mesh_storage.cpp 84 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415
  1. /**************************************************************************/
  2. /* mesh_storage.cpp */
  3. /**************************************************************************/
  4. /* This file is part of: */
  5. /* GODOT ENGINