 31));
- // (b == 0) ? 0xFFFFFFFF : 0
- #if defined(__aarch64__)
- int32x2_t zeroMask = vreinterpret_s32_u32(vceqz_s32(b));
- #else
- int32x2_t zeroMask = vreinterpret_s32_u32(vceq_s32(b, vdup_n_s32(0)));
- #endif
- // bitwise select either a or nagative 'a' (vneg_s32(a) return nagative 'a')
- // based on ltMask
- int32x2_t masked = vbsl_s32(ltMask, vneg_s32(a), a);
- // res = masked & (~zeroMask)
- int32x2_t res = vbic_s32(masked, zeroMask);
- return vreinterpret_m64_s32(res);
- }
- // Negate packed 8-bit integers in a when the corresponding signed 8-bit integer
- // in b is negative, and store the results in dst. Element in dst are zeroed out
- // when the corresponding element in b is zero.
- //
- // FOR j := 0 to 7
- // i := j*8
- // IF b[i+7:i] < 0
- // dst[i+7:i] := -(a[i+7:i])
- // ELSE IF b[i+7:i] == 0
- // dst[i+7:i] := 0
- // ELSE
- // dst[i+7:i] := a[i+7:i]
- // FI
- // ENDFOR
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sign_pi8
- FORCE_INLINE __m64 _mm_sign_pi8(__m64 _a, __m64 _b)
- {
- int8x8_t a = vreinterpret_s8_m64(_a);
- int8x8_t b = vreinterpret_s8_m64(_b);
- // signed shift right: faster than vclt
- // (b < 0) ? 0xFF : 0
- uint8x8_t ltMask = vreinterpret_u8_s8(vshr_n_s8(b, 7));
- // (b == 0) ? 0xFF : 0
- #if defined(__aarch64__)
- int8x8_t zeroMask = vreinterpret_s8_u8(vceqz_s8(b));
- #else
- int8x8_t zeroMask = vreinterpret_s8_u8(vceq_s8(b, vdup_n_s8(0)));
- #endif
- // bitwise select either a or nagative 'a' (vneg_s8(a) return nagative 'a')
- // based on ltMask
- int8x8_t masked = vbsl_s8(ltMask, vneg_s8(a), a);
- // res = masked & (~zeroMask)
- int8x8_t res = vbic_s8(masked, zeroMask);
- return vreinterpret_m64_s8(res);
- }
- // Average packed unsigned 16-bit integers in a and b, and store the results in
- // dst.
- //
- // FOR j := 0 to 3
- // i := j*16
- // dst[i+15:i] := (a[i+15:i] + b[i+15:i] + 1) >> 1
- // ENDFOR
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_avg_pu16
- FORCE_INLINE __m64 _mm_avg_pu16(__m64 a, __m64 b)
- {
- return vreinterpret_m64_u16(
- vrhadd_u16(vreinterpret_u16_m64(a), vreinterpret_u16_m64(b)));
- }
- // Average packed unsigned 8-bit integers in a and b, and store the results in
- // dst.
- //
- // FOR j := 0 to 7
- // i := j*8
- // dst[i+7:i] := (a[i+7:i] + b[i+7:i] + 1) >> 1
- // ENDFOR
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_avg_pu8
- FORCE_INLINE __m64 _mm_avg_pu8(__m64 a, __m64 b)
- {
- return vreinterpret_m64_u8(
- vrhadd_u8(vreinterpret_u8_m64(a), vreinterpret_u8_m64(b)));
- }
- // Average packed unsigned 8-bit integers in a and b, and store the results in
- // dst.
- //
- // FOR j := 0 to 7
- // i := j*8
- // dst[i+7:i] := (a[i+7:i] + b[i+7:i] + 1) >> 1
- // ENDFOR
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_m_pavgb
- #define _m_pavgb(a, b) _mm_avg_pu8(a, b)
- // Average packed unsigned 16-bit integers in a and b, and store the results in
- // dst.
- //
- // FOR j := 0 to 3
- // i := j*16
- // dst[i+15:i] := (a[i+15:i] + b[i+15:i] + 1) >> 1
- // ENDFOR
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_m_pavgw
- #define _m_pavgw(a, b) _mm_avg_pu16(a, b)
- // Extract a 16-bit integer from a, selected with imm8, and store the result in
- // the lower element of dst.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_m_pextrw
- #define _m_pextrw(a, imm) _mm_extract_pi16(a, imm)
- // Copy a to dst, and insert the 16-bit integer i into dst at the location
- // specified by imm8.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=m_pinsrw
- #define _m_pinsrw(a, i, imm) _mm_insert_pi16(a, i, imm)
- // Compare packed signed 16-bit integers in a and b, and store packed maximum
- // values in dst.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_m_pmaxsw
- #define _m_pmaxsw(a, b) _mm_max_pi16(a, b)
- // Compare packed unsigned 8-bit integers in a and b, and store packed maximum
- // values in dst.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_m_pmaxub
- #define _m_pmaxub(a, b) _mm_max_pu8(a, b)
- // Compare packed signed 16-bit integers in a and b, and store packed minimum
- // values in dst.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_m_pminsw
- #define _m_pminsw(a, b) _mm_min_pi16(a, b)
- // Compare packed unsigned 8-bit integers in a and b, and store packed minimum
- // values in dst.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_m_pminub
- #define _m_pminub(a, b) _mm_min_pu8(a, b)
- // Computes the average of the 16 unsigned 8-bit integers in a and the 16
- // unsigned 8-bit integers in b and rounds.
- //
- // r0 := (a0 + b0) / 2
- // r1 := (a1 + b1) / 2
- // ...
- // r15 := (a15 + b15) / 2
- //
- // https://msdn.microsoft.com/en-us/library/vstudio/8zwh554a(v%3dvs.90).aspx
- FORCE_INLINE __m128i _mm_avg_epu8(__m128i a, __m128i b)
- {
- return vreinterpretq_m128i_u8(
- vrhaddq_u8(vreinterpretq_u8_m128i(a), vreinterpretq_u8_m128i(b)));
- }
- // Computes the average of the 8 unsigned 16-bit integers in a and the 8
- // unsigned 16-bit integers in b and rounds.
- //
- // r0 := (a0 + b0) / 2
- // r1 := (a1 + b1) / 2
- // ...
- // r7 := (a7 + b7) / 2
- //
- // https://msdn.microsoft.com/en-us/library/vstudio/y13ca3c8(v=vs.90).aspx
- FORCE_INLINE __m128i _mm_avg_epu16(__m128i a, __m128i b)
- {
- return (__m128i) vrhaddq_u16(vreinterpretq_u16_m128i(a),
- vreinterpretq_u16_m128i(b));
- }
- // Adds the four single-precision, floating-point values of a and b.
- //
- // r0 := a0 + b0
- // r1 := a1 + b1
- // r2 := a2 + b2
- // r3 := a3 + b3
- //
- // https://msdn.microsoft.com/en-us/library/vstudio/c9848chc(v=vs.100).aspx
- FORCE_INLINE __m128 _mm_add_ps(__m128 a, __m128 b)
- {
- return vreinterpretq_m128_f32(
- vaddq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)));
- }
- // Add packed double-precision (64-bit) floating-point elements in a and b, and
- // store the results in dst.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_add_pd
- FORCE_INLINE __m128d _mm_add_pd(__m128d a, __m128d b)
- {
- #if defined(__aarch64__)
- return vreinterpretq_m128d_f64(
- vaddq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)));
- #else
- double *da = (double *) &a;
- double *db = (double *) &b;
- double c[2];
- c[0] = da[0] + db[0];
- c[1] = da[1] + db[1];
- return vld1q_f32((float32_t *) c);
- #endif
- }
- // Add the lower double-precision (64-bit) floating-point element in a and b,
- // store the result in the lower element of dst, and copy the upper element from
- // a to the upper element of dst.
- //
- // dst[63:0] := a[63:0] + b[63:0]
- // dst[127:64] := a[127:64]
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_add_sd
- FORCE_INLINE __m128d _mm_add_sd(__m128d a, __m128d b)
- {
- #if defined(__aarch64__)
- return _mm_move_sd(a, _mm_add_pd(a, b));
- #else
- double *da = (double *) &a;
- double *db = (double *) &b;
- double c[2];
- c[0] = da[0] + db[0];
- c[1] = da[1];
- return vld1q_f32((float32_t *) c);
- #endif
- }
- // Add 64-bit integers a and b, and store the result in dst.
- //
- // dst[63:0] := a[63:0] + b[63:0]
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_add_si64
- FORCE_INLINE __m64 _mm_add_si64(__m64 a, __m64 b)
- {
- return vreinterpret_m64_s64(
- vadd_s64(vreinterpret_s64_m64(a), vreinterpret_s64_m64(b)));
- }
- // adds the scalar single-precision floating point values of a and b.
- // https://msdn.microsoft.com/en-us/library/be94x2y6(v=vs.100).aspx
- FORCE_INLINE __m128 _mm_add_ss(__m128 a, __m128 b)
- {
- float32_t b0 = vgetq_lane_f32(vreinterpretq_f32_m128(b), 0);
- float32x4_t value = vsetq_lane_f32(b0, vdupq_n_f32(0), 0);
- // the upper values in the result must be the remnants of <a>.
- return vreinterpretq_m128_f32(vaddq_f32(a, value));
- }
- // Adds the 4 signed or unsigned 64-bit integers in a to the 4 signed or
- // unsigned 32-bit integers in b.
- // https://msdn.microsoft.com/en-us/library/vstudio/09xs4fkk(v=vs.100).aspx
- FORCE_INLINE __m128i _mm_add_epi64(__m128i a, __m128i b)
- {
- return vreinterpretq_m128i_s64(
- vaddq_s64(vreinterpretq_s64_m128i(a), vreinterpretq_s64_m128i(b)));
- }
- // Adds the 4 signed or unsigned 32-bit integers in a to the 4 signed or
- // unsigned 32-bit integers in b.
- //
- // r0 := a0 + b0
- // r1 := a1 + b1
- // r2 := a2 + b2
- // r3 := a3 + b3
- //
- // https://msdn.microsoft.com/en-us/library/vstudio/09xs4fkk(v=vs.100).aspx
- FORCE_INLINE __m128i _mm_add_epi32(__m128i a, __m128i b)
- {
- return vreinterpretq_m128i_s32(
- vaddq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b)));
- }
- // Adds the 8 signed or unsigned 16-bit integers in a to the 8 signed or
- // unsigned 16-bit integers in b.
- // https://msdn.microsoft.com/en-us/library/fceha5k4(v=vs.100).aspx
- FORCE_INLINE __m128i _mm_add_epi16(__m128i a, __m128i b)
- {
- return vreinterpretq_m128i_s16(
- vaddq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b)));
- }
- // Adds the 16 signed or unsigned 8-bit integers in a to the 16 signed or
- // unsigned 8-bit integers in b.
- // https://technet.microsoft.com/en-us/subscriptions/yc7tcyzs(v=vs.90)
- FORCE_INLINE __m128i _mm_add_epi8(__m128i a, __m128i b)
- {
- return vreinterpretq_m128i_s8(
- vaddq_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b)));
- }
- // Adds the 8 signed 16-bit integers in a to the 8 signed 16-bit integers in b
- // and saturates.
- //
- // r0 := SignedSaturate(a0 + b0)
- // r1 := SignedSaturate(a1 + b1)
- // ...
- // r7 := SignedSaturate(a7 + b7)
- //
- // https://msdn.microsoft.com/en-us/library/1a306ef8(v=vs.100).aspx
- FORCE_INLINE __m128i _mm_adds_epi16(__m128i a, __m128i b)
- {
- return vreinterpretq_m128i_s16(
- vqaddq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b)));
- }
- // Add packed signed 8-bit integers in a and b using saturation, and store the
- // results in dst.
- //
- // FOR j := 0 to 15
- // i := j*8
- // dst[i+7:i] := Saturate8( a[i+7:i] + b[i+7:i] )
- // ENDFOR
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_adds_epi8
- FORCE_INLINE __m128i _mm_adds_epi8(__m128i a, __m128i b)
- {
- return vreinterpretq_m128i_s8(
- vqaddq_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b)));
- }
- // Adds the 16 unsigned 8-bit integers in a to the 16 unsigned 8-bit integers in
- // b and saturates..
- // https://msdn.microsoft.com/en-us/library/9hahyddy(v=vs.100).aspx
- FORCE_INLINE __m128i _mm_adds_epu8(__m128i a, __m128i b)
- {
- return vreinterpretq_m128i_u8(
- vqaddq_u8(vreinterpretq_u8_m128i(a), vreinterpretq_u8_m128i(b)));
- }
- // Multiplies the 8 signed or unsigned 16-bit integers from a by the 8 signed or
- // unsigned 16-bit integers from b.
- //
- // r0 := (a0 * b0)[15:0]
- // r1 := (a1 * b1)[15:0]
- // ...
- // r7 := (a7 * b7)[15:0]
- //
- // https://msdn.microsoft.com/en-us/library/vstudio/9ks1472s(v=vs.100).aspx
- FORCE_INLINE __m128i _mm_mullo_epi16(__m128i a, __m128i b)
- {
- return vreinterpretq_m128i_s16(
- vmulq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b)));
- }
- // Multiplies the 4 signed or unsigned 32-bit integers from a by the 4 signed or
- // unsigned 32-bit integers from b.
- // https://msdn.microsoft.com/en-us/library/vstudio/bb531409(v=vs.100).aspx
- FORCE_INLINE __m128i _mm_mullo_epi32(__m128i a, __m128i b)
- {
- return vreinterpretq_m128i_s32(
- vmulq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b)));
- }
- // Multiply the packed unsigned 16-bit integers in a and b, producing
- // intermediate 32-bit integers, and store the high 16 bits of the intermediate
- // integers in dst.
- //
- // FOR j := 0 to 3
- // i := j*16
- // tmp[31:0] := a[i+15:i] * b[i+15:i]
- // dst[i+15:i] := tmp[31:16]
- // ENDFOR
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_m_pmulhuw
- #define _m_pmulhuw(a, b) _mm_mulhi_pu16(a, b)
- // Multiplies the four single-precision, floating-point values of a and b.
- //
- // r0 := a0 * b0
- // r1 := a1 * b1
- // r2 := a2 * b2
- // r3 := a3 * b3
- //
- // https://msdn.microsoft.com/en-us/library/vstudio/22kbk6t9(v=vs.100).aspx
- FORCE_INLINE __m128 _mm_mul_ps(__m128 a, __m128 b)
- {
- return vreinterpretq_m128_f32(
- vmulq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)));
- }
- // Multiply packed double-precision (64-bit) floating-point elements in a and b,
- // and store the results in dst.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mul_pd
- FORCE_INLINE __m128d _mm_mul_pd(__m128d a, __m128d b)
- {
- #if defined(__aarch64__)
- return vreinterpretq_m128d_f64(
- vmulq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)));
- #else
- double *da = (double *) &a;
- double *db = (double *) &b;
- double c[2];
- c[0] = da[0] * db[0];
- c[1] = da[1] * db[1];
- return vld1q_f32((float32_t *) c);
- #endif
- }
- // Multiply the lower double-precision (64-bit) floating-point element in a and
- // b, store the result in the lower element of dst, and copy the upper element
- // from a to the upper element of dst.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=mm_mul_sd
- FORCE_INLINE __m128d _mm_mul_sd(__m128d a, __m128d b)
- {
- return _mm_move_sd(a, _mm_mul_pd(a, b));
- }
- // Multiply the lower single-precision (32-bit) floating-point element in a and
- // b, store the result in the lower element of dst, and copy the upper 3 packed
- // elements from a to the upper elements of dst.
- //
- // dst[31:0] := a[31:0] * b[31:0]
- // dst[127:32] := a[127:32]
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mul_ss
- FORCE_INLINE __m128 _mm_mul_ss(__m128 a, __m128 b)
- {
- return _mm_move_ss(a, _mm_mul_ps(a, b));
- }
- // Multiply the low unsigned 32-bit integers from each packed 64-bit element in
- // a and b, and store the unsigned 64-bit results in dst.
- //
- // r0 := (a0 & 0xFFFFFFFF) * (b0 & 0xFFFFFFFF)
- // r1 := (a2 & 0xFFFFFFFF) * (b2 & 0xFFFFFFFF)
- FORCE_INLINE __m128i _mm_mul_epu32(__m128i a, __m128i b)
- {
- // vmull_u32 upcasts instead of masking, so we downcast.
- uint32x2_t a_lo = vmovn_u64(vreinterpretq_u64_m128i(a));
- uint32x2_t b_lo = vmovn_u64(vreinterpretq_u64_m128i(b));
- return vreinterpretq_m128i_u64(vmull_u32(a_lo, b_lo));
- }
- // Multiply the low unsigned 32-bit integers from a and b, and store the
- // unsigned 64-bit result in dst.
- //
- // dst[63:0] := a[31:0] * b[31:0]
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mul_su32
- FORCE_INLINE __m64 _mm_mul_su32(__m64 a, __m64 b)
- {
- return vreinterpret_m64_u64(vget_low_u64(
- vmull_u32(vreinterpret_u32_m64(a), vreinterpret_u32_m64(b))));
- }
- // Multiply the low signed 32-bit integers from each packed 64-bit element in
- // a and b, and store the signed 64-bit results in dst.
- //
- // r0 := (int64_t)(int32_t)a0 * (int64_t)(int32_t)b0
- // r1 := (int64_t)(int32_t)a2 * (int64_t)(int32_t)b2
- FORCE_INLINE __m128i _mm_mul_epi32(__m128i a, __m128i b)
- {
- // vmull_s32 upcasts instead of masking, so we downcast.
- int32x2_t a_lo = vmovn_s64(vreinterpretq_s64_m128i(a));
- int32x2_t b_lo = vmovn_s64(vreinterpretq_s64_m128i(b));
- return vreinterpretq_m128i_s64(vmull_s32(a_lo, b_lo));
- }
- // Multiplies the 8 signed 16-bit integers from a by the 8 signed 16-bit
- // integers from b.
- //
- // r0 := (a0 * b0) + (a1 * b1)
- // r1 := (a2 * b2) + (a3 * b3)
- // r2 := (a4 * b4) + (a5 * b5)
- // r3 := (a6 * b6) + (a7 * b7)
- // https://msdn.microsoft.com/en-us/library/yht36sa6(v=vs.90).aspx
- FORCE_INLINE __m128i _mm_madd_epi16(__m128i a, __m128i b)
- {
- int32x4_t low = vmull_s16(vget_low_s16(vreinterpretq_s16_m128i(a)),
- vget_low_s16(vreinterpretq_s16_m128i(b)));
- int32x4_t high = vmull_s16(vget_high_s16(vreinterpretq_s16_m128i(a)),
- vget_high_s16(vreinterpretq_s16_m128i(b)));
- int32x2_t low_sum = vpadd_s32(vget_low_s32(low), vget_high_s32(low));
- int32x2_t high_sum = vpadd_s32(vget_low_s32(high), vget_high_s32(high));
- return vreinterpretq_m128i_s32(vcombine_s32(low_sum, high_sum));
- }
- // Multiply packed signed 16-bit integers in a and b, producing intermediate
- // signed 32-bit integers. Shift right by 15 bits while rounding up, and store
- // the packed 16-bit integers in dst.
- //
- // r0 := Round(((int32_t)a0 * (int32_t)b0) >> 15)
- // r1 := Round(((int32_t)a1 * (int32_t)b1) >> 15)
- // r2 := Round(((int32_t)a2 * (int32_t)b2) >> 15)
- // ...
- // r7 := Round(((int32_t)a7 * (int32_t)b7) >> 15)
- FORCE_INLINE __m128i _mm_mulhrs_epi16(__m128i a, __m128i b)
- {
- // Has issues due to saturation
- // return vreinterpretq_m128i_s16(vqrdmulhq_s16(a, b));
- // Multiply
- int32x4_t mul_lo = vmull_s16(vget_low_s16(vreinterpretq_s16_m128i(a)),
- vget_low_s16(vreinterpretq_s16_m128i(b)));
- int32x4_t mul_hi = vmull_s16(vget_high_s16(vreinterpretq_s16_m128i(a)),
- vget_high_s16(vreinterpretq_s16_m128i(b)));
- // Rounding narrowing shift right
- // narrow = (int16_t)((mul + 16384) >> 15);
- int16x4_t narrow_lo = vrshrn_n_s32(mul_lo, 15);
- int16x4_t narrow_hi = vrshrn_n_s32(mul_hi, 15);
- // Join together
- return vreinterpretq_m128i_s16(vcombine_s16(narrow_lo, narrow_hi));
- }
- // Vertically multiply each unsigned 8-bit integer from a with the corresponding
- // signed 8-bit integer from b, producing intermediate signed 16-bit integers.
- // Horizontally add adjacent pairs of intermediate signed 16-bit integers,
- // and pack the saturated results in dst.
- //
- // FOR j := 0 to 7
- // i := j*16
- // dst[i+15:i] := Saturate_To_Int16( a[i+15:i+8]*b[i+15:i+8] +
- // a[i+7:i]*b[i+7:i] )
- // ENDFOR
- FORCE_INLINE __m128i _mm_maddubs_epi16(__m128i _a, __m128i _b)
- {
- #if defined(__aarch64__)
- uint8x16_t a = vreinterpretq_u8_m128i(_a);
- int8x16_t b = vreinterpretq_s8_m128i(_b);
- int16x8_t tl = vmulq_s16(vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(a))),
- vmovl_s8(vget_low_s8(b)));
- int16x8_t th = vmulq_s16(vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(a))),
- vmovl_s8(vget_high_s8(b)));
- return vreinterpretq_m128i_s16(
- vqaddq_s16(vuzp1q_s16(tl, th), vuzp2q_s16(tl, th)));
- #else
- // This would be much simpler if x86 would choose to zero extend OR sign
- // extend, not both. This could probably be optimized better.
- uint16x8_t a = vreinterpretq_u16_m128i(_a);
- int16x8_t b = vreinterpretq_s16_m128i(_b);
- // Zero extend a
- int16x8_t a_odd = vreinterpretq_s16_u16(vshrq_n_u16(a, 8));
- int16x8_t a_even = vreinterpretq_s16_u16(vbicq_u16(a, vdupq_n_u16(0xff00)));
- // Sign extend by shifting left then shifting right.
- int16x8_t b_even = vshrq_n_s16(vshlq_n_s16(b, 8), 8);
- int16x8_t b_odd = vshrq_n_s16(b, 8);
- // multiply
- int16x8_t prod1 = vmulq_s16(a_even, b_even);
- int16x8_t prod2 = vmulq_s16(a_odd, b_odd);
- // saturated add
- return vreinterpretq_m128i_s16(vqaddq_s16(prod1, prod2));
- #endif
- }
- // Computes the fused multiple add product of 32-bit floating point numbers.
- //
- // Return Value
- // Multiplies A and B, and adds C to the temporary result before returning it.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_fmadd
- FORCE_INLINE __m128 _mm_fmadd_ps(__m128 a, __m128 b, __m128 c)
- {
- #if defined(__aarch64__)
- return vreinterpretq_m128_f32(vfmaq_f32(vreinterpretq_f32_m128(c),
- vreinterpretq_f32_m128(b),
- vreinterpretq_f32_m128(a)));
- #else
- return _mm_add_ps(_mm_mul_ps(a, b), c);
- #endif
- }
- // Alternatively add and subtract packed single-precision (32-bit)
- // floating-point elements in a to/from packed elements in b, and store the
- // results in dst.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=addsub_ps
- FORCE_INLINE __m128 _mm_addsub_ps(__m128 a, __m128 b)
- {
- __m128 mask = {-1.0f, 1.0f, -1.0f, 1.0f};
- return _mm_fmadd_ps(b, mask, a);
- }
- // Horizontally add adjacent pairs of double-precision (64-bit) floating-point
- // elements in a and b, and pack the results in dst.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_hadd_pd
- FORCE_INLINE __m128d _mm_hadd_pd(__m128d a, __m128d b)
- {
- #if defined(__aarch64__)
- return vreinterpretq_m128d_f64(
- vpaddq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)));
- #else
- double *da = (double *) &a;
- double *db = (double *) &b;
- double c[] = {da[0] + da[1], db[0] + db[1]};
- return vreinterpretq_m128d_u64(vld1q_u64((uint64_t *) c));
- #endif
- }
- // Compute the absolute differences of packed unsigned 8-bit integers in a and
- // b, then horizontally sum each consecutive 8 differences to produce two
- // unsigned 16-bit integers, and pack these unsigned 16-bit integers in the low
- // 16 bits of 64-bit elements in dst.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sad_epu8
- FORCE_INLINE __m128i _mm_sad_epu8(__m128i a, __m128i b)
- {
- uint16x8_t t = vpaddlq_u8(vabdq_u8((uint8x16_t) a, (uint8x16_t) b));
- uint16_t r0 = t[0] + t[1] + t[2] + t[3];
- uint16_t r4 = t[4] + t[5] + t[6] + t[7];
- uint16x8_t r = vsetq_lane_u16(r0, vdupq_n_u16(0), 0);
- return (__m128i) vsetq_lane_u16(r4, r, 4);
- }
- // Compute the absolute differences of packed unsigned 8-bit integers in a and
- // b, then horizontally sum each consecutive 8 differences to produce four
- // unsigned 16-bit integers, and pack these unsigned 16-bit integers in the low
- // 16 bits of dst.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sad_pu8
- FORCE_INLINE __m64 _mm_sad_pu8(__m64 a, __m64 b)
- {
- uint16x4_t t =
- vpaddl_u8(vabd_u8(vreinterpret_u8_m64(a), vreinterpret_u8_m64(b)));
- uint16_t r0 = t[0] + t[1] + t[2] + t[3];
- return vreinterpret_m64_u16(vset_lane_u16(r0, vdup_n_u16(0), 0));
- }
- // Compute the absolute differences of packed unsigned 8-bit integers in a and
- // b, then horizontally sum each consecutive 8 differences to produce four
- // unsigned 16-bit integers, and pack these unsigned 16-bit integers in the low
- // 16 bits of dst.
- //
- // FOR j := 0 to 7
- // i := j*8
- // tmp[i+7:i] := ABS(a[i+7:i] - b[i+7:i])
- // ENDFOR
- // dst[15:0] := tmp[7:0] + tmp[15:8] + tmp[23:16] + tmp[31:24] + tmp[39:32] +
- // tmp[47:40] + tmp[55:48] + tmp[63:56] dst[63:16] := 0
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_m_psadbw
- #define _m_psadbw(a, b) _mm_sad_pu8(a, b)
- // Divides the four single-precision, floating-point values of a and b.
- //
- // r0 := a0 / b0
- // r1 := a1 / b1
- // r2 := a2 / b2
- // r3 := a3 / b3
- //
- // https://msdn.microsoft.com/en-us/library/edaw8147(v=vs.100).aspx
- FORCE_INLINE __m128 _mm_div_ps(__m128 a, __m128 b)
- {
- #if defined(__aarch64__) && !SSE2NEON_PRECISE_DIV
- return vreinterpretq_m128_f32(
- vdivq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)));
- #else
- float32x4_t recip = vrecpeq_f32(vreinterpretq_f32_m128(b));
- recip = vmulq_f32(recip, vrecpsq_f32(recip, vreinterpretq_f32_m128(b)));
- #if SSE2NEON_PRECISE_DIV
- // Additional Netwon-Raphson iteration for accuracy
- recip = vmulq_f32(recip, vrecpsq_f32(recip, vreinterpretq_f32_m128(b)));
- #endif
- return vreinterpretq_m128_f32(vmulq_f32(vreinterpretq_f32_m128(a), recip));
- #endif
- }
- // Divides the scalar single-precision floating point value of a by b.
- // https://msdn.microsoft.com/en-us/library/4y73xa49(v=vs.100).aspx
- FORCE_INLINE __m128 _mm_div_ss(__m128 a, __m128 b)
- {
- float32_t value =
- vgetq_lane_f32(vreinterpretq_f32_m128(_mm_div_ps(a, b)), 0);
- return vreinterpretq_m128_f32(
- vsetq_lane_f32(value, vreinterpretq_f32_m128(a), 0));
- }
- // Divide packed double-precision (64-bit) floating-point elements in a by
- // packed elements in b, and store the results in dst.
- //
- // FOR j := 0 to 1
- // i := 64*j
- // dst[i+63:i] := a[i+63:i] / b[i+63:i]
- // ENDFOR
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_div_pd
- FORCE_INLINE __m128d _mm_div_pd(__m128d a, __m128d b)
- {
- #if defined(__aarch64__)
- return vreinterpretq_m128d_f64(
- vdivq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)));
- #else
- double *da = (double *) &a;
- double *db = (double *) &b;
- double c[2];
- c[0] = da[0] / db[0];
- c[1] = da[1] / db[1];
- return vld1q_f32((float32_t *) c);
- #endif
- }
- // Divide the lower double-precision (64-bit) floating-point element in a by the
- // lower double-precision (64-bit) floating-point element in b, store the result
- // in the lower element of dst, and copy the upper element from a to the upper
- // element of dst.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_div_sd
- FORCE_INLINE __m128d _mm_div_sd(__m128d a, __m128d b)
- {
- #if defined(__aarch64__)
- float64x2_t tmp =
- vdivq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b));
- return vreinterpretq_m128d_f64(
- vsetq_lane_f64(vgetq_lane_f64(vreinterpretq_f64_m128d(a), 1), tmp, 1));
- #else
- return _mm_move_sd(a, _mm_div_pd(a, b));
- #endif
- }
- // Compute the approximate reciprocal of packed single-precision (32-bit)
- // floating-point elements in a, and store the results in dst. The maximum
- // relative error for this approximation is less than 1.5*2^-12.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_rcp_ps
- FORCE_INLINE __m128 _mm_rcp_ps(__m128 in)
- {
- float32x4_t recip = vrecpeq_f32(vreinterpretq_f32_m128(in));
- recip = vmulq_f32(recip, vrecpsq_f32(recip, vreinterpretq_f32_m128(in)));
- #if SSE2NEON_PRECISE_DIV
- // Additional Netwon-Raphson iteration for accuracy
- recip = vmulq_f32(recip, vrecpsq_f32(recip, vreinterpretq_f32_m128(in)));
- #endif
- return vreinterpretq_m128_f32(recip);
- }
- // Compute the approximate reciprocal of the lower single-precision (32-bit)
- // floating-point element in a, store the result in the lower element of dst,
- // and copy the upper 3 packed elements from a to the upper elements of dst. The
- // maximum relative error for this approximation is less than 1.5*2^-12.
- //
- // dst[31:0] := (1.0 / a[31:0])
- // dst[127:32] := a[127:32]
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_rcp_ss
- FORCE_INLINE __m128 _mm_rcp_ss(__m128 a)
- {
- return _mm_move_ss(a, _mm_rcp_ps(a));
- }
- // Computes the approximations of square roots of the four single-precision,
- // floating-point values of a. First computes reciprocal square roots and then
- // reciprocals of the four values.
- //
- // r0 := sqrt(a0)
- // r1 := sqrt(a1)
- // r2 := sqrt(a2)
- // r3 := sqrt(a3)
- //
- // https://msdn.microsoft.com/en-us/library/vstudio/8z67bwwk(v=vs.100).aspx
- FORCE_INLINE __m128 _mm_sqrt_ps(__m128 in)
- {
- #if SSE2NEON_PRECISE_SQRT
- float32x4_t recip = vrsqrteq_f32(vreinterpretq_f32_m128(in));
- // Test for vrsqrteq_f32(0) -> positive infinity case.
- // Change to zero, so that s * 1/sqrt(s) result is zero too.
- const uint32x4_t pos_inf = vdupq_n_u32(0x7F800000);
- const uint32x4_t div_by_zero =
- vceqq_u32(pos_inf, vreinterpretq_u32_f32(recip));
- recip = vreinterpretq_f32_u32(
- vandq_u32(vmvnq_u32(div_by_zero), vreinterpretq_u32_f32(recip)));
- // Additional Netwon-Raphson iteration for accuracy
- recip = vmulq_f32(
- vrsqrtsq_f32(vmulq_f32(recip, recip), vreinterpretq_f32_m128(in)),
- recip);
- recip = vmulq_f32(
- vrsqrtsq_f32(vmulq_f32(recip, recip), vreinterpretq_f32_m128(in)),
- recip);
- // sqrt(s) = s * 1/sqrt(s)
- return vreinterpretq_m128_f32(vmulq_f32(vreinterpretq_f32_m128(in), recip));
- #elif defined(__aarch64__)
- return vreinterpretq_m128_f32(vsqrtq_f32(vreinterpretq_f32_m128(in)));
- #else
- float32x4_t recipsq = vrsqrteq_f32(vreinterpretq_f32_m128(in));
- float32x4_t sq = vrecpeq_f32(recipsq);
- return vreinterpretq_m128_f32(sq);
- #endif
- }
- // Computes the approximation of the square root of the scalar single-precision
- // floating point value of in.
- // https://msdn.microsoft.com/en-us/library/ahfsc22d(v=vs.100).aspx
- FORCE_INLINE __m128 _mm_sqrt_ss(__m128 in)
- {
- float32_t value =
- vgetq_lane_f32(vreinterpretq_f32_m128(_mm_sqrt_ps(in)), 0);
- return vreinterpretq_m128_f32(
- vsetq_lane_f32(value, vreinterpretq_f32_m128(in), 0));
- }
- // Computes the approximations of the reciprocal square roots of the four
- // single-precision floating point values of in.
- // https://msdn.microsoft.com/en-us/library/22hfsh53(v=vs.100).aspx
- FORCE_INLINE __m128 _mm_rsqrt_ps(__m128 in)
- {
- float32x4_t out = vrsqrteq_f32(vreinterpretq_f32_m128(in));
- #if SSE2NEON_PRECISE_RSQRT
- // Additional Netwon-Raphson iteration for accuracy
- out = vmulq_f32(
- out, vrsqrtsq_f32(vmulq_f32(vreinterpretq_f32_m128(in), out), out));
- out = vmulq_f32(
- out, vrsqrtsq_f32(vmulq_f32(vreinterpretq_f32_m128(in), out), out));
- #endif
- return vreinterpretq_m128_f32(out);
- }
- // Compute the approximate reciprocal square root of the lower single-precision
- // (32-bit) floating-point element in a, store the result in the lower element
- // of dst, and copy the upper 3 packed elements from a to the upper elements of
- // dst.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_rsqrt_ss
- FORCE_INLINE __m128 _mm_rsqrt_ss(__m128 in)
- {
- return vsetq_lane_f32(vgetq_lane_f32(_mm_rsqrt_ps(in), 0), in, 0);
- }
- // Compare packed signed 16-bit integers in a and b, and store packed maximum
- // values in dst.
- //
- // FOR j := 0 to 3
- // i := j*16
- // dst[i+15:i] := MAX(a[i+15:i], b[i+15:i])
- // ENDFOR
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_max_pi16
- FORCE_INLINE __m64 _mm_max_pi16(__m64 a, __m64 b)
- {
- return vreinterpret_m64_s16(
- vmax_s16(vreinterpret_s16_m64(a), vreinterpret_s16_m64(b)));
- }
- // Compare packed signed 16-bit integers in a and b, and store packed maximum
- // values in dst.
- //
- // FOR j := 0 to 3
- // i := j*16
- // dst[i+15:i] := MAX(a[i+15:i], b[i+15:i])
- // ENDFOR
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_max_pi16
- #define _m_pmaxsw(a, b) _mm_max_pi16(a, b)
- // Computes the maximums of the four single-precision, floating-point values of
- // a and b.
- // https://msdn.microsoft.com/en-us/library/vstudio/ff5d607a(v=vs.100).aspx
- FORCE_INLINE __m128 _mm_max_ps(__m128 a, __m128 b)
- {
- #if SSE2NEON_PRECISE_MINMAX
- float32x4_t _a = vreinterpretq_f32_m128(a);
- float32x4_t _b = vreinterpretq_f32_m128(b);
- return vbslq_f32(vcltq_f32(_b, _a), _a, _b);
- #else
- return vreinterpretq_m128_f32(
- vmaxq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)));
- #endif
- }
- // Compare packed unsigned 8-bit integers in a and b, and store packed maximum
- // values in dst.
- //
- // FOR j := 0 to 7
- // i := j*8
- // dst[i+7:i] := MAX(a[i+7:i], b[i+7:i])
- // ENDFOR
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_max_pu8
- FORCE_INLINE __m64 _mm_max_pu8(__m64 a, __m64 b)
- {
- return vreinterpret_m64_u8(
- vmax_u8(vreinterpret_u8_m64(a), vreinterpret_u8_m64(b)));
- }
- // Compare packed unsigned 8-bit integers in a and b, and store packed maximum
- // values in dst.
- //
- // FOR j := 0 to 7
- // i := j*8
- // dst[i+7:i] := MAX(a[i+7:i], b[i+7:i])
- // ENDFOR
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_max_pu8
- #define _m_pmaxub(a, b) _mm_max_pu8(a, b)
- // Compare packed signed 16-bit integers in a and b, and store packed minimum
- // values in dst.
- //
- // FOR j := 0 to 3
- // i := j*16
- // dst[i+15:i] := MIN(a[i+15:i], b[i+15:i])
- // ENDFOR
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_min_pi16
- FORCE_INLINE __m64 _mm_min_pi16(__m64 a, __m64 b)
- {
- return vreinterpret_m64_s16(
- vmin_s16(vreinterpret_s16_m64(a), vreinterpret_s16_m64(b)));
- }
- // Compare packed signed 16-bit integers in a and b, and store packed minimum
- // values in dst.
- //
- // FOR j := 0 to 3
- // i := j*16
- // dst[i+15:i] := MIN(a[i+15:i], b[i+15:i])
- // ENDFOR
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_min_pi16
- #define _m_pminsw(a, b) _mm_min_pi16(a, b)
- // Computes the minima of the four single-precision, floating-point values of a
- // and b.
- // https://msdn.microsoft.com/en-us/library/vstudio/wh13kadz(v=vs.100).aspx
- FORCE_INLINE __m128 _mm_min_ps(__m128 a, __m128 b)
- {
- #if SSE2NEON_PRECISE_MINMAX
- float32x4_t _a = vreinterpretq_f32_m128(a);
- float32x4_t _b = vreinterpretq_f32_m128(b);
- return vbslq_f32(vcltq_f32(_a, _b), _a, _b);
- #else
- return vreinterpretq_m128_f32(
- vminq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)));
- #endif
- }
- // Compare packed unsigned 8-bit integers in a and b, and store packed minimum
- // values in dst.
- //
- // FOR j := 0 to 7
- // i := j*8
- // dst[i+7:i] := MIN(a[i+7:i], b[i+7:i])
- // ENDFOR
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_min_pu8
- FORCE_INLINE __m64 _mm_min_pu8(__m64 a, __m64 b)
- {
- return vreinterpret_m64_u8(
- vmin_u8(vreinterpret_u8_m64(a), vreinterpret_u8_m64(b)));
- }
- // Compare packed unsigned 8-bit integers in a and b, and store packed minimum
- // values in dst.
- //
- // FOR j := 0 to 7
- // i := j*8
- // dst[i+7:i] := MIN(a[i+7:i], b[i+7:i])
- // ENDFOR
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_min_pu8
- #define _m_pminub(a, b) _mm_min_pu8(a, b)
- // Computes the maximum of the two lower scalar single-precision floating point
- // values of a and b.
- // https://msdn.microsoft.com/en-us/library/s6db5esz(v=vs.100).aspx
- FORCE_INLINE __m128 _mm_max_ss(__m128 a, __m128 b)
- {
- float32_t value = vgetq_lane_f32(_mm_max_ps(a, b), 0);
- return vreinterpretq_m128_f32(
- vsetq_lane_f32(value, vreinterpretq_f32_m128(a), 0));
- }
- // Computes the minimum of the two lower scalar single-precision floating point
- // values of a and b.
- // https://msdn.microsoft.com/en-us/library/0a9y7xaa(v=vs.100).aspx
- FORCE_INLINE __m128 _mm_min_ss(__m128 a, __m128 b)
- {
- float32_t value = vgetq_lane_f32(_mm_min_ps(a, b), 0);
- return vreinterpretq_m128_f32(
- vsetq_lane_f32(value, vreinterpretq_f32_m128(a), 0));
- }
- // Computes the pairwise maxima of the 16 unsigned 8-bit integers from a and the
- // 16 unsigned 8-bit integers from b.
- // https://msdn.microsoft.com/en-us/library/st6634za(v=vs.100).aspx
- FORCE_INLINE __m128i _mm_max_epu8(__m128i a, __m128i b)
- {
- return vreinterpretq_m128i_u8(
- vmaxq_u8(vreinterpretq_u8_m128i(a), vreinterpretq_u8_m128i(b)));
- }
- // Computes the pairwise minima of the 16 unsigned 8-bit integers from a and the
- // 16 unsigned 8-bit integers from b.
- // https://msdn.microsoft.com/ko-kr/library/17k8cf58(v=vs.100).aspxx
- FORCE_INLINE __m128i _mm_min_epu8(__m128i a, __m128i b)
- {
- return vreinterpretq_m128i_u8(
- vminq_u8(vreinterpretq_u8_m128i(a), vreinterpretq_u8_m128i(b)));
- }
- // Computes the pairwise minima of the 8 signed 16-bit integers from a and the 8
- // signed 16-bit integers from b.
- // https://msdn.microsoft.com/en-us/library/vstudio/6te997ew(v=vs.100).aspx
- FORCE_INLINE __m128i _mm_min_epi16(__m128i a, __m128i b)
- {
- return vreinterpretq_m128i_s16(
- vminq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b)));
- }
- // Compare packed signed 8-bit integers in a and b, and store packed maximum
- // values in dst.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_max_epi8
- FORCE_INLINE __m128i _mm_max_epi8(__m128i a, __m128i b)
- {
- return vreinterpretq_m128i_s8(
- vmaxq_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b)));
- }
- // Compare packed unsigned 16-bit integers in a and b, and store packed maximum
- // values in dst.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_max_epu16
- FORCE_INLINE __m128i _mm_max_epu16(__m128i a, __m128i b)
- {
- return vreinterpretq_m128i_u16(
- vmaxq_u16(vreinterpretq_u16_m128i(a), vreinterpretq_u16_m128i(b)));
- }
- // Compare packed signed 8-bit integers in a and b, and store packed minimum
- // values in dst.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_min_epi8
- FORCE_INLINE __m128i _mm_min_epi8(__m128i a, __m128i b)
- {
- return vreinterpretq_m128i_s8(
- vminq_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b)));
- }
- // Compare packed unsigned 16-bit integers in a and b, and store packed minimum
- // values in dst.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_min_epu16
- FORCE_INLINE __m128i _mm_min_epu16(__m128i a, __m128i b)
- {
- return vreinterpretq_m128i_u16(
- vminq_u16(vreinterpretq_u16_m128i(a), vreinterpretq_u16_m128i(b)));
- }
- // Computes the pairwise maxima of the 8 signed 16-bit integers from a and the 8
- // signed 16-bit integers from b.
- // https://msdn.microsoft.com/en-us/LIBRary/3x060h7c(v=vs.100).aspx
- FORCE_INLINE __m128i _mm_max_epi16(__m128i a, __m128i b)
- {
- return vreinterpretq_m128i_s16(
- vmaxq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b)));
- }
- // epi versions of min/max
- // Computes the pariwise maximums of the four signed 32-bit integer values of a
- // and b.
- //
- // A 128-bit parameter that can be defined with the following equations:
- // r0 := (a0 > b0) ? a0 : b0
- // r1 := (a1 > b1) ? a1 : b1
- // r2 := (a2 > b2) ? a2 : b2
- // r3 := (a3 > b3) ? a3 : b3
- //
- // https://msdn.microsoft.com/en-us/library/vstudio/bb514055(v=vs.100).aspx
- FORCE_INLINE __m128i _mm_max_epi32(__m128i a, __m128i b)
- {
- return vreinterpretq_m128i_s32(
- vmaxq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b)));
- }
- // Computes the pariwise minima of the four signed 32-bit integer values of a
- // and b.
- //
- // A 128-bit parameter that can be defined with the following equations:
- // r0 := (a0 < b0) ? a0 : b0
- // r1 := (a1 < b1) ? a1 : b1
- // r2 := (a2 < b2) ? a2 : b2
- // r3 := (a3 < b3) ? a3 : b3
- //
- // https://msdn.microsoft.com/en-us/library/vstudio/bb531476(v=vs.100).aspx
- FORCE_INLINE __m128i _mm_min_epi32(__m128i a, __m128i b)
- {
- return vreinterpretq_m128i_s32(
- vminq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b)));
- }
- // Compare packed unsigned 32-bit integers in a and b, and store packed maximum
- // values in dst.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_max_epu32
- FORCE_INLINE __m128i _mm_max_epu32(__m128i a, __m128i b)
- {
- return vreinterpretq_m128i_u32(
- vmaxq_u32(vreinterpretq_u32_m128i(a), vreinterpretq_u32_m128i(b)));
- }
- // Compare packed unsigned 32-bit integers in a and b, and store packed minimum
- // values in dst.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_max_epu32
- FORCE_INLINE __m128i _mm_min_epu32(__m128i a, __m128i b)
- {
- return vreinterpretq_m128i_u32(
- vminq_u32(vreinterpretq_u32_m128i(a), vreinterpretq_u32_m128i(b)));
- }
- // Multiply the packed unsigned 16-bit integers in a and b, producing
- // intermediate 32-bit integers, and store the high 16 bits of the intermediate
- // integers in dst.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mulhi_pu16
- FORCE_INLINE __m64 _mm_mulhi_pu16(__m64 a, __m64 b)
- {
- return vreinterpret_m64_u16(vshrn_n_u32(
- vmull_u16(vreinterpret_u16_m64(a), vreinterpret_u16_m64(b)), 16));
- }
- // Multiplies the 8 signed 16-bit integers from a by the 8 signed 16-bit
- // integers from b.
- //
- // r0 := (a0 * b0)[31:16]
- // r1 := (a1 * b1)[31:16]
- // ...
- // r7 := (a7 * b7)[31:16]
- //
- // https://msdn.microsoft.com/en-us/library/vstudio/59hddw1d(v=vs.100).aspx
- FORCE_INLINE __m128i _mm_mulhi_epi16(__m128i a, __m128i b)
- {
- /* FIXME: issue with large values because of result saturation */
- // int16x8_t ret = vqdmulhq_s16(vreinterpretq_s16_m128i(a),
- // vreinterpretq_s16_m128i(b)); /* =2*a*b */ return
- // vreinterpretq_m128i_s16(vshrq_n_s16(ret, 1));
- int16x4_t a3210 = vget_low_s16(vreinterpretq_s16_m128i(a));
- int16x4_t b3210 = vget_low_s16(vreinterpretq_s16_m128i(b));
- int32x4_t ab3210 = vmull_s16(a3210, b3210); /* 3333222211110000 */
- int16x4_t a7654 = vget_high_s16(vreinterpretq_s16_m128i(a));
- int16x4_t b7654 = vget_high_s16(vreinterpretq_s16_m128i(b));
- int32x4_t ab7654 = vmull_s16(a7654, b7654); /* 7777666655554444 */
- uint16x8x2_t r =
- vuzpq_u16(vreinterpretq_u16_s32(ab3210), vreinterpretq_u16_s32(ab7654));
- return vreinterpretq_m128i_u16(r.val[1]);
- }
- // Multiply the packed unsigned 16-bit integers in a and b, producing
- // intermediate 32-bit integers, and store the high 16 bits of the intermediate
- // integers in dst.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mulhi_epu16
- FORCE_INLINE __m128i _mm_mulhi_epu16(__m128i a, __m128i b)
- {
- uint16x4_t a3210 = vget_low_u16(vreinterpretq_u16_m128i(a));
- uint16x4_t b3210 = vget_low_u16(vreinterpretq_u16_m128i(b));
- uint32x4_t ab3210 = vmull_u16(a3210, b3210);
- #if defined(__aarch64__)
- uint32x4_t ab7654 =
- vmull_high_u16(vreinterpretq_u16_m128i(a), vreinterpretq_u16_m128i(b));
- uint16x8_t r = vuzp2q_u16(vreinterpretq_u16_u32(ab3210),
- vreinterpretq_u16_u32(ab7654));
- return vreinterpretq_m128i_u16(r);
- #else
- uint16x4_t a7654 = vget_high_u16(vreinterpretq_u16_m128i(a));
- uint16x4_t b7654 = vget_high_u16(vreinterpretq_u16_m128i(b));
- uint32x4_t ab7654 = vmull_u16(a7654, b7654);
- uint16x8x2_t r =
- vuzpq_u16(vreinterpretq_u16_u32(ab3210), vreinterpretq_u16_u32(ab7654));
- return vreinterpretq_m128i_u16(r.val[1]);
- #endif
- }
- // Computes pairwise add of each argument as single-precision, floating-point
- // values a and b.
- // https://msdn.microsoft.com/en-us/library/yd9wecaa.aspx
- FORCE_INLINE __m128 _mm_hadd_ps(__m128 a, __m128 b)
- {
- #if defined(__aarch64__)
- return vreinterpretq_m128_f32(
- vpaddq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)));
- #else
- float32x2_t a10 = vget_low_f32(vreinterpretq_f32_m128(a));
- float32x2_t a32 = vget_high_f32(vreinterpretq_f32_m128(a));
- float32x2_t b10 = vget_low_f32(vreinterpretq_f32_m128(b));
- float32x2_t b32 = vget_high_f32(vreinterpretq_f32_m128(b));
- return vreinterpretq_m128_f32(
- vcombine_f32(vpadd_f32(a10, a32), vpadd_f32(b10, b32)));
- #endif
- }
- // Computes pairwise add of each argument as a 16-bit signed or unsigned integer
- // values a and b.
- FORCE_INLINE __m128i _mm_hadd_epi16(__m128i _a, __m128i _b)
- {
- int16x8_t a = vreinterpretq_s16_m128i(_a);
- int16x8_t b = vreinterpretq_s16_m128i(_b);
- #if defined(__aarch64__)
- return vreinterpretq_m128i_s16(vpaddq_s16(a, b));
- #else
- return vreinterpretq_m128i_s16(
- vcombine_s16(vpadd_s16(vget_low_s16(a), vget_high_s16(a)),
- vpadd_s16(vget_low_s16(b), vget_high_s16(b))));
- #endif
- }
- // Horizontally substract adjacent pairs of single-precision (32-bit)
- // floating-point elements in a and b, and pack the results in dst.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_hsub_ps
- FORCE_INLINE __m128 _mm_hsub_ps(__m128 _a, __m128 _b)
- {
- #if defined(__aarch64__)
- return vreinterpretq_m128_f32(vsubq_f32(
- vuzp1q_f32(vreinterpretq_f32_m128(_a), vreinterpretq_f32_m128(_b)),
- vuzp2q_f32(vreinterpretq_f32_m128(_a), vreinterpretq_f32_m128(_b))));
- #else
- float32x4x2_t c =
- vuzpq_f32(vreinterpretq_f32_m128(_a), vreinterpretq_f32_m128(_b));
- return vreinterpretq_m128_f32(vsubq_f32(c.val[0], c.val[1]));
- #endif
- }
- // Horizontally add adjacent pairs of 16-bit integers in a and b, and pack the
- // signed 16-bit results in dst.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_hadd_pi16
- FORCE_INLINE __m64 _mm_hadd_pi16(__m64 a, __m64 b)
- {
- return vreinterpret_m64_s16(
- vpadd_s16(vreinterpret_s16_m64(a), vreinterpret_s16_m64(b)));
- }
- // Horizontally add adjacent pairs of 32-bit integers in a and b, and pack the
- // signed 32-bit results in dst.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_hadd_pi32
- FORCE_INLINE __m64 _mm_hadd_pi32(__m64 a, __m64 b)
- {
- return vreinterpret_m64_s32(
- vpadd_s32(vreinterpret_s32_m64(a), vreinterpret_s32_m64(b)));
- }
- // Computes pairwise difference of each argument as a 16-bit signed or unsigned
- // integer values a and b.
- FORCE_INLINE __m128i _mm_hsub_epi16(__m128i _a, __m128i _b)
- {
- int32x4_t a = vreinterpretq_s32_m128i(_a);
- int32x4_t b = vreinterpretq_s32_m128i(_b);
- // Interleave using vshrn/vmovn
- // [a0|a2|a4|a6|b0|b2|b4|b6]
- // [a1|a3|a5|a7|b1|b3|b5|b7]
- int16x8_t ab0246 = vcombine_s16(vmovn_s32(a), vmovn_s32(b));
- int16x8_t ab1357 = vcombine_s16(vshrn_n_s32(a, 16), vshrn_n_s32(b, 16));
- // Subtract
- return vreinterpretq_m128i_s16(vsubq_s16(ab0246, ab1357));
- }
- // Computes saturated pairwise sub of each argument as a 16-bit signed
- // integer values a and b.
- FORCE_INLINE __m128i _mm_hadds_epi16(__m128i _a, __m128i _b)
- {
- #if defined(__aarch64__)
- int16x8_t a = vreinterpretq_s16_m128i(_a);
- int16x8_t b = vreinterpretq_s16_m128i(_b);
- return vreinterpretq_s64_s16(
- vqaddq_s16(vuzp1q_s16(a, b), vuzp2q_s16(a, b)));
- #else
- int32x4_t a = vreinterpretq_s32_m128i(_a);
- int32x4_t b = vreinterpretq_s32_m128i(_b);
- // Interleave using vshrn/vmovn
- // [a0|a2|a4|a6|b0|b2|b4|b6]
- // [a1|a3|a5|a7|b1|b3|b5|b7]
- int16x8_t ab0246 = vcombine_s16(vmovn_s32(a), vmovn_s32(b));
- int16x8_t ab1357 = vcombine_s16(vshrn_n_s32(a, 16), vshrn_n_s32(b, 16));
- // Saturated add
- return vreinterpretq_m128i_s16(vqaddq_s16(ab0246, ab1357));
- #endif
- }
- // Computes saturated pairwise difference of each argument as a 16-bit signed
- // integer values a and b.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_hsubs_epi16
- FORCE_INLINE __m128i _mm_hsubs_epi16(__m128i _a, __m128i _b)
- {
- #if defined(__aarch64__)
- int16x8_t a = vreinterpretq_s16_m128i(_a);
- int16x8_t b = vreinterpretq_s16_m128i(_b);
- return vreinterpretq_s64_s16(
- vqsubq_s16(vuzp1q_s16(a, b), vuzp2q_s16(a, b)));
- #else
- int32x4_t a = vreinterpretq_s32_m128i(_a);
- int32x4_t b = vreinterpretq_s32_m128i(_b);
- // Interleave using vshrn/vmovn
- // [a0|a2|a4|a6|b0|b2|b4|b6]
- // [a1|a3|a5|a7|b1|b3|b5|b7]
- int16x8_t ab0246 = vcombine_s16(vmovn_s32(a), vmovn_s32(b));
- int16x8_t ab1357 = vcombine_s16(vshrn_n_s32(a, 16), vshrn_n_s32(b, 16));
- // Saturated subtract
- return vreinterpretq_m128i_s16(vqsubq_s16(ab0246, ab1357));
- #endif
- }
- // Computes pairwise add of each argument as a 32-bit signed or unsigned integer
- // values a and b.
- FORCE_INLINE __m128i _mm_hadd_epi32(__m128i _a, __m128i _b)
- {
- int32x4_t a = vreinterpretq_s32_m128i(_a);
- int32x4_t b = vreinterpretq_s32_m128i(_b);
- return vreinterpretq_m128i_s32(
- vcombine_s32(vpadd_s32(vget_low_s32(a), vget_high_s32(a)),
- vpadd_s32(vget_low_s32(b), vget_high_s32(b))));
- }
- // Computes pairwise difference of each argument as a 32-bit signed or unsigned
- // integer values a and b.
- FORCE_INLINE __m128i _mm_hsub_epi32(__m128i _a, __m128i _b)
- {
- int64x2_t a = vreinterpretq_s64_m128i(_a);
- int64x2_t b = vreinterpretq_s64_m128i(_b);
- // Interleave using vshrn/vmovn
- // [a0|a2|b0|b2]
- // [a1|a2|b1|b3]
- int32x4_t ab02 = vcombine_s32(vmovn_s64(a), vmovn_s64(b));
- int32x4_t ab13 = vcombine_s32(vshrn_n_s64(a, 32), vshrn_n_s64(b, 32));
- // Subtract
- return vreinterpretq_m128i_s32(vsubq_s32(ab02, ab13));
- }
- // Kahan summation for accurate summation of floating-point numbers.
- // http://blog.zachbjornson.com/2019/08/11/fast-float-summation.html
- FORCE_INLINE void _sse2neon_kadd_f32(float *sum, float *c, float y)
- {
- y -= *c;
- float t = *sum + y;
- *c = (t - *sum) - y;
- *sum = t;
- }
- // Conditionally multiply the packed single-precision (32-bit) floating-point
- // elements in a and b using the high 4 bits in imm8, sum the four products,
- // and conditionally store the sum in dst using the low 4 bits of imm.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_dp_ps
- FORCE_INLINE __m128 _mm_dp_ps(__m128 a, __m128 b, const int imm)
- {
- #if defined(__aarch64__)
- /* shortcuts */
- if (imm == 0xFF) {
- return _mm_set1_ps(vaddvq_f32(_mm_mul_ps(a, b)));
- }
- if (imm == 0x7F) {
- float32x4_t m = _mm_mul_ps(a, b);
- m[3] = 0;
- return _mm_set1_ps(vaddvq_f32(m));
- }
- #endif
- float s = 0, c = 0;
- float32x4_t f32a = vreinterpretq_f32_m128(a);
- float32x4_t f32b = vreinterpretq_f32_m128(b);
- /* To improve the accuracy of floating-point summation, Kahan algorithm
- * is used for each operation.
- */
- if (imm & (1 << 4))
- _sse2neon_kadd_f32(&s, &c, f32a[0] * f32b[0]);
- if (imm & (1 << 5))
- _sse2neon_kadd_f32(&s, &c, f32a[1] * f32b[1]);
- if (imm & (1 << 6))
- _sse2neon_kadd_f32(&s, &c, f32a[2] * f32b[2]);
- if (imm & (1 << 7))
- _sse2neon_kadd_f32(&s, &c, f32a[3] * f32b[3]);
- s += c;
- float32x4_t res = {
- (imm & 0x1) ? s : 0,
- (imm & 0x2) ? s : 0,
- (imm & 0x4) ? s : 0,
- (imm & 0x8) ? s : 0,
- };
- return vreinterpretq_m128_f32(res);
- }
- /* Compare operations */
- // Compares for less than
- // https://msdn.microsoft.com/en-us/library/vstudio/f330yhc8(v=vs.100).aspx
- FORCE_INLINE __m128 _mm_cmplt_ps(__m128 a, __m128 b)
- {
- return vreinterpretq_m128_u32(
- vcltq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)));
- }
- // Compares for less than
- // https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/fy94wye7(v=vs.100)
- FORCE_INLINE __m128 _mm_cmplt_ss(__m128 a, __m128 b)
- {
- return _mm_move_ss(a, _mm_cmplt_ps(a, b));
- }
- // Compares for greater than.
- //
- // r0 := (a0 > b0) ? 0xffffffff : 0x0
- // r1 := (a1 > b1) ? 0xffffffff : 0x0
- // r2 := (a2 > b2) ? 0xffffffff : 0x0
- // r3 := (a3 > b3) ? 0xffffffff : 0x0
- //
- // https://msdn.microsoft.com/en-us/library/vstudio/11dy102s(v=vs.100).aspx
- FORCE_INLINE __m128 _mm_cmpgt_ps(__m128 a, __m128 b)
- {
- return vreinterpretq_m128_u32(
- vcgtq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)));
- }
- // Compares for greater than.
- // https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/1xyyyy9e(v=vs.100)
- FORCE_INLINE __m128 _mm_cmpgt_ss(__m128 a, __m128 b)
- {
- return _mm_move_ss(a, _mm_cmpgt_ps(a, b));
- }
- // Compares for greater than or equal.
- // https://msdn.microsoft.com/en-us/library/vstudio/fs813y2t(v=vs.100).aspx
- FORCE_INLINE __m128 _mm_cmpge_ps(__m128 a, __m128 b)
- {
- return vreinterpretq_m128_u32(
- vcgeq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)));
- }
- // Compares for greater than or equal.
- // https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/kesh3ddc(v=vs.100)
- FORCE_INLINE __m128 _mm_cmpge_ss(__m128 a, __m128 b)
- {
- return _mm_move_ss(a, _mm_cmpge_ps(a, b));
- }
- // Compares for less than or equal.
- //
- // r0 := (a0 <= b0) ? 0xffffffff : 0x0
- // r1 := (a1 <= b1) ? 0xffffffff : 0x0
- // r2 := (a2 <= b2) ? 0xffffffff : 0x0
- // r3 := (a3 <= b3) ? 0xffffffff : 0x0
- //
- // https://msdn.microsoft.com/en-us/library/vstudio/1s75w83z(v=vs.100).aspx
- FORCE_INLINE __m128 _mm_cmple_ps(__m128 a, __m128 b)
- {
- return vreinterpretq_m128_u32(
- vcleq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)));
- }
- // Compares for less than or equal.
- // https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/a7x0hbhw(v=vs.100)
- FORCE_INLINE __m128 _mm_cmple_ss(__m128 a, __m128 b)
- {
- return _mm_move_ss(a, _mm_cmple_ps(a, b));
- }
- // Compares for equality.
- // https://msdn.microsoft.com/en-us/library/vstudio/36aectz5(v=vs.100).aspx
- FORCE_INLINE __m128 _mm_cmpeq_ps(__m128 a, __m128 b)
- {
- return vreinterpretq_m128_u32(
- vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)));
- }
- // Compares for equality.
- // https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/k423z28e(v=vs.100)
- FORCE_INLINE __m128 _mm_cmpeq_ss(__m128 a, __m128 b)
- {
- return _mm_move_ss(a, _mm_cmpeq_ps(a, b));
- }
- // Compares for inequality.
- // https://msdn.microsoft.com/en-us/library/sf44thbx(v=vs.100).aspx
- FORCE_INLINE __m128 _mm_cmpneq_ps(__m128 a, __m128 b)
- {
- return vreinterpretq_m128_u32(vmvnq_u32(
- vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))));
- }
- // Compares for inequality.
- // https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ekya8fh4(v=vs.100)
- FORCE_INLINE __m128 _mm_cmpneq_ss(__m128 a, __m128 b)
- {
- return _mm_move_ss(a, _mm_cmpneq_ps(a, b));
- }
- // Compares for not greater than or equal.
- // https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/wsexys62(v=vs.100)
- FORCE_INLINE __m128 _mm_cmpnge_ps(__m128 a, __m128 b)
- {
- return _mm_cmplt_ps(a, b);
- }
- // Compares for not greater than or equal.
- // https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/fk2y80s8(v=vs.100)
- FORCE_INLINE __m128 _mm_cmpnge_ss(__m128 a, __m128 b)
- {
- return _mm_cmplt_ss(a, b);
- }
- // Compares for not greater than.
- // https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/d0xh7w0s(v=vs.100)
- FORCE_INLINE __m128 _mm_cmpngt_ps(__m128 a, __m128 b)
- {
- return _mm_cmple_ps(a, b);
- }
- // Compares for not greater than.
- // https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/z7x9ydwh(v=vs.100)
- FORCE_INLINE __m128 _mm_cmpngt_ss(__m128 a, __m128 b)
- {
- return _mm_cmple_ss(a, b);
- }
- // Compares for not less than or equal.
- // https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/6a330kxw(v=vs.100)
- FORCE_INLINE __m128 _mm_cmpnle_ps(__m128 a, __m128 b)
- {
- return _mm_cmpgt_ps(a, b);
- }
- // Compares for not less than or equal.
- // https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/z7x9ydwh(v=vs.100)
- FORCE_INLINE __m128 _mm_cmpnle_ss(__m128 a, __m128 b)
- {
- return _mm_cmpgt_ss(a, b);
- }
- // Compares for not less than.
- // https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/4686bbdw(v=vs.100)
- FORCE_INLINE __m128 _mm_cmpnlt_ps(__m128 a, __m128 b)
- {
- return _mm_cmpge_ps(a, b);
- }
- // Compares for not less than.
- // https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/56b9z2wf(v=vs.100)
- FORCE_INLINE __m128 _mm_cmpnlt_ss(__m128 a, __m128 b)
- {
- return _mm_cmpge_ss(a, b);
- }
- // Compares the 16 signed or unsigned 8-bit integers in a and the 16 signed or
- // unsigned 8-bit integers in b for equality.
- // https://msdn.microsoft.com/en-us/library/windows/desktop/bz5xk21a(v=vs.90).aspx
- FORCE_INLINE __m128i _mm_cmpeq_epi8(__m128i a, __m128i b)
- {
- return vreinterpretq_m128i_u8(
- vceqq_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b)));
- }
- // Compare packed double-precision (64-bit) floating-point elements in a and b
- // for equality, and store the results in dst.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpeq_pd
- FORCE_INLINE __m128d _mm_cmpeq_pd(__m128d a, __m128d b)
- {
- #if defined(__aarch64__)
- return vreinterpretq_m128d_u64(
- vceqq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)));
- #else
- // (a == b) -> (a_lo == b_lo) && (a_hi == b_hi)
- uint32x4_t cmp =
- vceqq_u32(vreinterpretq_u32_m128d(a), vreinterpretq_u32_m128d(b));
- uint32x4_t swapped = vrev64q_u32(cmp);
- return vreinterpretq_m128d_u32(vandq_u32(cmp, swapped));
- #endif
- }
- // Compares the 8 signed or unsigned 16-bit integers in a and the 8 signed or
- // unsigned 16-bit integers in b for equality.
- // https://msdn.microsoft.com/en-us/library/2ay060te(v=vs.100).aspx
- FORCE_INLINE __m128i _mm_cmpeq_epi16(__m128i a, __m128i b)
- {
- return vreinterpretq_m128i_u16(
- vceqq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b)));
- }
- // Compare packed 32-bit integers in a and b for equality, and store the results
- // in dst
- FORCE_INLINE __m128i _mm_cmpeq_epi32(__m128i a, __m128i b)
- {
- return vreinterpretq_m128i_u32(
- vceqq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b)));
- }
- // Compare packed 64-bit integers in a and b for equality, and store the results
- // in dst
- FORCE_INLINE __m128i _mm_cmpeq_epi64(__m128i a, __m128i b)
- {
- #if defined(__aarch64__)
- return vreinterpretq_m128i_u64(
- vceqq_u64(vreinterpretq_u64_m128i(a), vreinterpretq_u64_m128i(b)));
- #else
- // ARMv7 lacks vceqq_u64
- // (a == b) -> (a_lo == b_lo) && (a_hi == b_hi)
- uint32x4_t cmp =
- vceqq_u32(vreinterpretq_u32_m128i(a), vreinterpretq_u32_m128i(b));
- uint32x4_t swapped = vrev64q_u32(cmp);
- return vreinterpretq_m128i_u32(vandq_u32(cmp, swapped));
- #endif
- }
- // Compares the 16 signed 8-bit integers in a and the 16 signed 8-bit integers
- // in b for lesser than.
- // https://msdn.microsoft.com/en-us/library/windows/desktop/9s46csht(v=vs.90).aspx
- FORCE_INLINE __m128i _mm_cmplt_epi8(__m128i a, __m128i b)
- {
- return vreinterpretq_m128i_u8(
- vcltq_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b)));
- }
- // Compares the 16 signed 8-bit integers in a and the 16 signed 8-bit integers
- // in b for greater than.
- //
- // r0 := (a0 > b0) ? 0xff : 0x0
- // r1 := (a1 > b1) ? 0xff : 0x0
- // ...
- // r15 := (a15 > b15) ? 0xff : 0x0
- //
- // https://msdn.microsoft.com/zh-tw/library/wf45zt2b(v=vs.100).aspx
- FORCE_INLINE __m128i _mm_cmpgt_epi8(__m128i a, __m128i b)
- {
- return vreinterpretq_m128i_u8(
- vcgtq_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b)));
- }
- // Compares the 8 signed 16-bit integers in a and the 8 signed 16-bit integers
- // in b for less than.
- //
- // r0 := (a0 < b0) ? 0xffff : 0x0
- // r1 := (a1 < b1) ? 0xffff : 0x0
- // ...
- // r7 := (a7 < b7) ? 0xffff : 0x0
- //
- // https://technet.microsoft.com/en-us/library/t863edb2(v=vs.100).aspx
- FORCE_INLINE __m128i _mm_cmplt_epi16(__m128i a, __m128i b)
- {
- return vreinterpretq_m128i_u16(
- vcltq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b)));
- }
- // Compares the 8 signed 16-bit integers in a and the 8 signed 16-bit integers
- // in b for greater than.
- //
- // r0 := (a0 > b0) ? 0xffff : 0x0
- // r1 := (a1 > b1) ? 0xffff : 0x0
- // ...
- // r7 := (a7 > b7) ? 0xffff : 0x0
- //
- // https://technet.microsoft.com/en-us/library/xd43yfsa(v=vs.100).aspx
- FORCE_INLINE __m128i _mm_cmpgt_epi16(__m128i a, __m128i b)
- {
- return vreinterpretq_m128i_u16(
- vcgtq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b)));
- }
- // Compares the 4 signed 32-bit integers in a and the 4 signed 32-bit integers
- // in b for less than.
- // https://msdn.microsoft.com/en-us/library/vstudio/4ak0bf5d(v=vs.100).aspx
- FORCE_INLINE __m128i _mm_cmplt_epi32(__m128i a, __m128i b)
- {
- return vreinterpretq_m128i_u32(
- vcltq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b)));
- }
- // Compares the 4 signed 32-bit integers in a and the 4 signed 32-bit integers
- // in b for greater than.
- // https://msdn.microsoft.com/en-us/library/vstudio/1s9f2z0y(v=vs.100).aspx
- FORCE_INLINE __m128i _mm_cmpgt_epi32(__m128i a, __m128i b)
- {
- return vreinterpretq_m128i_u32(
- vcgtq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b)));
- }
- // Compares the 2 signed 64-bit integers in a and the 2 signed 64-bit integers
- // in b for greater than.
- FORCE_INLINE __m128i _mm_cmpgt_epi64(__m128i a, __m128i b)
- {
- #if defined(__aarch64__)
- return vreinterpretq_m128i_u64(
- vcgtq_s64(vreinterpretq_s64_m128i(a), vreinterpretq_s64_m128i(b)));
- #else
- // ARMv7 lacks vcgtq_s64.
- // This is based off of Clang's SSE2 polyfill:
- // (a > b) -> ((a_hi > b_hi) || (a_lo > b_lo && a_hi == b_hi))
- // Mask the sign bit out since we need a signed AND an unsigned comparison
- // and it is ugly to try and split them.
- int32x4_t mask = vreinterpretq_s32_s64(vdupq_n_s64(0x80000000ull));
- int32x4_t a_mask = veorq_s32(vreinterpretq_s32_m128i(a), mask);
- int32x4_t b_mask = veorq_s32(vreinterpretq_s32_m128i(b), mask);
- // Check if a > b
- int64x2_t greater = vreinterpretq_s64_u32(vcgtq_s32(a_mask, b_mask));
- // Copy upper mask to lower mask
- // a_hi > b_hi
- int64x2_t gt_hi = vshrq_n_s64(greater, 63);
- // Copy lower mask to upper mask
- // a_lo > b_lo
- int64x2_t gt_lo = vsliq_n_s64(greater, greater, 32);
- // Compare for equality
- int64x2_t equal = vreinterpretq_s64_u32(vceqq_s32(a_mask, b_mask));
- // Copy upper mask to lower mask
- // a_hi == b_hi
- int64x2_t eq_hi = vshrq_n_s64(equal, 63);
- // a_hi > b_hi || (a_lo > b_lo && a_hi == b_hi)
- int64x2_t ret = vorrq_s64(gt_hi, vandq_s64(gt_lo, eq_hi));
- return vreinterpretq_m128i_s64(ret);
- #endif
- }
- // Compares the four 32-bit floats in a and b to check if any values are NaN.
- // Ordered compare between each value returns true for "orderable" and false for
- // "not orderable" (NaN).
- // https://msdn.microsoft.com/en-us/library/vstudio/0h9w00fx(v=vs.100).aspx see
- // also:
- // http://stackoverflow.com/questions/8627331/what-does-ordered-unordered-comparison-mean
- // http://stackoverflow.com/questions/29349621/neon-isnanval-intrinsics
- FORCE_INLINE __m128 _mm_cmpord_ps(__m128 a, __m128 b)
- {
- // Note: NEON does not have ordered compare builtin
- // Need to compare a eq a and b eq b to check for NaN
- // Do AND of results to get final
- uint32x4_t ceqaa =
- vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a));
- uint32x4_t ceqbb =
- vceqq_f32(vreinterpretq_f32_m128(b), vreinterpretq_f32_m128(b));
- return vreinterpretq_m128_u32(vandq_u32(ceqaa, ceqbb));
- }
- // Compares for ordered.
- // https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/343t62da(v=vs.100)
- FORCE_INLINE __m128 _mm_cmpord_ss(__m128 a, __m128 b)
- {
- return _mm_move_ss(a, _mm_cmpord_ps(a, b));
- }
- // Compares for unordered.
- // https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/khy6fk1t(v=vs.100)
- FORCE_INLINE __m128 _mm_cmpunord_ps(__m128 a, __m128 b)
- {
- uint32x4_t f32a =
- vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a));
- uint32x4_t f32b =
- vceqq_f32(vreinterpretq_f32_m128(b), vreinterpretq_f32_m128(b));
- return vreinterpretq_m128_u32(vmvnq_u32(vandq_u32(f32a, f32b)));
- }
- // Compares for unordered.
- // https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/2as2387b(v=vs.100)
- FORCE_INLINE __m128 _mm_cmpunord_ss(__m128 a, __m128 b)
- {
- return _mm_move_ss(a, _mm_cmpunord_ps(a, b));
- }
- // Compares the lower single-precision floating point scalar values of a and b
- // using a less than operation. :
- // https://msdn.microsoft.com/en-us/library/2kwe606b(v=vs.90).aspx Important
- // note!! The documentation on MSDN is incorrect! If either of the values is a
- // NAN the docs say you will get a one, but in fact, it will return a zero!!
- FORCE_INLINE int _mm_comilt_ss(__m128 a, __m128 b)
- {
- uint32x4_t a_not_nan =
- vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a));
- uint32x4_t b_not_nan =
- vceqq_f32(vreinterpretq_f32_m128(b), vreinterpretq_f32_m128(b));
- uint32x4_t a_and_b_not_nan = vandq_u32(a_not_nan, b_not_nan);
- uint32x4_t a_lt_b =
- vcltq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b));
- return (vgetq_lane_u32(vandq_u32(a_and_b_not_nan, a_lt_b), 0) != 0) ? 1 : 0;
- }
- // Compares the lower single-precision floating point scalar values of a and b
- // using a greater than operation. :
- // https://msdn.microsoft.com/en-us/library/b0738e0t(v=vs.100).aspx
- FORCE_INLINE int _mm_comigt_ss(__m128 a, __m128 b)
- {
- // return vgetq_lane_u32(vcgtq_f32(vreinterpretq_f32_m128(a),
- // vreinterpretq_f32_m128(b)), 0);
- uint32x4_t a_not_nan =
- vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a));
- uint32x4_t b_not_nan =
- vceqq_f32(vreinterpretq_f32_m128(b), vreinterpretq_f32_m128(b));
- uint32x4_t a_and_b_not_nan = vandq_u32(a_not_nan, b_not_nan);
- uint32x4_t a_gt_b =
- vcgtq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b));
- return (vgetq_lane_u32(vandq_u32(a_and_b_not_nan, a_gt_b), 0) != 0) ? 1 : 0;
- }
- // Compares the lower single-precision floating point scalar values of a and b
- // using a less than or equal operation. :
- // https://msdn.microsoft.com/en-us/library/1w4t7c57(v=vs.90).aspx
- FORCE_INLINE int _mm_comile_ss(__m128 a, __m128 b)
- {
- // return vgetq_lane_u32(vcleq_f32(vreinterpretq_f32_m128(a),
- // vreinterpretq_f32_m128(b)), 0);
- uint32x4_t a_not_nan =
- vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a));
- uint32x4_t b_not_nan =
- vceqq_f32(vreinterpretq_f32_m128(b), vreinterpretq_f32_m128(b));
- uint32x4_t a_and_b_not_nan = vandq_u32(a_not_nan, b_not_nan);
- uint32x4_t a_le_b =
- vcleq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b));
- return (vgetq_lane_u32(vandq_u32(a_and_b_not_nan, a_le_b), 0) != 0) ? 1 : 0;
- }
- // Compares the lower single-precision floating point scalar values of a and b
- // using a greater than or equal operation. :
- // https://msdn.microsoft.com/en-us/library/8t80des6(v=vs.100).aspx
- FORCE_INLINE int _mm_comige_ss(__m128 a, __m128 b)
- {
- // return vgetq_lane_u32(vcgeq_f32(vreinterpretq_f32_m128(a),
- // vreinterpretq_f32_m128(b)), 0);
- uint32x4_t a_not_nan =
- vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a));
- uint32x4_t b_not_nan =
- vceqq_f32(vreinterpretq_f32_m128(b), vreinterpretq_f32_m128(b));
- uint32x4_t a_and_b_not_nan = vandq_u32(a_not_nan, b_not_nan);
- uint32x4_t a_ge_b =
- vcgeq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b));
- return (vgetq_lane_u32(vandq_u32(a_and_b_not_nan, a_ge_b), 0) != 0) ? 1 : 0;
- }
- // Compares the lower single-precision floating point scalar values of a and b
- // using an equality operation. :
- // https://msdn.microsoft.com/en-us/library/93yx2h2b(v=vs.100).aspx
- FORCE_INLINE int _mm_comieq_ss(__m128 a, __m128 b)
- {
- // return vgetq_lane_u32(vceqq_f32(vreinterpretq_f32_m128(a),
- // vreinterpretq_f32_m128(b)), 0);
- uint32x4_t a_not_nan =
- vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a));
- uint32x4_t b_not_nan =
- vceqq_f32(vreinterpretq_f32_m128(b), vreinterpretq_f32_m128(b));
- uint32x4_t a_and_b_not_nan = vandq_u32(a_not_nan, b_not_nan);
- uint32x4_t a_eq_b =
- vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b));
- return (vgetq_lane_u32(vandq_u32(a_and_b_not_nan, a_eq_b), 0) != 0) ? 1 : 0;
- }
- // Compares the lower single-precision floating point scalar values of a and b
- // using an inequality operation. :
- // https://msdn.microsoft.com/en-us/library/bafh5e0a(v=vs.90).aspx
- FORCE_INLINE int _mm_comineq_ss(__m128 a, __m128 b)
- {
- // return !vgetq_lane_u32(vceqq_f32(vreinterpretq_f32_m128(a),
- // vreinterpretq_f32_m128(b)), 0);
- uint32x4_t a_not_nan =
- vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a));
- uint32x4_t b_not_nan =
- vceqq_f32(vreinterpretq_f32_m128(b), vreinterpretq_f32_m128(b));
- uint32x4_t a_or_b_nan = vmvnq_u32(vandq_u32(a_not_nan, b_not_nan));
- uint32x4_t a_neq_b = vmvnq_u32(
- vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)));
- return (vgetq_lane_u32(vorrq_u32(a_or_b_nan, a_neq_b), 0) != 0) ? 1 : 0;
- }
- // according to the documentation, these intrinsics behave the same as the
- // non-'u' versions. We'll just alias them here.
- #define _mm_ucomieq_ss _mm_comieq_ss
- #define _mm_ucomige_ss _mm_comige_ss
- #define _mm_ucomigt_ss _mm_comigt_ss
- #define _mm_ucomile_ss _mm_comile_ss
- #define _mm_ucomilt_ss _mm_comilt_ss
- #define _mm_ucomineq_ss _mm_comineq_ss
- /* Conversions */
- // Convert packed signed 32-bit integers in b to packed single-precision
- // (32-bit) floating-point elements, store the results in the lower 2 elements
- // of dst, and copy the upper 2 packed elements from a to the upper elements of
- // dst.
- //
- // dst[31:0] := Convert_Int32_To_FP32(b[31:0])
- // dst[63:32] := Convert_Int32_To_FP32(b[63:32])
- // dst[95:64] := a[95:64]
- // dst[127:96] := a[127:96]
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvt_pi2ps
- FORCE_INLINE __m128 _mm_cvt_pi2ps(__m128 a, __m64 b)
- {
- return vreinterpretq_m128_f32(
- vcombine_f32(vcvt_f32_s32(vreinterpret_s32_m64(b)),
- vget_high_f32(vreinterpretq_f32_m128(a))));
- }
- // Convert the signed 32-bit integer b to a single-precision (32-bit)
- // floating-point element, store the result in the lower element of dst, and
- // copy the upper 3 packed elements from a to the upper elements of dst.
- //
- // dst[31:0] := Convert_Int32_To_FP32(b[31:0])
- // dst[127:32] := a[127:32]
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvt_si2ss
- FORCE_INLINE __m128 _mm_cvt_si2ss(__m128 a, int b)
- {
- return vreinterpretq_m128_f32(
- vsetq_lane_f32((float) b, vreinterpretq_f32_m128(a), 0));
- }
- // Convert the signed 32-bit integer b to a single-precision (32-bit)
- // floating-point element, store the result in the lower element of dst, and
- // copy the upper 3 packed elements from a to the upper elements of dst.
- //
- // dst[31:0] := Convert_Int32_To_FP32(b[31:0])
- // dst[127:32] := a[127:32]
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtsi32_ss
- #define _mm_cvtsi32_ss(a, b) _mm_cvt_si2ss(a, b)
- // Convert the signed 64-bit integer b to a single-precision (32-bit)
- // floating-point element, store the result in the lower element of dst, and
- // copy the upper 3 packed elements from a to the upper elements of dst.
- //
- // dst[31:0] := Convert_Int64_To_FP32(b[63:0])
- // dst[127:32] := a[127:32]
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtsi64_ss
- FORCE_INLINE __m128 _mm_cvtsi64_ss(__m128 a, int64_t b)
- {
- return vreinterpretq_m128_f32(
- vsetq_lane_f32((float) b, vreinterpretq_f32_m128(a), 0));
- }
- // Convert the lower single-precision (32-bit) floating-point element in a to a
- // 32-bit integer, and store the result in dst.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvt_ss2si
- FORCE_INLINE int _mm_cvt_ss2si(__m128 a)
- {
- #if defined(__aarch64__)
- return vgetq_lane_s32(vcvtnq_s32_f32(vreinterpretq_f32_m128(a)), 0);
- #else
- float32_t data = vgetq_lane_f32(vreinterpretq_f32_m128(a), 0);
- float32_t diff = data - floor(data);
- if (diff > 0.5)
- return (int32_t) ceil(data);
- if (unlikely(diff == 0.5)) {
- int32_t f = (int32_t) floor(data);
- int32_t c = (int32_t) ceil(data);
- return c & 1 ? f : c;
- }
- return (int32_t) floor(data);
- #endif
- }
- // Convert packed 16-bit integers in a to packed single-precision (32-bit)
- // floating-point elements, and store the results in dst.
- //
- // FOR j := 0 to 3
- // i := j*16
- // m := j*32
- // dst[m+31:m] := Convert_Int16_To_FP32(a[i+15:i])
- // ENDFOR
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtpi16_ps
- FORCE_INLINE __m128 _mm_cvtpi16_ps(__m64 a)
- {
- return vreinterpretq_m128_f32(
- vcvtq_f32_s32(vmovl_s16(vreinterpret_s16_m64(a))));
- }
- // Convert packed 32-bit integers in b to packed single-precision (32-bit)
- // floating-point elements, store the results in the lower 2 elements of dst,
- // and copy the upper 2 packed elements from a to the upper elements of dst.
- //
- // dst[31:0] := Convert_Int32_To_FP32(b[31:0])
- // dst[63:32] := Convert_Int32_To_FP32(b[63:32])
- // dst[95:64] := a[95:64]
- // dst[127:96] := a[127:96]
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtpi32_ps
- FORCE_INLINE __m128 _mm_cvtpi32_ps(__m128 a, __m64 b)
- {
- return vreinterpretq_m128_f32(
- vcombine_f32(vcvt_f32_s32(vreinterpret_s32_m64(b)),
- vget_high_f32(vreinterpretq_f32_m128(a))));
- }
- // Convert packed signed 32-bit integers in a to packed single-precision
- // (32-bit) floating-point elements, store the results in the lower 2 elements
- // of dst, then covert the packed signed 32-bit integers in b to
- // single-precision (32-bit) floating-point element, and store the results in
- // the upper 2 elements of dst.
- //
- // dst[31:0] := Convert_Int32_To_FP32(a[31:0])
- // dst[63:32] := Convert_Int32_To_FP32(a[63:32])
- // dst[95:64] := Convert_Int32_To_FP32(b[31:0])
- // dst[127:96] := Convert_Int32_To_FP32(b[63:32])
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtpi32x2_ps
- FORCE_INLINE __m128 _mm_cvtpi32x2_ps(__m64 a, __m64 b)
- {
- return vreinterpretq_m128_f32(vcvtq_f32_s32(
- vcombine_s32(vreinterpret_s32_m64(a), vreinterpret_s32_m64(b))));
- }
- // Convert the lower packed 8-bit integers in a to packed single-precision
- // (32-bit) floating-point elements, and store the results in dst.
- //
- // FOR j := 0 to 3
- // i := j*8
- // m := j*32
- // dst[m+31:m] := Convert_Int8_To_FP32(a[i+7:i])
- // ENDFOR
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtpi8_ps
- FORCE_INLINE __m128 _mm_cvtpi8_ps(__m64 a)
- {
- return vreinterpretq_m128_f32(vcvtq_f32_s32(
- vmovl_s16(vget_low_s16(vmovl_s8(vreinterpret_s8_m64(a))))));
- }
- // Convert packed unsigned 16-bit integers in a to packed single-precision
- // (32-bit) floating-point elements, and store the results in dst.
- //
- // FOR j := 0 to 3
- // i := j*16
- // m := j*32
- // dst[m+31:m] := Convert_UInt16_To_FP32(a[i+15:i])
- // ENDFOR
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtpu16_ps
- FORCE_INLINE __m128 _mm_cvtpu16_ps(__m64 a)
- {
- return vreinterpretq_m128_f32(
- vcvtq_f32_u32(vmovl_u16(vreinterpret_u16_m64(a))));
- }
- // Convert the lower packed unsigned 8-bit integers in a to packed
- // single-precision (32-bit) floating-point elements, and store the results in
- // dst.
- //
- // FOR j := 0 to 3
- // i := j*8
- // m := j*32
- // dst[m+31:m] := Convert_UInt8_To_FP32(a[i+7:i])
- // ENDFOR
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtpu8_ps
- FORCE_INLINE __m128 _mm_cvtpu8_ps(__m64 a)
- {
- return vreinterpretq_m128_f32(vcvtq_f32_u32(
- vmovl_u16(vget_low_u16(vmovl_u8(vreinterpret_u8_m64(a))))));
- }
- // Converts the four single-precision, floating-point values of a to signed
- // 32-bit integer values using truncate.
- // https://msdn.microsoft.com/en-us/library/vstudio/1h005y6x(v=vs.100).aspx
- FORCE_INLINE __m128i _mm_cvttps_epi32(__m128 a)
- {
- return vreinterpretq_m128i_s32(vcvtq_s32_f32(vreinterpretq_f32_m128(a)));
- }
- // Convert the lower double-precision (64-bit) floating-point element in a to a
- // 64-bit integer with truncation, and store the result in dst.
- //
- // dst[63:0] := Convert_FP64_To_Int64_Truncate(a[63:0])
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvttsd_si64
- FORCE_INLINE int64_t _mm_cvttsd_si64(__m128d a)
- {
- #if defined(__aarch64__)
- return vgetq_lane_s64(vcvtq_s64_f64(vreinterpretq_f64_m128d(a)), 0);
- #else
- double ret = *((double *) &a);
- return (int64_t) ret;
- #endif
- }
- // Convert the lower double-precision (64-bit) floating-point element in a to a
- // 64-bit integer with truncation, and store the result in dst.
- //
- // dst[63:0] := Convert_FP64_To_Int64_Truncate(a[63:0])
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvttsd_si64x
- #define _mm_cvttsd_si64x(a) _mm_cvttsd_si64(a)
- // Converts the four signed 32-bit integer values of a to single-precision,
- // floating-point values
- // https://msdn.microsoft.com/en-us/library/vstudio/36bwxcx5(v=vs.100).aspx
- FORCE_INLINE __m128 _mm_cvtepi32_ps(__m128i a)
- {
- return vreinterpretq_m128_f32(vcvtq_f32_s32(vreinterpretq_s32_m128i(a)));
- }
- // Converts the four unsigned 8-bit integers in the lower 16 bits to four
- // unsigned 32-bit integers.
- FORCE_INLINE __m128i _mm_cvtepu8_epi16(__m128i a)
- {
- uint8x16_t u8x16 = vreinterpretq_u8_m128i(a); /* xxxx xxxx xxxx DCBA */
- uint16x8_t u16x8 = vmovl_u8(vget_low_u8(u8x16)); /* 0x0x 0x0x 0D0C 0B0A */
- return vreinterpretq_m128i_u16(u16x8);
- }
- // Converts the four unsigned 8-bit integers in the lower 32 bits to four
- // unsigned 32-bit integers.
- // https://msdn.microsoft.com/en-us/library/bb531467%28v=vs.100%29.aspx
- FORCE_INLINE __m128i _mm_cvtepu8_epi32(__m128i a)
- {
- uint8x16_t u8x16 = vreinterpretq_u8_m128i(a); /* xxxx xxxx xxxx DCBA */
- uint16x8_t u16x8 = vmovl_u8(vget_low_u8(u8x16)); /* 0x0x 0x0x 0D0C 0B0A */
- uint32x4_t u32x4 = vmovl_u16(vget_low_u16(u16x8)); /* 000D 000C 000B 000A */
- return vreinterpretq_m128i_u32(u32x4);
- }
- // Converts the two unsigned 8-bit integers in the lower 16 bits to two
- // unsigned 64-bit integers.
- FORCE_INLINE __m128i _mm_cvtepu8_epi64(__m128i a)
- {
- uint8x16_t u8x16 = vreinterpretq_u8_m128i(a); /* xxxx xxxx xxxx xxBA */
- uint16x8_t u16x8 = vmovl_u8(vget_low_u8(u8x16)); /* 0x0x 0x0x 0x0x 0B0A */
- uint32x4_t u32x4 = vmovl_u16(vget_low_u16(u16x8)); /* 000x 000x 000B 000A */
- uint64x2_t u64x2 = vmovl_u32(vget_low_u32(u32x4)); /* 0000 000B 0000 000A */
- return vreinterpretq_m128i_u64(u64x2);
- }
- // Converts the four unsigned 8-bit integers in the lower 16 bits to four
- // unsigned 32-bit integers.
- FORCE_INLINE __m128i _mm_cvtepi8_epi16(__m128i a)
- {
- int8x16_t s8x16 = vreinterpretq_s8_m128i(a); /* xxxx xxxx xxxx DCBA */
- int16x8_t s16x8 = vmovl_s8(vget_low_s8(s8x16)); /* 0x0x 0x0x 0D0C 0B0A */
- return vreinterpretq_m128i_s16(s16x8);
- }
- // Converts the four unsigned 8-bit integers in the lower 32 bits to four
- // unsigned 32-bit integers.
- FORCE_INLINE __m128i _mm_cvtepi8_epi32(__m128i a)
- {
- int8x16_t s8x16 = vreinterpretq_s8_m128i(a); /* xxxx xxxx xxxx DCBA */
- int16x8_t s16x8 = vmovl_s8(vget_low_s8(s8x16)); /* 0x0x 0x0x 0D0C 0B0A */
- int32x4_t s32x4 = vmovl_s16(vget_low_s16(s16x8)); /* 000D 000C 000B 000A */
- return vreinterpretq_m128i_s32(s32x4);
- }
- // Converts the two signed 8-bit integers in the lower 32 bits to four
- // signed 64-bit integers.
- FORCE_INLINE __m128i _mm_cvtepi8_epi64(__m128i a)
- {
- int8x16_t s8x16 = vreinterpretq_s8_m128i(a); /* xxxx xxxx xxxx xxBA */
- int16x8_t s16x8 = vmovl_s8(vget_low_s8(s8x16)); /* 0x0x 0x0x 0x0x 0B0A */
- int32x4_t s32x4 = vmovl_s16(vget_low_s16(s16x8)); /* 000x 000x 000B 000A */
- int64x2_t s64x2 = vmovl_s32(vget_low_s32(s32x4)); /* 0000 000B 0000 000A */
- return vreinterpretq_m128i_s64(s64x2);
- }
- // Converts the four signed 16-bit integers in the lower 64 bits to four signed
- // 32-bit integers.
- FORCE_INLINE __m128i _mm_cvtepi16_epi32(__m128i a)
- {
- return vreinterpretq_m128i_s32(
- vmovl_s16(vget_low_s16(vreinterpretq_s16_m128i(a))));
- }
- // Converts the two signed 16-bit integers in the lower 32 bits two signed
- // 32-bit integers.
- FORCE_INLINE __m128i _mm_cvtepi16_epi64(__m128i a)
- {
- int16x8_t s16x8 = vreinterpretq_s16_m128i(a); /* xxxx xxxx xxxx 0B0A */
- int32x4_t s32x4 = vmovl_s16(vget_low_s16(s16x8)); /* 000x 000x 000B 000A */
- int64x2_t s64x2 = vmovl_s32(vget_low_s32(s32x4)); /* 0000 000B 0000 000A */
- return vreinterpretq_m128i_s64(s64x2);
- }
- // Converts the four unsigned 16-bit integers in the lower 64 bits to four
- // unsigned 32-bit integers.
- FORCE_INLINE __m128i _mm_cvtepu16_epi32(__m128i a)
- {
- return vreinterpretq_m128i_u32(
- vmovl_u16(vget_low_u16(vreinterpretq_u16_m128i(a))));
- }
- // Converts the two unsigned 16-bit integers in the lower 32 bits to two
- // unsigned 64-bit integers.
- FORCE_INLINE __m128i _mm_cvtepu16_epi64(__m128i a)
- {
- uint16x8_t u16x8 = vreinterpretq_u16_m128i(a); /* xxxx xxxx xxxx 0B0A */
- uint32x4_t u32x4 = vmovl_u16(vget_low_u16(u16x8)); /* 000x 000x 000B 000A */
- uint64x2_t u64x2 = vmovl_u32(vget_low_u32(u32x4)); /* 0000 000B 0000 000A */
- return vreinterpretq_m128i_u64(u64x2);
- }
- // Converts the two unsigned 32-bit integers in the lower 64 bits to two
- // unsigned 64-bit integers.
- FORCE_INLINE __m128i _mm_cvtepu32_epi64(__m128i a)
- {
- return vreinterpretq_m128i_u64(
- vmovl_u32(vget_low_u32(vreinterpretq_u32_m128i(a))));
- }
- // Converts the two signed 32-bit integers in the lower 64 bits to two signed
- // 64-bit integers.
- FORCE_INLINE __m128i _mm_cvtepi32_epi64(__m128i a)
- {
- return vreinterpretq_m128i_s64(
- vmovl_s32(vget_low_s32(vreinterpretq_s32_m128i(a))));
- }
- // Converts the four single-precision, floating-point values of a to signed
- // 32-bit integer values.
- //
- // r0 := (int) a0
- // r1 := (int) a1
- // r2 := (int) a2
- // r3 := (int) a3
- //
- // https://msdn.microsoft.com/en-us/library/vstudio/xdc42k5e(v=vs.100).aspx
- // *NOTE*. The default rounding mode on SSE is 'round to even', which ARMv7-A
- // does not support! It is supported on ARMv8-A however.
- FORCE_INLINE __m128i _mm_cvtps_epi32(__m128 a)
- {
- #if defined(__aarch64__)
- return vreinterpretq_m128i_s32(vcvtnq_s32_f32(a));
- #else
- uint32x4_t signmask = vdupq_n_u32(0x80000000);
- float32x4_t half = vbslq_f32(signmask, vreinterpretq_f32_m128(a),
- vdupq_n_f32(0.5f)); /* +/- 0.5 */
- int32x4_t r_normal = vcvtq_s32_f32(vaddq_f32(
- vreinterpretq_f32_m128(a), half)); /* round to integer: [a + 0.5]*/
- int32x4_t r_trunc =
- vcvtq_s32_f32(vreinterpretq_f32_m128(a)); /* truncate to integer: [a] */
- int32x4_t plusone = vreinterpretq_s32_u32(vshrq_n_u32(
- vreinterpretq_u32_s32(vnegq_s32(r_trunc)), 31)); /* 1 or 0 */
- int32x4_t r_even = vbicq_s32(vaddq_s32(r_trunc, plusone),
- vdupq_n_s32(1)); /* ([a] + {0,1}) & ~1 */
- float32x4_t delta = vsubq_f32(
- vreinterpretq_f32_m128(a),
- vcvtq_f32_s32(r_trunc)); /* compute delta: delta = (a - [a]) */
- uint32x4_t is_delta_half = vceqq_f32(delta, half); /* delta == +/- 0.5 */
- return vreinterpretq_m128i_s32(vbslq_s32(is_delta_half, r_even, r_normal));
- #endif
- }
- // Convert packed single-precision (32-bit) floating-point elements in a to
- // packed 16-bit integers, and store the results in dst. Note: this intrinsic
- // will generate 0x7FFF, rather than 0x8000, for input values between 0x7FFF and
- // 0x7FFFFFFF.
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtps_pi16
- FORCE_INLINE __m64 _mm_cvtps_pi16(__m128 a)
- {
- return vreinterpret_m64_s16(
- vmovn_s32(vreinterpretq_s32_m128i(_mm_cvtps_epi32(a))));
- }
- // Copy the lower 32-bit integer in a to dst.
- //
- // dst[31:0] := a[31:0]
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtsi128_si32
- FORCE_INLINE int _mm_cvtsi128_si32(__m128i a)
- {
- return vgetq_lane_s32(vreinterpretq_s32_m128i(a), 0);
- }
- // Copy the lower 64-bit integer in a to dst.
- //
- // dst[63:0] := a[63:0]
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtsi128_si64
- FORCE_INLINE int64_t _mm_cvtsi128_si64(__m128i a)
- {
- return vgetq_lane_s64(vreinterpretq_s64_m128i(a), 0);
- }
- // Copy the lower 64-bit integer in a to dst.
- //
- // dst[63:0] := a[63:0]
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtsi128_si64x
- #define _mm_cvtsi128_si64x(a) _mm_cvtsi128_si64(a)
- // Moves 32-bit integer a to the least significant 32 bits of an __m128 object,
- // zero extending the upper bits.
- //
- // r0 := a
- // r1 := 0x0
- // r2 := 0x0
- // r3 := 0x0
- //
- // https://msdn.microsoft.com/en-us/library/ct3539ha%28v=vs.90%29.aspx
- FORCE_INLINE __m128i _mm_cvtsi32_si128(int a)
- {
- return vreinterpretq_m128i_s32(vsetq_lane_s32(a, vdupq_n_s32(0), 0));
- }
- // Moves 64-bit integer a to the least significant 64 bits of an __m128 object,
- // zero extending the upper bits.
- //
- // r0 := a
- // r1 := 0x0
- FORCE_INLINE __m128i _mm_cvtsi64_si128(int64_t a)
- {
- return vreinterpretq_m128i_s64(vsetq_lane_s64(a, vdupq_n_s64(0), 0));
- }
- // Cast vector of type __m128 to type __m128d. This intrinsic is only used for
- // compilation and does not generate any instructions, thus it has zero latency.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_castps_pd
- FORCE_INLINE __m128d _mm_castps_pd(__m128 a)
- {
- return vreinterpretq_m128d_s32(vreinterpretq_s32_m128(a));
- }
- // Applies a type cast to reinterpret four 32-bit floating point values passed
- // in as a 128-bit parameter as packed 32-bit integers.
- // https://msdn.microsoft.com/en-us/library/bb514099.aspx
- FORCE_INLINE __m128i _mm_castps_si128(__m128 a)
- {
- return vreinterpretq_m128i_s32(vreinterpretq_s32_m128(a));
- }
- // Cast vector of type __m128i to type __m128d. This intrinsic is only used for
- // compilation and does not generate any instructions, thus it has zero latency.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_castsi128_pd
- FORCE_INLINE __m128d _mm_castsi128_pd(__m128i a)
- {
- #if defined(__aarch64__)
- return vreinterpretq_m128d_f64(vreinterpretq_f64_m128i(a));
- #else
- return vreinterpretq_m128d_f32(vreinterpretq_f32_m128i(a));
- #endif
- }
- // Applies a type cast to reinterpret four 32-bit integers passed in as a
- // 128-bit parameter as packed 32-bit floating point values.
- // https://msdn.microsoft.com/en-us/library/bb514029.aspx
- FORCE_INLINE __m128 _mm_castsi128_ps(__m128i a)
- {
- return vreinterpretq_m128_s32(vreinterpretq_s32_m128i(a));
- }
- // Loads 128-bit value. :
- // https://msdn.microsoft.com/en-us/library/atzzad1h(v=vs.80).aspx
- FORCE_INLINE __m128i _mm_load_si128(const __m128i *p)
- {
- return vreinterpretq_m128i_s32(vld1q_s32((const int32_t *) p));
- }
- // Load a double-precision (64-bit) floating-point element from memory into both
- // elements of dst.
- //
- // dst[63:0] := MEM[mem_addr+63:mem_addr]
- // dst[127:64] := MEM[mem_addr+63:mem_addr]
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_load1_pd
- FORCE_INLINE __m128d _mm_load1_pd(const double *p)
- {
- #if defined(__aarch64__)
- return vreinterpretq_m128d_f64(vld1q_dup_f64(p));
- #else
- return vreinterpretq_m128d_s64(vdupq_n_s64(*(const int64_t *) p));
- #endif
- }
- // Load a double-precision (64-bit) floating-point element from memory into both
- // elements of dst.
- //
- // dst[63:0] := MEM[mem_addr+63:mem_addr]
- // dst[127:64] := MEM[mem_addr+63:mem_addr]
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_load_pd1
- #define _mm_load_pd1 _mm_load1_pd
- // Load a double-precision (64-bit) floating-point element from memory into the
- // upper element of dst, and copy the lower element from a to dst. mem_addr does
- // not need to be aligned on any particular boundary.
- //
- // dst[63:0] := a[63:0]
- // dst[127:64] := MEM[mem_addr+63:mem_addr]
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_loadh_pd
- FORCE_INLINE __m128d _mm_loadh_pd(__m128d a, const double *p)
- {
- #if defined(__aarch64__)
- return vreinterpretq_m128d_f64(
- vcombine_f64(vget_low_f64(vreinterpretq_f64_m128d(a)), vld1_f64(p)));
- #else
- return vreinterpretq_m128d_f32(vcombine_f32(
- vget_low_f32(vreinterpretq_f32_m128d(a)), vld1_f32((const float *) p)));
- #endif
- }
- // Load a double-precision (64-bit) floating-point element from memory into both
- // elements of dst.
- //
- // dst[63:0] := MEM[mem_addr+63:mem_addr]
- // dst[127:64] := MEM[mem_addr+63:mem_addr]
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_load_pd1
- #define _mm_load_pd1 _mm_load1_pd
- // Load a double-precision (64-bit) floating-point element from memory into both
- // elements of dst.
- //
- // dst[63:0] := MEM[mem_addr+63:mem_addr]
- // dst[127:64] := MEM[mem_addr+63:mem_addr]
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_loaddup_pd
- #define _mm_loaddup_pd _mm_load1_pd
- // Loads 128-bit value. :
- // https://msdn.microsoft.com/zh-cn/library/f4k12ae8(v=vs.90).aspx
- FORCE_INLINE __m128i _mm_loadu_si128(const __m128i *p)
- {
- return vreinterpretq_m128i_s32(vld1q_s32((const int32_t *) p));
- }
- // Load unaligned 32-bit integer from memory into the first element of dst.
- //
- // dst[31:0] := MEM[mem_addr+31:mem_addr]
- // dst[MAX:32] := 0
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_loadu_si32
- FORCE_INLINE __m128i _mm_loadu_si32(const void *p)
- {
- return vreinterpretq_m128i_s32(
- vsetq_lane_s32(*(const int32_t *) p, vdupq_n_s32(0), 0));
- }
- // Convert packed double-precision (64-bit) floating-point elements in a to
- // packed single-precision (32-bit) floating-point elements, and store the
- // results in dst.
- //
- // FOR j := 0 to 1
- // i := 32*j
- // k := 64*j
- // dst[i+31:i] := Convert_FP64_To_FP32(a[k+64:k])
- // ENDFOR
- // dst[127:64] := 0
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtpd_ps
- FORCE_INLINE __m128 _mm_cvtpd_ps(__m128d a)
- {
- #if defined(__aarch64__)
- float32x2_t tmp = vcvt_f32_f64(vreinterpretq_f64_m128d(a));
- return vreinterpretq_m128_f32(vcombine_f32(tmp, vdup_n_f32(0)));
- #else
- float a0 = (float) ((double *) &a)[0];
- float a1 = (float) ((double *) &a)[1];
- return _mm_set_ps(0, 0, a1, a0);
- #endif
- }
- // Copy the lower double-precision (64-bit) floating-point element of a to dst.
- //
- // dst[63:0] := a[63:0]
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtsd_f64
- FORCE_INLINE double _mm_cvtsd_f64(__m128d a)
- {
- #if defined(__aarch64__)
- return (double) vgetq_lane_f64(vreinterpretq_f64_m128d(a), 0);
- #else
- return ((double *) &a)[0];
- #endif
- }
- // Convert packed single-precision (32-bit) floating-point elements in a to
- // packed double-precision (64-bit) floating-point elements, and store the
- // results in dst.
- //
- // FOR j := 0 to 1
- // i := 64*j
- // k := 32*j
- // dst[i+63:i] := Convert_FP32_To_FP64(a[k+31:k])
- // ENDFOR
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtps_pd
- FORCE_INLINE __m128d _mm_cvtps_pd(__m128 a)
- {
- #if defined(__aarch64__)
- return vreinterpretq_m128d_f64(
- vcvt_f64_f32(vget_low_f32(vreinterpretq_f32_m128(a))));
- #else
- double a0 = (double) vgetq_lane_f32(vreinterpretq_f32_m128(a), 0);
- double a1 = (double) vgetq_lane_f32(vreinterpretq_f32_m128(a), 1);
- return _mm_set_pd(a1, a0);
- #endif
- }
- // Cast vector of type __m128d to type __m128i. This intrinsic is only used for
- // compilation and does not generate any instructions, thus it has zero latency.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_castpd_si128
- FORCE_INLINE __m128i _mm_castpd_si128(__m128d a)
- {
- return vreinterpretq_m128i_s64(vreinterpretq_s64_m128d(a));
- }
- // Cast vector of type __m128d to type __m128. This intrinsic is only used for
- // compilation and does not generate any instructions, thus it has zero latency.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_castpd_ps
- FORCE_INLINE __m128 _mm_castpd_ps(__m128d a)
- {
- return vreinterpretq_m128_s64(vreinterpretq_s64_m128d(a));
- }
- // Blend packed single-precision (32-bit) floating-point elements from a and b
- // using mask, and store the results in dst.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_blendv_ps
- FORCE_INLINE __m128 _mm_blendv_ps(__m128 _a, __m128 _b, __m128 _mask)
- {
- // Use a signed shift right to create a mask with the sign bit
- uint32x4_t mask =
- vreinterpretq_u32_s32(vshrq_n_s32(vreinterpretq_s32_m128(_mask), 31));
- float32x4_t a = vreinterpretq_f32_m128(_a);
- float32x4_t b = vreinterpretq_f32_m128(_b);
- return vreinterpretq_m128_f32(vbslq_f32(mask, b, a));
- }
- // Blend packed single-precision (32-bit) floating-point elements from a and b
- // using mask, and store the results in dst.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_blend_ps
- FORCE_INLINE __m128 _mm_blend_ps(__m128 _a, __m128 _b, const char imm8)
- {
- const uint32_t ALIGN_STRUCT(16)
- data[4] = {((imm8) & (1 << 0)) ? UINT32_MAX : 0,
- ((imm8) & (1 << 1)) ? UINT32_MAX : 0,
- ((imm8) & (1 << 2)) ? UINT32_MAX : 0,
- ((imm8) & (1 << 3)) ? UINT32_MAX : 0};
- uint32x4_t mask = vld1q_u32(data);
- float32x4_t a = vreinterpretq_f32_m128(_a);
- float32x4_t b = vreinterpretq_f32_m128(_b);
- return vreinterpretq_m128_f32(vbslq_f32(mask, b, a));
- }
- // Blend packed double-precision (64-bit) floating-point elements from a and b
- // using mask, and store the results in dst.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_blendv_pd
- FORCE_INLINE __m128d _mm_blendv_pd(__m128d _a, __m128d _b, __m128d _mask)
- {
- uint64x2_t mask =
- vreinterpretq_u64_s64(vshrq_n_s64(vreinterpretq_s64_m128d(_mask), 63));
- #if defined(__aarch64__)
- float64x2_t a = vreinterpretq_f64_m128d(_a);
- float64x2_t b = vreinterpretq_f64_m128d(_b);
- return vreinterpretq_m128d_f64(vbslq_f64(mask, b, a));
- #else
- uint64x2_t a = vreinterpretq_u64_m128d(_a);
- uint64x2_t b = vreinterpretq_u64_m128d(_b);
- return vreinterpretq_m128d_u64(vbslq_u64(mask, b, a));
- #endif
- }
- typedef struct {
- uint16_t res0;
- uint8_t res1 : 6;
- uint8_t bit22 : 1;
- uint8_t bit23 : 1;
- uint8_t res2;
- #if defined(__aarch64__)
- uint32_t res3;
- #endif
- } fpcr_bitfield;
- // Macro: Set the rounding mode bits of the MXCSR control and status register to
- // the value in unsigned 32-bit integer a. The rounding mode may contain any of
- // the following flags: _MM_ROUND_NEAREST, _MM_ROUND_DOWN, _MM_ROUND_UP,
- // _MM_ROUND_TOWARD_ZERO
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_MM_SET_ROUNDING_MODE
- FORCE_INLINE void _MM_SET_ROUNDING_MODE(int rounding)
- {
- union {
- fpcr_bitfield field;
- #if defined(__aarch64__)
- uint64_t value;
- #else
- uint32_t value;
- #endif
- } r;
- #if defined(__aarch64__)
- asm volatile("mrs %0, FPCR" : "=r"(r.value)); /* read */
- #else
- asm volatile("vmrs %0, FPSCR" : "=r"(r.value)); /* read */
- #endif
- switch (rounding) {
- case _MM_ROUND_TOWARD_ZERO:
- r.field.bit22 = 1;
- r.field.bit23 = 1;
- break;
- case _MM_ROUND_DOWN:
- r.field.bit22 = 0;
- r.field.bit23 = 1;
- break;
- case _MM_ROUND_UP:
- r.field.bit22 = 1;
- r.field.bit23 = 0;
- break;
- default: //_MM_ROUND_NEAREST
- r.field.bit22 = 0;
- r.field.bit23 = 0;
- }
- #if defined(__aarch64__)
- asm volatile("msr FPCR, %0" ::"r"(r)); /* write */
- #else
- asm volatile("vmsr FPSCR, %0" ::"r"(r)); /* write */
- #endif
- }
- FORCE_INLINE void _mm_setcsr(unsigned int a)
- {
- _MM_SET_ROUNDING_MODE(a);
- }
- // Round the packed single-precision (32-bit) floating-point elements in a using
- // the rounding parameter, and store the results as packed single-precision
- // floating-point elements in dst.
- // software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_round_ps
- FORCE_INLINE __m128 _mm_round_ps(__m128 a, int rounding)
- {
- #if defined(__aarch64__)
- switch (rounding) {
- case (_MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC):
- return vreinterpretq_m128_f32(vrndnq_f32(vreinterpretq_f32_m128(a)));
- case (_MM_FROUND_TO_NEG_INF | _MM_FROUND_NO_EXC):
- return vreinterpretq_m128_f32(vrndmq_f32(vreinterpretq_f32_m128(a)));
- case (_MM_FROUND_TO_POS_INF | _MM_FROUND_NO_EXC):
- return vreinterpretq_m128_f32(vrndpq_f32(vreinterpretq_f32_m128(a)));
- case (_MM_FROUND_TO_ZERO | _MM_FROUND_NO_EXC):
- return vreinterpretq_m128_f32(vrndq_f32(vreinterpretq_f32_m128(a)));
- default: //_MM_FROUND_CUR_DIRECTION
- return vreinterpretq_m128_f32(vrndiq_f32(vreinterpretq_f32_m128(a)));
- }
- #else
- float *v_float = (float *) &a;
- __m128 zero, neg_inf, pos_inf;
- switch (rounding) {
- case (_MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC):
- return _mm_cvtepi32_ps(_mm_cvtps_epi32(a));
- case (_MM_FROUND_TO_NEG_INF | _MM_FROUND_NO_EXC):
- return (__m128){floorf(v_float[0]), floorf(v_float[1]),
- floorf(v_float[2]), floorf(v_float[3])};
- case (_MM_FROUND_TO_POS_INF | _MM_FROUND_NO_EXC):
- return (__m128){ceilf(v_float[0]), ceilf(v_float[1]), ceilf(v_float[2]),
- ceilf(v_float[3])};
- case (_MM_FROUND_TO_ZERO | _MM_FROUND_NO_EXC):
- zero = _mm_set_ps(0.0f, 0.0f, 0.0f, 0.0f);
- neg_inf = _mm_set_ps(floorf(v_float[0]), floorf(v_float[1]),
- floorf(v_float[2]), floorf(v_float[3]));
- pos_inf = _mm_set_ps(ceilf(v_float[0]), ceilf(v_float[1]),
- ceilf(v_float[2]), ceilf(v_float[3]));
- return _mm_blendv_ps(pos_inf, neg_inf, _mm_cmple_ps(a, zero));
- default: //_MM_FROUND_CUR_DIRECTION
- return (__m128){roundf(v_float[0]), roundf(v_float[1]),
- roundf(v_float[2]), roundf(v_float[3])};
- }
- #endif
- }
- // Convert packed single-precision (32-bit) floating-point elements in a to
- // packed 32-bit integers, and store the results in dst.
- //
- // FOR j := 0 to 1
- // i := 32*j
- // dst[i+31:i] := Convert_FP32_To_Int32(a[i+31:i])
- // ENDFOR
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvt_ps2pi
- FORCE_INLINE __m64 _mm_cvt_ps2pi(__m128 a)
- {
- #if defined(__aarch64__)
- return vreinterpret_m64_s32(
- vget_low_s32(vcvtnq_s32_f32(vreinterpretq_f32_m128(a))));
- #else
- return vreinterpret_m64_s32(
- vcvt_s32_f32(vget_low_f32(vreinterpretq_f32_m128(
- _mm_round_ps(a, _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC)))));
- #endif
- }
- // Convert packed single-precision (32-bit) floating-point elements in a to
- // packed 32-bit integers, and store the results in dst.
- //
- // FOR j := 0 to 1
- // i := 32*j
- // dst[i+31:i] := Convert_FP32_To_Int32(a[i+31:i])
- // ENDFOR
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtps_pi32
- #define _mm_cvtps_pi32(a) _mm_cvt_ps2pi(a)
- // Round the packed single-precision (32-bit) floating-point elements in a up to
- // an integer value, and store the results as packed single-precision
- // floating-point elements in dst.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_ceil_ps
- FORCE_INLINE __m128 _mm_ceil_ps(__m128 a)
- {
- return _mm_round_ps(a, _MM_FROUND_TO_POS_INF | _MM_FROUND_NO_EXC);
- }
- // Round the lower single-precision (32-bit) floating-point element in b up to
- // an integer value, store the result as a single-precision floating-point
- // element in the lower element of dst, and copy the upper 3 packed elements
- // from a to the upper elements of dst.
- //
- // dst[31:0] := CEIL(b[31:0])
- // dst[127:32] := a[127:32]
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_ceil_ss
- FORCE_INLINE __m128 _mm_ceil_ss(__m128 a, __m128 b)
- {
- return _mm_move_ss(
- a, _mm_round_ps(b, _MM_FROUND_TO_POS_INF | _MM_FROUND_NO_EXC));
- }
- // Round the packed single-precision (32-bit) floating-point elements in a down
- // to an integer value, and store the results as packed single-precision
- // floating-point elements in dst.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_floor_ps
- FORCE_INLINE __m128 _mm_floor_ps(__m128 a)
- {
- return _mm_round_ps(a, _MM_FROUND_TO_NEG_INF | _MM_FROUND_NO_EXC);
- }
- // Round the lower single-precision (32-bit) floating-point element in b down to
- // an integer value, store the result as a single-precision floating-point
- // element in the lower element of dst, and copy the upper 3 packed elements
- // from a to the upper elements of dst.
- //
- // dst[31:0] := FLOOR(b[31:0])
- // dst[127:32] := a[127:32]
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_floor_ss
- FORCE_INLINE __m128 _mm_floor_ss(__m128 a, __m128 b)
- {
- return _mm_move_ss(
- a, _mm_round_ps(b, _MM_FROUND_TO_NEG_INF | _MM_FROUND_NO_EXC));
- }
- // Load 128-bits of integer data from unaligned memory into dst. This intrinsic
- // may perform better than _mm_loadu_si128 when the data crosses a cache line
- // boundary.
- //
- // dst[127:0] := MEM[mem_addr+127:mem_addr]
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_lddqu_si128
- #define _mm_lddqu_si128 _mm_loadu_si128
- /* Miscellaneous Operations */
- // Shifts the 8 signed 16-bit integers in a right by count bits while shifting
- // in the sign bit.
- //
- // r0 := a0 >> count
- // r1 := a1 >> count
- // ...
- // r7 := a7 >> count
- //
- // https://msdn.microsoft.com/en-us/library/3c9997dk(v%3dvs.90).aspx
- FORCE_INLINE __m128i _mm_sra_epi16(__m128i a, __m128i count)
- {
- int64_t c = (int64_t) vget_low_s64((int64x2_t) count);
- if (unlikely(c > 15))
- return _mm_cmplt_epi16(a, _mm_setzero_si128());
- return vreinterpretq_m128i_s16(vshlq_s16((int16x8_t) a, vdupq_n_s16(-c)));
- }
- // Shifts the 4 signed 32-bit integers in a right by count bits while shifting
- // in the sign bit.
- //
- // r0 := a0 >> count
- // r1 := a1 >> count
- // r2 := a2 >> count
- // r3 := a3 >> count
- //
- // https://msdn.microsoft.com/en-us/library/ce40009e(v%3dvs.100).aspx
- FORCE_INLINE __m128i _mm_sra_epi32(__m128i a, __m128i count)
- {
- int64_t c = (int64_t) vget_low_s64((int64x2_t) count);
- if (unlikely(c > 31))
- return _mm_cmplt_epi32(a, _mm_setzero_si128());
- return vreinterpretq_m128i_s32(vshlq_s32((int32x4_t) a, vdupq_n_s32(-c)));
- }
- // Packs the 16 signed 16-bit integers from a and b into 8-bit integers and
- // saturates.
- // https://msdn.microsoft.com/en-us/library/k4y4f7w5%28v=vs.90%29.aspx
- FORCE_INLINE __m128i _mm_packs_epi16(__m128i a, __m128i b)
- {
- return vreinterpretq_m128i_s8(
- vcombine_s8(vqmovn_s16(vreinterpretq_s16_m128i(a)),
- vqmovn_s16(vreinterpretq_s16_m128i(b))));
- }
- // Packs the 16 signed 16 - bit integers from a and b into 8 - bit unsigned
- // integers and saturates.
- //
- // r0 := UnsignedSaturate(a0)
- // r1 := UnsignedSaturate(a1)
- // ...
- // r7 := UnsignedSaturate(a7)
- // r8 := UnsignedSaturate(b0)
- // r9 := UnsignedSaturate(b1)
- // ...
- // r15 := UnsignedSaturate(b7)
- //
- // https://msdn.microsoft.com/en-us/library/07ad1wx4(v=vs.100).aspx
- FORCE_INLINE __m128i _mm_packus_epi16(const __m128i a, const __m128i b)
- {
- return vreinterpretq_m128i_u8(
- vcombine_u8(vqmovun_s16(vreinterpretq_s16_m128i(a)),
- vqmovun_s16(vreinterpretq_s16_m128i(b))));
- }
- // Packs the 8 signed 32-bit integers from a and b into signed 16-bit integers
- // and saturates.
- //
- // r0 := SignedSaturate(a0)
- // r1 := SignedSaturate(a1)
- // r2 := SignedSaturate(a2)
- // r3 := SignedSaturate(a3)
- // r4 := SignedSaturate(b0)
- // r5 := SignedSaturate(b1)
- // r6 := SignedSaturate(b2)
- // r7 := SignedSaturate(b3)
- //
- // https://msdn.microsoft.com/en-us/library/393t56f9%28v=vs.90%29.aspx
- FORCE_INLINE __m128i _mm_packs_epi32(__m128i a, __m128i b)
- {
- return vreinterpretq_m128i_s16(
- vcombine_s16(vqmovn_s32(vreinterpretq_s32_m128i(a)),
- vqmovn_s32(vreinterpretq_s32_m128i(b))));
- }
- // Packs the 8 unsigned 32-bit integers from a and b into unsigned 16-bit
- // integers and saturates.
- //
- // r0 := UnsignedSaturate(a0)
- // r1 := UnsignedSaturate(a1)
- // r2 := UnsignedSaturate(a2)
- // r3 := UnsignedSaturate(a3)
- // r4 := UnsignedSaturate(b0)
- // r5 := UnsignedSaturate(b1)
- // r6 := UnsignedSaturate(b2)
- // r7 := UnsignedSaturate(b3)
- FORCE_INLINE __m128i _mm_packus_epi32(__m128i a, __m128i b)
- {
- return vreinterpretq_m128i_u16(
- vcombine_u16(vqmovun_s32(vreinterpretq_s32_m128i(a)),
- vqmovun_s32(vreinterpretq_s32_m128i(b))));
- }
- // Interleaves the lower 8 signed or unsigned 8-bit integers in a with the lower
- // 8 signed or unsigned 8-bit integers in b.
- //
- // r0 := a0
- // r1 := b0
- // r2 := a1
- // r3 := b1
- // ...
- // r14 := a7
- // r15 := b7
- //
- // https://msdn.microsoft.com/en-us/library/xf7k860c%28v=vs.90%29.aspx
- FORCE_INLINE __m128i _mm_unpacklo_epi8(__m128i a, __m128i b)
- {
- #if defined(__aarch64__)
- return vreinterpretq_m128i_s8(
- vzip1q_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b)));
- #else
- int8x8_t a1 = vreinterpret_s8_s16(vget_low_s16(vreinterpretq_s16_m128i(a)));
- int8x8_t b1 = vreinterpret_s8_s16(vget_low_s16(vreinterpretq_s16_m128i(b)));
- int8x8x2_t result = vzip_s8(a1, b1);
- return vreinterpretq_m128i_s8(vcombine_s8(result.val[0], result.val[1]));
- #endif
- }
- // Interleaves the lower 4 signed or unsigned 16-bit integers in a with the
- // lower 4 signed or unsigned 16-bit integers in b.
- //
- // r0 := a0
- // r1 := b0
- // r2 := a1
- // r3 := b1
- // r4 := a2
- // r5 := b2
- // r6 := a3
- // r7 := b3
- //
- // https://msdn.microsoft.com/en-us/library/btxb17bw%28v=vs.90%29.aspx
- FORCE_INLINE __m128i _mm_unpacklo_epi16(__m128i a, __m128i b)
- {
- #if defined(__aarch64__)
- return vreinterpretq_m128i_s16(
- vzip1q_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b)));
- #else
- int16x4_t a1 = vget_low_s16(vreinterpretq_s16_m128i(a));
- int16x4_t b1 = vget_low_s16(vreinterpretq_s16_m128i(b));
- int16x4x2_t result = vzip_s16(a1, b1);
- return vreinterpretq_m128i_s16(vcombine_s16(result.val[0], result.val[1]));
- #endif
- }
- // Interleaves the lower 2 signed or unsigned 32 - bit integers in a with the
- // lower 2 signed or unsigned 32 - bit integers in b.
- //
- // r0 := a0
- // r1 := b0
- // r2 := a1
- // r3 := b1
- //
- // https://msdn.microsoft.com/en-us/library/x8atst9d(v=vs.100).aspx
- FORCE_INLINE __m128i _mm_unpacklo_epi32(__m128i a, __m128i b)
- {
- #if defined(__aarch64__)
- return vreinterpretq_m128i_s32(
- vzip1q_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b)));
- #else
- int32x2_t a1 = vget_low_s32(vreinterpretq_s32_m128i(a));
- int32x2_t b1 = vget_low_s32(vreinterpretq_s32_m128i(b));
- int32x2x2_t result = vzip_s32(a1, b1);
- return vreinterpretq_m128i_s32(vcombine_s32(result.val[0], result.val[1]));
- #endif
- }
- FORCE_INLINE __m128i _mm_unpacklo_epi64(__m128i a, __m128i b)
- {
- int64x1_t a_l = vget_low_s64(vreinterpretq_s64_m128i(a));
- int64x1_t b_l = vget_low_s64(vreinterpretq_s64_m128i(b));
- return vreinterpretq_m128i_s64(vcombine_s64(a_l, b_l));
- }
- // Selects and interleaves the lower two single-precision, floating-point values
- // from a and b.
- //
- // r0 := a0
- // r1 := b0
- // r2 := a1
- // r3 := b1
- //
- // https://msdn.microsoft.com/en-us/library/25st103b%28v=vs.90%29.aspx
- FORCE_INLINE __m128 _mm_unpacklo_ps(__m128 a, __m128 b)
- {
- #if defined(__aarch64__)
- return vreinterpretq_m128_f32(
- vzip1q_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)));
- #else
- float32x2_t a1 = vget_low_f32(vreinterpretq_f32_m128(a));
- float32x2_t b1 = vget_low_f32(vreinterpretq_f32_m128(b));
- float32x2x2_t result = vzip_f32(a1, b1);
- return vreinterpretq_m128_f32(vcombine_f32(result.val[0], result.val[1]));
- #endif
- }
- // Unpack and interleave double-precision (64-bit) floating-point elements from
- // the low half of a and b, and store the results in dst.
- //
- // DEFINE INTERLEAVE_QWORDS(src1[127:0], src2[127:0]) {
- // dst[63:0] := src1[63:0]
- // dst[127:64] := src2[63:0]
- // RETURN dst[127:0]
- // }
- // dst[127:0] := INTERLEAVE_QWORDS(a[127:0], b[127:0])
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_unpacklo_pd
- FORCE_INLINE __m128d _mm_unpacklo_pd(__m128d a, __m128d b)
- {
- #if defined(__aarch64__)
- return vreinterpretq_m128d_f64(
- vzip1q_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)));
- #else
- return vreinterpretq_m128d_s64(
- vcombine_s64(vget_low_s64(vreinterpretq_s64_m128d(a)),
- vget_low_s64(vreinterpretq_s64_m128d(b))));
- #endif
- }
- // Unpack and interleave double-precision (64-bit) floating-point elements from
- // the high half of a and b, and store the results in dst.
- //
- // DEFINE INTERLEAVE_HIGH_QWORDS(src1[127:0], src2[127:0]) {
- // dst[63:0] := src1[127:64]
- // dst[127:64] := src2[127:64]
- // RETURN dst[127:0]
- // }
- // dst[127:0] := INTERLEAVE_HIGH_QWORDS(a[127:0], b[127:0])
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_unpackhi_pd
- FORCE_INLINE __m128d _mm_unpackhi_pd(__m128d a, __m128d b)
- {
- #if defined(__aarch64__)
- return vreinterpretq_m128d_f64(
- vzip2q_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)));
- #else
- return vreinterpretq_m128d_s64(
- vcombine_s64(vget_high_s64(vreinterpretq_s64_m128d(a)),
- vget_high_s64(vreinterpretq_s64_m128d(b))));
- #endif
- }
- // Selects and interleaves the upper two single-precision, floating-point values
- // from a and b.
- //
- // r0 := a2
- // r1 := b2
- // r2 := a3
- // r3 := b3
- //
- // https://msdn.microsoft.com/en-us/library/skccxx7d%28v=vs.90%29.aspx
- FORCE_INLINE __m128 _mm_unpackhi_ps(__m128 a, __m128 b)
- {
- #if defined(__aarch64__)
- return vreinterpretq_m128_f32(
- vzip2q_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)));
- #else
- float32x2_t a1 = vget_high_f32(vreinterpretq_f32_m128(a));
- float32x2_t b1 = vget_high_f32(vreinterpretq_f32_m128(b));
- float32x2x2_t result = vzip_f32(a1, b1);
- return vreinterpretq_m128_f32(vcombine_f32(result.val[0], result.val[1]));
- #endif
- }
- // Interleaves the upper 8 signed or unsigned 8-bit integers in a with the upper
- // 8 signed or unsigned 8-bit integers in b.
- //
- // r0 := a8
- // r1 := b8
- // r2 := a9
- // r3 := b9
- // ...
- // r14 := a15
- // r15 := b15
- //
- // https://msdn.microsoft.com/en-us/library/t5h7783k(v=vs.100).aspx
- FORCE_INLINE __m128i _mm_unpackhi_epi8(__m128i a, __m128i b)
- {
- #if defined(__aarch64__)
- return vreinterpretq_m128i_s8(
- vzip2q_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b)));
- #else
- int8x8_t a1 =
- vreinterpret_s8_s16(vget_high_s16(vreinterpretq_s16_m128i(a)));
- int8x8_t b1 =
- vreinterpret_s8_s16(vget_high_s16(vreinterpretq_s16_m128i(b)));
- int8x8x2_t result = vzip_s8(a1, b1);
- return vreinterpretq_m128i_s8(vcombine_s8(result.val[0], result.val[1]));
- #endif
- }
- // Interleaves the upper 4 signed or unsigned 16-bit integers in a with the
- // upper 4 signed or unsigned 16-bit integers in b.
- //
- // r0 := a4
- // r1 := b4
- // r2 := a5
- // r3 := b5
- // r4 := a6
- // r5 := b6
- // r6 := a7
- // r7 := b7
- //
- // https://msdn.microsoft.com/en-us/library/03196cz7(v=vs.100).aspx
- FORCE_INLINE __m128i _mm_unpackhi_epi16(__m128i a, __m128i b)
- {
- #if defined(__aarch64__)
- return vreinterpretq_m128i_s16(
- vzip2q_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b)));
- #else
- int16x4_t a1 = vget_high_s16(vreinterpretq_s16_m128i(a));
- int16x4_t b1 = vget_high_s16(vreinterpretq_s16_m128i(b));
- int16x4x2_t result = vzip_s16(a1, b1);
- return vreinterpretq_m128i_s16(vcombine_s16(result.val[0], result.val[1]));
- #endif
- }
- // Interleaves the upper 2 signed or unsigned 32-bit integers in a with the
- // upper 2 signed or unsigned 32-bit integers in b.
- // https://msdn.microsoft.com/en-us/library/65sa7cbs(v=vs.100).aspx
- FORCE_INLINE __m128i _mm_unpackhi_epi32(__m128i a, __m128i b)
- {
- #if defined(__aarch64__)
- return vreinterpretq_m128i_s32(
- vzip2q_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b)));
- #else
- int32x2_t a1 = vget_high_s32(vreinterpretq_s32_m128i(a));
- int32x2_t b1 = vget_high_s32(vreinterpretq_s32_m128i(b));
- int32x2x2_t result = vzip_s32(a1, b1);
- return vreinterpretq_m128i_s32(vcombine_s32(result.val[0], result.val[1]));
- #endif
- }
- // Interleaves the upper signed or unsigned 64-bit integer in a with the
- // upper signed or unsigned 64-bit integer in b.
- //
- // r0 := a1
- // r1 := b1
- FORCE_INLINE __m128i _mm_unpackhi_epi64(__m128i a, __m128i b)
- {
- int64x1_t a_h = vget_high_s64(vreinterpretq_s64_m128i(a));
- int64x1_t b_h = vget_high_s64(vreinterpretq_s64_m128i(b));
- return vreinterpretq_m128i_s64(vcombine_s64(a_h, b_h));
- }
- // Horizontally compute the minimum amongst the packed unsigned 16-bit integers
- // in a, store the minimum and index in dst, and zero the remaining bits in dst.
- //
- // index[2:0] := 0
- // min[15:0] := a[15:0]
- // FOR j := 0 to 7
- // i := j*16
- // IF a[i+15:i] < min[15:0]
- // index[2:0] := j
- // min[15:0] := a[i+15:i]
- // FI
- // ENDFOR
- // dst[15:0] := min[15:0]
- // dst[18:16] := index[2:0]
- // dst[127:19] := 0
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_minpos_epu16
- FORCE_INLINE __m128i _mm_minpos_epu16(__m128i a)
- {
- __m128i dst;
- uint16_t min, idx = 0;
- // Find the minimum value
- #if defined(__aarch64__)
- min = vminvq_u16(vreinterpretq_u16_m128i(a));
- #else
- __m64 tmp;
- tmp = vreinterpret_m64_u16(
- vmin_u16(vget_low_u16(vreinterpretq_u16_m128i(a)),
- vget_high_u16(vreinterpretq_u16_m128i(a))));
- tmp = vreinterpret_m64_u16(
- vpmin_u16(vreinterpret_u16_m64(tmp), vreinterpret_u16_m64(tmp)));
- tmp = vreinterpret_m64_u16(
- vpmin_u16(vreinterpret_u16_m64(tmp), vreinterpret_u16_m64(tmp)));
- min = vget_lane_u16(vreinterpret_u16_m64(tmp), 0);
- #endif
- // Get the index of the minimum value
- int i;
- for (i = 0; i < 8; i++) {
- if (min == vgetq_lane_u16(vreinterpretq_u16_m128i(a), 0)) {
- idx = (uint16_t) i;
- break;
- }
- a = _mm_srli_si128(a, 2);
- }
- // Generate result
- dst = _mm_setzero_si128();
- dst = vreinterpretq_m128i_u16(
- vsetq_lane_u16(min, vreinterpretq_u16_m128i(dst), 0));
- dst = vreinterpretq_m128i_u16(
- vsetq_lane_u16(idx, vreinterpretq_u16_m128i(dst), 1));
- return dst;
- }
- // Compute the bitwise AND of 128 bits (representing integer data) in a and b,
- // and set ZF to 1 if the result is zero, otherwise set ZF to 0. Compute the
- // bitwise NOT of a and then AND with b, and set CF to 1 if the result is zero,
- // otherwise set CF to 0. Return the CF value.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_testc_si128
- FORCE_INLINE int _mm_testc_si128(__m128i a, __m128i b)
- {
- int64x2_t s64 =
- vandq_s64(vreinterpretq_s64_s32(vmvnq_s32(vreinterpretq_s32_m128i(a))),
- vreinterpretq_s64_m128i(b));
- return !(vgetq_lane_s64(s64, 0) | vgetq_lane_s64(s64, 1));
- }
- // Compute the bitwise AND of 128 bits (representing integer data) in a and b,
- // and set ZF to 1 if the result is zero, otherwise set ZF to 0. Compute the
- // bitwise NOT of a and then AND with b, and set CF to 1 if the result is zero,
- // otherwise set CF to 0. Return the ZF value.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_testz_si128
- FORCE_INLINE int _mm_testz_si128(__m128i a, __m128i b)
- {
- int64x2_t s64 =
- vandq_s64(vreinterpretq_s64_m128i(a), vreinterpretq_s64_m128i(b));
- return !(vgetq_lane_s64(s64, 0) | vgetq_lane_s64(s64, 1));
- }
- // Extracts the selected signed or unsigned 8-bit integer from a and zero
- // extends.
- // FORCE_INLINE int _mm_extract_epi8(__m128i a, __constrange(0,16) int imm)
- #define _mm_extract_epi8(a, imm) vgetq_lane_u8(vreinterpretq_u8_m128i(a), (imm))
- // Inserts the least significant 8 bits of b into the selected 8-bit integer
- // of a.
- // FORCE_INLINE __m128i _mm_insert_epi8(__m128i a, int b,
- // __constrange(0,16) int imm)
- #define _mm_insert_epi8(a, b, imm) \
- __extension__({ \
- vreinterpretq_m128i_s8( \
- vsetq_lane_s8((b), vreinterpretq_s8_m128i(a), (imm))); \
- })
- // Extracts the selected signed or unsigned 16-bit integer from a and zero
- // extends.
- // https://msdn.microsoft.com/en-us/library/6dceta0c(v=vs.100).aspx
- // FORCE_INLINE int _mm_extract_epi16(__m128i a, __constrange(0,8) int imm)
- #define _mm_extract_epi16(a, imm) \
- vgetq_lane_u16(vreinterpretq_u16_m128i(a), (imm))
- // Inserts the least significant 16 bits of b into the selected 16-bit integer
- // of a.
- // https://msdn.microsoft.com/en-us/library/kaze8hz1%28v=vs.100%29.aspx
- // FORCE_INLINE __m128i _mm_insert_epi16(__m128i a, int b,
- // __constrange(0,8) int imm)
- #define _mm_insert_epi16(a, b, imm) \
- __extension__({ \
- vreinterpretq_m128i_s16( \
- vsetq_lane_s16((b), vreinterpretq_s16_m128i(a), (imm))); \
- })
- // Copy a to dst, and insert the 16-bit integer i into dst at the location
- // specified by imm8.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_insert_pi16
- #define _mm_insert_pi16(a, b, imm) \
- __extension__({ \
- vreinterpret_m64_s16( \
- vset_lane_s16((b), vreinterpret_s16_m64(a), (imm))); \
- })
- // Extracts the selected signed or unsigned 32-bit integer from a and zero
- // extends.
- // FORCE_INLINE int _mm_extract_epi32(__m128i a, __constrange(0,4) int imm)
- #define _mm_extract_epi32(a, imm) \
- vgetq_lane_s32(vreinterpretq_s32_m128i(a), (imm))
- // Extracts the selected single-precision (32-bit) floating-point from a.
- // FORCE_INLINE int _mm_extract_ps(__m128 a, __constrange(0,4) int imm)
- #define _mm_extract_ps(a, imm) vgetq_lane_s32(vreinterpretq_s32_m128(a), (imm))
- // Inserts the least significant 32 bits of b into the selected 32-bit integer
- // of a.
- // FORCE_INLINE __m128i _mm_insert_epi32(__m128i a, int b,
- // __constrange(0,4) int imm)
- #define _mm_insert_epi32(a, b, imm) \
- __extension__({ \
- vreinterpretq_m128i_s32( \
- vsetq_lane_s32((b), vreinterpretq_s32_m128i(a), (imm))); \
- })
- // Extracts the selected signed or unsigned 64-bit integer from a and zero
- // extends.
- // FORCE_INLINE __int64 _mm_extract_epi64(__m128i a, __constrange(0,2) int imm)
- #define _mm_extract_epi64(a, imm) \
- vgetq_lane_s64(vreinterpretq_s64_m128i(a), (imm))
- // Inserts the least significant 64 bits of b into the selected 64-bit integer
- // of a.
- // FORCE_INLINE __m128i _mm_insert_epi64(__m128i a, __int64 b,
- // __constrange(0,2) int imm)
- #define _mm_insert_epi64(a, b, imm) \
- __extension__({ \
- vreinterpretq_m128i_s64( \
- vsetq_lane_s64((b), vreinterpretq_s64_m128i(a), (imm))); \
- })
- // Count the number of bits set to 1 in unsigned 32-bit integer a, and
- // return that count in dst.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_popcnt_u32
- FORCE_INLINE int _mm_popcnt_u32(unsigned int a)
- {
- #if defined(__aarch64__)
- #if __has_builtin(__builtin_popcount)
- return __builtin_popcount(a);
- #else
- return (int) vaddlv_u8(vcnt_u8(vcreate_u8((uint64_t) a)));
- #endif
- #else
- uint32_t count = 0;
- uint8x8_t input_val, count8x8_val;
- uint16x4_t count16x4_val;
- uint32x2_t count32x2_val;
- input_val = vld1_u8((uint8_t *) &a);
- count8x8_val = vcnt_u8(input_val);
- count16x4_val = vpaddl_u8(count8x8_val);
- count32x2_val = vpaddl_u16(count16x4_val);
- vst1_u32(&count, count32x2_val);
- return count;
- #endif
- }
- // Count the number of bits set to 1 in unsigned 64-bit integer a, and
- // return that count in dst.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_popcnt_u64
- FORCE_INLINE int64_t _mm_popcnt_u64(uint64_t a)
- {
- #if defined(__aarch64__)
- #if __has_builtin(__builtin_popcountll)
- return __builtin_popcountll(a);
- #else
- return (int64_t) vaddlv_u8(vcnt_u8(vcreate_u8(a)));
- #endif
- #else
- uint64_t count = 0;
- uint8x8_t input_val, count8x8_val;
- uint16x4_t count16x4_val;
- uint32x2_t count32x2_val;
- uint64x1_t count64x1_val;
- input_val = vld1_u8((uint8_t *) &a);
- count8x8_val = vcnt_u8(input_val);
- count16x4_val = vpaddl_u8(count8x8_val);
- count32x2_val = vpaddl_u16(count16x4_val);
- count64x1_val = vpaddl_u32(count32x2_val);
- vst1_u64(&count, count64x1_val);
- return count;
- #endif
- }
- // Macro: Transpose the 4x4 matrix formed by the 4 rows of single-precision
- // (32-bit) floating-point elements in row0, row1, row2, and row3, and store the
- // transposed matrix in these vectors (row0 now contains column 0, etc.).
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=MM_TRANSPOSE4_PS
- #define _MM_TRANSPOSE4_PS(row0, row1, row2, row3) \
- do { \
- float32x4x2_t ROW01 = vtrnq_f32(row0, row1); \
- float32x4x2_t ROW23 = vtrnq_f32(row2, row3); \
- row0 = vcombine_f32(vget_low_f32(ROW01.val[0]), \
- vget_low_f32(ROW23.val[0])); \
- row1 = vcombine_f32(vget_low_f32(ROW01.val[1]), \
- vget_low_f32(ROW23.val[1])); \
- row2 = vcombine_f32(vget_high_f32(ROW01.val[0]), \
- vget_high_f32(ROW23.val[0])); \
- row3 = vcombine_f32(vget_high_f32(ROW01.val[1]), \
- vget_high_f32(ROW23.val[1])); \
- } while (0)
- /* Crypto Extensions */
- #if defined(__ARM_FEATURE_CRYPTO)
- // Wraps vmull_p64
- FORCE_INLINE uint64x2_t _sse2neon_vmull_p64(uint64x1_t _a, uint64x1_t _b)
- {
- poly64_t a = vget_lane_p64(vreinterpret_p64_u64(_a), 0);
- poly64_t b = vget_lane_p64(vreinterpret_p64_u64(_b), 0);
- return vreinterpretq_u64_p128(vmull_p64(a, b));
- }
- #else // ARMv7 polyfill
- // ARMv7/some A64 lacks vmull_p64, but it has vmull_p8.
- //
- // vmull_p8 calculates 8 8-bit->16-bit polynomial multiplies, but we need a
- // 64-bit->128-bit polynomial multiply.
- //
- // It needs some work and is somewhat slow, but it is still faster than all
- // known scalar methods.
- //
- // Algorithm adapted to C from
- // https://www.workofard.com/2017/07/ghash-for-low-end-cores/, which is adapted
- // from "Fast Software Polynomial Multiplication on ARM Processors Using the
- // NEON Engine" by Danilo Camara, Conrado Gouvea, Julio Lopez and Ricardo Dahab
- // (https://hal.inria.fr/hal-01506572)
- static uint64x2_t _sse2neon_vmull_p64(uint64x1_t _a, uint64x1_t _b)
- {
- poly8x8_t a = vreinterpret_p8_u64(_a);
- poly8x8_t b = vreinterpret_p8_u64(_b);
- // Masks
- uint8x16_t k48_32 = vcombine_u8(vcreate_u8(0x0000ffffffffffff),
- vcreate_u8(0x00000000ffffffff));
- uint8x16_t k16_00 = vcombine_u8(vcreate_u8(0x000000000000ffff),
- vcreate_u8(0x0000000000000000));
- // Do the multiplies, rotating with vext to get all combinations
- uint8x16_t d = vreinterpretq_u8_p16(vmull_p8(a, b)); // D = A0 * B0
- uint8x16_t e =
- vreinterpretq_u8_p16(vmull_p8(a, vext_p8(b, b, 1))); // E = A0 * B1
- uint8x16_t f =
- vreinterpretq_u8_p16(vmull_p8(vext_p8(a, a, 1), b)); // F = A1 * B0
- uint8x16_t g =
- vreinterpretq_u8_p16(vmull_p8(a, vext_p8(b, b, 2))); // G = A0 * B2
- uint8x16_t h =
- vreinterpretq_u8_p16(vmull_p8(vext_p8(a, a, 2), b)); // H = A2 * B0
- uint8x16_t i =
- vreinterpretq_u8_p16(vmull_p8(a, vext_p8(b, b, 3))); // I = A0 * B3
- uint8x16_t j =
- vreinterpretq_u8_p16(vmull_p8(vext_p8(a, a, 3), b)); // J = A3 * B0
- uint8x16_t k =
- vreinterpretq_u8_p16(vmull_p8(a, vext_p8(b, b, 4))); // L = A0 * B4
- // Add cross products
- uint8x16_t l = veorq_u8(e, f); // L = E + F
- uint8x16_t m = veorq_u8(g, h); // M = G + H
- uint8x16_t n = veorq_u8(i, j); // N = I + J
- // Interleave. Using vzip1 and vzip2 prevents Clang from emitting TBL
- // instructions.
- #if defined(__aarch64__)
- uint8x16_t lm_p0 = vreinterpretq_u8_u64(
- vzip1q_u64(vreinterpretq_u64_u8(l), vreinterpretq_u64_u8(m)));
- uint8x16_t lm_p1 = vreinterpretq_u8_u64(
- vzip2q_u64(vreinterpretq_u64_u8(l), vreinterpretq_u64_u8(m)));
- uint8x16_t nk_p0 = vreinterpretq_u8_u64(
- vzip1q_u64(vreinterpretq_u64_u8(n), vreinterpretq_u64_u8(k)));
- uint8x16_t nk_p1 = vreinterpretq_u8_u64(
- vzip2q_u64(vreinterpretq_u64_u8(n), vreinterpretq_u64_u8(k)));
- #else
- uint8x16_t lm_p0 = vcombine_u8(vget_low_u8(l), vget_low_u8(m));
- uint8x16_t lm_p1 = vcombine_u8(vget_high_u8(l), vget_high_u8(m));
- uint8x16_t nk_p0 = vcombine_u8(vget_low_u8(n), vget_low_u8(k));
- uint8x16_t nk_p1 = vcombine_u8(vget_high_u8(n), vget_high_u8(k));
- #endif
- // t0 = (L) (P0 + P1) << 8
- // t1 = (M) (P2 + P3) << 16
- uint8x16_t t0t1_tmp = veorq_u8(lm_p0, lm_p1);
- uint8x16_t t0t1_h = vandq_u8(lm_p1, k48_32);
- uint8x16_t t0t1_l = veorq_u8(t0t1_tmp, t0t1_h);
- // t2 = (N) (P4 + P5) << 24
- // t3 = (K) (P6 + P7) << 32
- uint8x16_t t2t3_tmp = veorq_u8(nk_p0, nk_p1);
- uint8x16_t t2t3_h = vandq_u8(nk_p1, k16_00);
- uint8x16_t t2t3_l = veorq_u8(t2t3_tmp, t2t3_h);
- // De-interleave
- #if defined(__aarch64__)
- uint8x16_t t0 = vreinterpretq_u8_u64(
- vuzp1q_u64(vreinterpretq_u64_u8(t0t1_l), vreinterpretq_u64_u8(t0t1_h)));
- uint8x16_t t1 = vreinterpretq_u8_u64(
- vuzp2q_u64(vreinterpretq_u64_u8(t0t1_l), vreinterpretq_u64_u8(t0t1_h)));
- uint8x16_t t2 = vreinterpretq_u8_u64(
- vuzp1q_u64(vreinterpretq_u64_u8(t2t3_l), vreinterpretq_u64_u8(t2t3_h)));
- uint8x16_t t3 = vreinterpretq_u8_u64(
- vuzp2q_u64(vreinterpretq_u64_u8(t2t3_l), vreinterpretq_u64_u8(t2t3_h)));
- #else
- uint8x16_t t1 = vcombine_u8(vget_high_u8(t0t1_l), vget_high_u8(t0t1_h));
- uint8x16_t t0 = vcombine_u8(vget_low_u8(t0t1_l), vget_low_u8(t0t1_h));
- uint8x16_t t3 = vcombine_u8(vget_high_u8(t2t3_l), vget_high_u8(t2t3_h));
- uint8x16_t t2 = vcombine_u8(vget_low_u8(t2t3_l), vget_low_u8(t2t3_h));
- #endif
- // Shift the cross products
- uint8x16_t t0_shift = vextq_u8(t0, t0, 15); // t0 << 8
- uint8x16_t t1_shift = vextq_u8(t1, t1, 14); // t1 << 16
- uint8x16_t t2_shift = vextq_u8(t2, t2, 13); // t2 << 24
- uint8x16_t t3_shift = vextq_u8(t3, t3, 12); // t3 << 32
- // Accumulate the products
- uint8x16_t cross1 = veorq_u8(t0_shift, t1_shift);
- uint8x16_t cross2 = veorq_u8(t2_shift, t3_shift);
- uint8x16_t mix = veorq_u8(d, cross1);
- uint8x16_t r = veorq_u8(mix, cross2);
- return vreinterpretq_u64_u8(r);
- }
- #endif // ARMv7 polyfill
- // Perform a carry-less multiplication of two 64-bit integers, selected from a
- // and b according to imm8, and store the results in dst.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_clmulepi64_si128
- FORCE_INLINE __m128i _mm_clmulepi64_si128(__m128i _a, __m128i _b, const int imm)
- {
- uint64x2_t a = vreinterpretq_u64_m128i(_a);
- uint64x2_t b = vreinterpretq_u64_m128i(_b);
- switch (imm & 0x11) {
- case 0x00:
- return vreinterpretq_m128i_u64(
- _sse2neon_vmull_p64(vget_low_u64(a), vget_low_u64(b)));
- case 0x01:
- return vreinterpretq_m128i_u64(
- _sse2neon_vmull_p64(vget_high_u64(a), vget_low_u64(b)));
- case 0x10:
- return vreinterpretq_m128i_u64(
- _sse2neon_vmull_p64(vget_low_u64(a), vget_high_u64(b)));
- case 0x11:
- return vreinterpretq_m128i_u64(
- _sse2neon_vmull_p64(vget_high_u64(a), vget_high_u64(b)));
- default:
- abort();
- }
- }
- #if !defined(__ARM_FEATURE_CRYPTO)
- /* clang-format off */
- #define SSE2NEON_AES_DATA(w) \
- { \
- w(0x63), w(0x7c), w(0x77), w(0x7b), w(0xf2), w(0x6b), w(0x6f), \
- w(0xc5), w(0x30), w(0x01), w(0x67), w(0x2b), w(0xfe), w(0xd7), \
- w(0xab), w(0x76), w(0xca), w(0x82), w(0xc9), w(0x7d), w(0xfa), \
- w(0x59), w(0x47), w(0xf0), w(0xad), w(0xd4), w(0xa2), w(0xaf), \
- w(0x9c), w(0xa4), w(0x72), w(0xc0), w(0xb7), w(0xfd), w(0x93), \
- w(0x26), w(0x36), w(0x3f), w(0xf7), w(0xcc), w(0x34), w(0xa5), \
- w(0xe5), w(0xf1), w(0x71), w(0xd8), w(0x31), w(0x15), w(0x04), \
- w(0xc7), w(0x23), w(0xc3), w(0x18), w(0x96), w(0x05), w(0x9a), \
- w(0x07), w(0x12), w(0x80), w(0xe2), w(0xeb), w(0x27), w(0xb2), \
- w(0x75), w(0x09), w(0x83), w(0x2c), w(0x1a), w(0x1b), w(0x6e), \
- w(0x5a), w(0xa0), w(0x52), w(0x3b), w(0xd6), w(0xb3), w(0x29), \
- w(0xe3), w(0x2f), w(0x84), w(0x53), w(0xd1), w(0x00), w(0xed), \
- w(0x20), w(0xfc), w(0xb1), w(0x5b), w(0x6a), w(0xcb), w(0xbe), \
- w(0x39), w(0x4a), w(0x4c), w(0x58), w(0xcf), w(0xd0), w(0xef), \
- w(0xaa), w(0xfb), w(0x43), w(0x4d), w(0x33), w(0x85), w(0x45), \
- w(0xf9), w(0x02), w(0x7f), w(0x50), w(0x3c), w(0x9f), w(0xa8), \
- w(0x51), w(0xa3), w(0x40), w(0x8f), w(0x92), w(0x9d), w(0x38), \
- w(0xf5), w(0xbc), w(0xb6), w(0xda), w(0x21), w(0x10), w(0xff), \
- w(0xf3), w(0xd2), w(0xcd), w(0x0c), w(0x13), w(0xec), w(0x5f), \
- w(0x97), w(0x44), w(0x17), w(0xc4), w(0xa7), w(0x7e), w(0x3d), \
- w(0x64), w(0x5d), w(0x19), w(0x73), w(0x60), w(0x81), w(0x4f), \
- w(0xdc), w(0x22), w(0x2a), w(0x90), w(0x88), w(0x46), w(0xee), \
- w(0xb8), w(0x14), w(0xde), w(0x5e), w(0x0b), w(0xdb), w(0xe0), \
- w(0x32), w(0x3a), w(0x0a), w(0x49), w(0x06), w(0x24), w(0x5c), \
- w(0xc2), w(0xd3), w(0xac), w(0x62), w(0x91), w(0x95), w(0xe4), \
- w(0x79), w(0xe7), w(0xc8), w(0x37), w(0x6d), w(0x8d), w(0xd5), \
- w(0x4e), w(0xa9), w(0x6c), w(0x56), w(0xf4), w(0xea), w(0x65), \
- w(0x7a), w(0xae), w(0x08), w(0xba), w(0x78), w(0x25), w(0x2e), \
- w(0x1c), w(0xa6), w(0xb4), w(0xc6), w(0xe8), w(0xdd), w(0x74), \
- w(0x1f), w(0x4b), w(0xbd), w(0x8b), w(0x8a), w(0x70), w(0x3e), \
- w(0xb5), w(0x66), w(0x48), w(0x03), w(0xf6), w(0x0e), w(0x61), \
- w(0x35), w(0x57), w(0xb9), w(0x86), w(0xc1), w(0x1d), w(0x9e), \
- w(0xe1), w(0xf8), w(0x98), w(0x11), w(0x69), w(0xd9), w(0x8e), \
- w(0x94), w(0x9b), w(0x1e), w(0x87), w(0xe9), w(0xce), w(0x55), \
- w(0x28), w(0xdf), w(0x8c), w(0xa1), w(0x89), w(0x0d), w(0xbf), \
- w(0xe6), w(0x42), w(0x68), w(0x41), w(0x99), w(0x2d), w(0x0f), \
- w(0xb0), w(0x54), w(0xbb), w(0x16) \
- }
- /* clang-format on */
- /* X Macro trick. See https://en.wikipedia.org/wiki/X_Macro */
- #define SSE2NEON_AES_H0(x) (x)
- static const uint8_t SSE2NEON_sbox[256] = SSE2NEON_AES_DATA(SSE2NEON_AES_H0);
- #undef SSE2NEON_AES_H0
- // In the absence of crypto extensions, implement aesenc using regular neon
- // intrinsics instead. See:
- // https://www.workofard.com/2017/01/accelerated-aes-for-the-arm64-linux-kernel/
- // https://www.workofard.com/2017/07/ghash-for-low-end-cores/ and
- // https://github.com/ColinIanKing/linux-next-mirror/blob/b5f466091e130caaf0735976648f72bd5e09aa84/crypto/aegis128-neon-inner.c#L52
- // for more information Reproduced with permission of the author.
- FORCE_INLINE __m128i _mm_aesenc_si128(__m128i EncBlock, __m128i RoundKey)
- {
- #if defined(__aarch64__)
- static const uint8_t shift_rows[] = {0x0, 0x5, 0xa, 0xf, 0x4, 0x9,
- 0xe, 0x3, 0x8, 0xd, 0x2, 0x7,
- 0xc, 0x1, 0x6, 0xb};
- static const uint8_t ror32by8[] = {0x1, 0x2, 0x3, 0x0, 0x5, 0x6, 0x7, 0x4,
- 0x9, 0xa, 0xb, 0x8, 0xd, 0xe, 0xf, 0xc};
- uint8x16_t v;
- uint8x16_t w = vreinterpretq_u8_m128i(EncBlock);
- // shift rows
- w = vqtbl1q_u8(w, vld1q_u8(shift_rows));
- // sub bytes
- v = vqtbl4q_u8(_sse2neon_vld1q_u8_x4(SSE2NEON_sbox), w);
- v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(SSE2NEON_sbox + 0x40), w - 0x40);
- v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(SSE2NEON_sbox + 0x80), w - 0x80);
- v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(SSE2NEON_sbox + 0xc0), w - 0xc0);
- // mix columns
- w = (v << 1) ^ (uint8x16_t)(((int8x16_t) v >> 7) & 0x1b);
- w ^= (uint8x16_t) vrev32q_u16((uint16x8_t) v);
- w ^= vqtbl1q_u8(v ^ w, vld1q_u8(ror32by8));
- // add round key
- return vreinterpretq_m128i_u8(w) ^ RoundKey;
- #else /* ARMv7-A NEON implementation */
- #define SSE2NEON_AES_B2W(b0, b1, b2, b3) \
- (((uint32_t)(b3) << 24) | ((uint32_t)(b2) << 16) | ((uint32_t)(b1) << 8) | \
- (b0))
- #define SSE2NEON_AES_F2(x) ((x << 1) ^ (((x >> 7) & 1) * 0x011b /* WPOLY */))
- #define SSE2NEON_AES_F3(x) (SSE2NEON_AES_F2(x) ^ x)
- #define SSE2NEON_AES_U0(p) \
- SSE2NEON_AES_B2W(SSE2NEON_AES_F2(p), p, p, SSE2NEON_AES_F3(p))
- #define SSE2NEON_AES_U1(p) \
- SSE2NEON_AES_B2W(SSE2NEON_AES_F3(p), SSE2NEON_AES_F2(p), p, p)
- #define SSE2NEON_AES_U2(p) \
- SSE2NEON_AES_B2W(p, SSE2NEON_AES_F3(p), SSE2NEON_AES_F2(p), p)
- #define SSE2NEON_AES_U3(p) \
- SSE2NEON_AES_B2W(p, p, SSE2NEON_AES_F3(p), SSE2NEON_AES_F2(p))
- static const uint32_t ALIGN_STRUCT(16) aes_table[4][256] = {
- SSE2NEON_AES_DATA(SSE2NEON_AES_U0),
- SSE2NEON_AES_DATA(SSE2NEON_AES_U1),
- SSE2NEON_AES_DATA(SSE2NEON_AES_U2),
- SSE2NEON_AES_DATA(SSE2NEON_AES_U3),
- };
- #undef SSE2NEON_AES_B2W
- #undef SSE2NEON_AES_F2
- #undef SSE2NEON_AES_F3
- #undef SSE2NEON_AES_U0
- #undef SSE2NEON_AES_U1
- #undef SSE2NEON_AES_U2
- #undef SSE2NEON_AES_U3
- uint32_t x0 = _mm_cvtsi128_si32(EncBlock);
- uint32_t x1 = _mm_cvtsi128_si32(_mm_shuffle_epi32(EncBlock, 0x55));
- uint32_t x2 = _mm_cvtsi128_si32(_mm_shuffle_epi32(EncBlock, 0xAA));
- uint32_t x3 = _mm_cvtsi128_si32(_mm_shuffle_epi32(EncBlock, 0xFF));
- __m128i out = _mm_set_epi32(
- (aes_table[0][x3 & 0xff] ^ aes_table[1][(x0 >> 8) & 0xff] ^
- aes_table[2][(x1 >> 16) & 0xff] ^ aes_table[3][x2 >> 24]),
- (aes_table[0][x2 & 0xff] ^ aes_table[1][(x3 >> 8) & 0xff] ^
- aes_table[2][(x0 >> 16) & 0xff] ^ aes_table[3][x1 >> 24]),
- (aes_table[0][x1 & 0xff] ^ aes_table[1][(x2 >> 8) & 0xff] ^
- aes_table[2][(x3 >> 16) & 0xff] ^ aes_table[3][x0 >> 24]),
- (aes_table[0][x0 & 0xff] ^ aes_table[1][(x1 >> 8) & 0xff] ^
- aes_table[2][(x2 >> 16) & 0xff] ^ aes_table[3][x3 >> 24]));
- return _mm_xor_si128(out, RoundKey);
- #endif
- }
- // Perform the last round of an AES encryption flow on data (state) in a using
- // the round key in RoundKey, and store the result in dst.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_aesenclast_si128
- FORCE_INLINE __m128i _mm_aesenclast_si128(__m128i a, __m128i RoundKey)
- {
- /* FIXME: optimized for NEON */
- uint8_t v[4][4] = {
- [0] = {SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 0)],
- SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 5)],
- SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 10)],
- SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 15)]},
- [1] = {SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 4)],
- SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 9)],
- SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 14)],
- SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 3)]},
- [2] = {SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 8)],
- SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 13)],
- SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 2)],
- SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 7)]},
- [3] = {SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 12)],
- SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 1)],
- SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 6)],
- SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 11)]},
- };
- for (int i = 0; i < 16; i++)
- vreinterpretq_nth_u8_m128i(a, i) =
- v[i / 4][i % 4] ^ vreinterpretq_nth_u8_m128i(RoundKey, i);
- return a;
- }
- // Emits the Advanced Encryption Standard (AES) instruction aeskeygenassist.
- // This instruction generates a round key for AES encryption. See
- // https://kazakov.life/2017/11/01/cryptocurrency-mining-on-ios-devices/
- // for details.
- //
- // https://msdn.microsoft.com/en-us/library/cc714138(v=vs.120).aspx
- FORCE_INLINE __m128i _mm_aeskeygenassist_si128(__m128i key, const int rcon)
- {
- uint32_t X1 = _mm_cvtsi128_si32(_mm_shuffle_epi32(key, 0x55));
- uint32_t X3 = _mm_cvtsi128_si32(_mm_shuffle_epi32(key, 0xFF));
- for (int i = 0; i < 4; ++i) {
- ((uint8_t *) &X1)[i] = SSE2NEON_sbox[((uint8_t *) &X1)[i]];
- ((uint8_t *) &X3)[i] = SSE2NEON_sbox[((uint8_t *) &X3)[i]];
- }
- return _mm_set_epi32(((X3 >> 8) | (X3 << 24)) ^ rcon, X3,
- ((X1 >> 8) | (X1 << 24)) ^ rcon, X1);
- }
- #undef SSE2NEON_AES_DATA
- #else /* __ARM_FEATURE_CRYPTO */
- // Implements equivalent of 'aesenc' by combining AESE (with an empty key) and
- // AESMC and then manually applying the real key as an xor operation. This
- // unfortunately means an additional xor op; the compiler should be able to
- // optimize this away for repeated calls however. See
- // https://blog.michaelbrase.com/2018/05/08/emulating-x86-aes-intrinsics-on-armv8-a
- // for more details.
- FORCE_INLINE __m128i _mm_aesenc_si128(__m128i a, __m128i b)
- {
- return vreinterpretq_m128i_u8(
- vaesmcq_u8(vaeseq_u8(vreinterpretq_u8_m128i(a), vdupq_n_u8(0))) ^
- vreinterpretq_u8_m128i(b));
- }
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_aesenclast_si128
- FORCE_INLINE __m128i _mm_aesenclast_si128(__m128i a, __m128i RoundKey)
- {
- return _mm_xor_si128(vreinterpretq_m128i_u8(vaeseq_u8(
- vreinterpretq_u8_m128i(a), vdupq_n_u8(0))),
- RoundKey);
- }
- FORCE_INLINE __m128i _mm_aeskeygenassist_si128(__m128i a, const int rcon)
- {
- // AESE does ShiftRows and SubBytes on A
- uint8x16_t u8 = vaeseq_u8(vreinterpretq_u8_m128i(a), vdupq_n_u8(0));
- uint8x16_t dest = {
- // Undo ShiftRows step from AESE and extract X1 and X3
- u8[0x4], u8[0x1], u8[0xE], u8[0xB], // SubBytes(X1)
- u8[0x1], u8[0xE], u8[0xB], u8[0x4], // ROT(SubBytes(X1))
- u8[0xC], u8[0x9], u8[0x6], u8[0x3], // SubBytes(X3)
- u8[0x9], u8[0x6], u8[0x3], u8[0xC], // ROT(SubBytes(X3))
- };
- uint32x4_t r = {0, (unsigned) rcon, 0, (unsigned) rcon};
- return vreinterpretq_m128i_u8(dest) ^ vreinterpretq_m128i_u32(r);
- }
- #endif
- /* Streaming Extensions */
- // Guarantees that every preceding store is globally visible before any
- // subsequent store.
- // https://msdn.microsoft.com/en-us/library/5h2w73d1%28v=vs.90%29.aspx
- FORCE_INLINE void _mm_sfence(void)
- {
- __sync_synchronize();
- }
- // Store 128-bits (composed of 4 packed single-precision (32-bit) floating-
- // point elements) from a into memory using a non-temporal memory hint.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_stream_ps
- FORCE_INLINE void _mm_stream_ps(float *p, __m128 a)
- {
- #if __has_builtin(__builtin_nontemporal_store)
- __builtin_nontemporal_store(a, (float32x4_t *) p);
- #else
- vst1q_f32(p, vreinterpretq_f32_m128(a));
- #endif
- }
- // Stores the data in a to the address p without polluting the caches. If the
- // cache line containing address p is already in the cache, the cache will be
- // updated.
- // https://msdn.microsoft.com/en-us/library/ba08y07y%28v=vs.90%29.aspx
- FORCE_INLINE void _mm_stream_si128(__m128i *p, __m128i a)
- {
- #if __has_builtin(__builtin_nontemporal_store)
- __builtin_nontemporal_store(a, p);
- #else
- vst1q_s64((int64_t *) p, vreinterpretq_s64_m128i(a));
- #endif
- }
- // Load 128-bits of integer data from memory into dst using a non-temporal
- // memory hint. mem_addr must be aligned on a 16-byte boundary or a
- // general-protection exception may be generated.
- //
- // dst[127:0] := MEM[mem_addr+127:mem_addr]
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_stream_load_si128
- FORCE_INLINE __m128i _mm_stream_load_si128(__m128i *p)
- {
- #if __has_builtin(__builtin_nontemporal_store)
- return __builtin_nontemporal_load(p);
- #else
- return vreinterpretq_m128i_s64(vld1q_s64((int64_t *) p));
- #endif
- }
- // Cache line containing p is flushed and invalidated from all caches in the
- // coherency domain. :
- // https://msdn.microsoft.com/en-us/library/ba08y07y(v=vs.100).aspx
- FORCE_INLINE void _mm_clflush(void const *p)
- {
- (void) p;
- // no corollary for Neon?
- }
- // Allocate aligned blocks of memory.
- // https://software.intel.com/en-us/
- // cpp-compiler-developer-guide-and-reference-allocating-and-freeing-aligned-memory-blocks
- FORCE_INLINE void *_mm_malloc(size_t size, size_t align)
- {
- void *ptr;
- if (align == 1)
- return malloc(size);
- if (align == 2 || (sizeof(void *) == 8 && align == 4))
- align = sizeof(void *);
- if (!posix_memalign(&ptr, align, size))
- return ptr;
- return NULL;
- }
- // Free aligned memory that was allocated with _mm_malloc.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_free
- FORCE_INLINE void _mm_free(void *addr)
- {
- free(addr);
- }
- // Starting with the initial value in crc, accumulates a CRC32 value for
- // unsigned 8-bit integer v.
- // https://msdn.microsoft.com/en-us/library/bb514036(v=vs.100)
- FORCE_INLINE uint32_t _mm_crc32_u8(uint32_t crc, uint8_t v)
- {
- #if defined(__aarch64__) && defined(__ARM_FEATURE_CRC32)
- __asm__ __volatile__("crc32cb %w[c], %w[c], %w[v]\n\t"
- : [c] "+r"(crc)
- : [v] "r"(v));
- #else
- crc ^= v;
- for (int bit = 0; bit < 8; bit++) {
- if (crc & 1)
- crc = (crc >> 1) ^ UINT32_C(0x82f63b78);
- else
- crc = (crc >> 1);
- }
- #endif
- return crc;
- }
- // Starting with the initial value in crc, accumulates a CRC32 value for
- // unsigned 16-bit integer v.
- // https://msdn.microsoft.com/en-us/library/bb531411(v=vs.100)
- FORCE_INLINE uint32_t _mm_crc32_u16(uint32_t crc, uint16_t v)
- {
- #if defined(__aarch64__) && defined(__ARM_FEATURE_CRC32)
- __asm__ __volatile__("crc32ch %w[c], %w[c], %w[v]\n\t"
- : [c] "+r"(crc)
- : [v] "r"(v));
- #else
- crc = _mm_crc32_u8(crc, v & 0xff);
- crc = _mm_crc32_u8(crc, (v >> 8) & 0xff);
- #endif
- return crc;
- }
- // Starting with the initial value in crc, accumulates a CRC32 value for
- // unsigned 32-bit integer v.
- // https://msdn.microsoft.com/en-us/library/bb531394(v=vs.100)
- FORCE_INLINE uint32_t _mm_crc32_u32(uint32_t crc, uint32_t v)
- {
- #if defined(__aarch64__) && defined(__ARM_FEATURE_CRC32)
- __asm__ __volatile__("crc32cw %w[c], %w[c], %w[v]\n\t"
- : [c] "+r"(crc)
- : [v] "r"(v));
- #else
- crc = _mm_crc32_u16(crc, v & 0xffff);
- crc = _mm_crc32_u16(crc, (v >> 16) & 0xffff);
- #endif
- return crc;
- }
- // Starting with the initial value in crc, accumulates a CRC32 value for
- // unsigned 64-bit integer v.
- // https://msdn.microsoft.com/en-us/library/bb514033(v=vs.100)
- FORCE_INLINE uint64_t _mm_crc32_u64(uint64_t crc, uint64_t v)
- {
- #if defined(__aarch64__) && defined(__ARM_FEATURE_CRC32)
- __asm__ __volatile__("crc32cx %w[c], %w[c], %x[v]\n\t"
- : [c] "+r"(crc)
- : [v] "r"(v));
- #else
- crc = _mm_crc32_u32((uint32_t)(crc), v & 0xffffffff);
- crc = _mm_crc32_u32((uint32_t)(crc), (v >> 32) & 0xffffffff);
- #endif
- return crc;
- }
- #if defined(__GNUC__) || defined(__clang__)
- #pragma pop_macro("ALIGN_STRUCT")
- #pragma pop_macro("FORCE_INLINE")
- #endif
- #if defined(__GNUC__) && !defined(__clang__)
- #pragma GCC pop_options
- #endif
- #endif
|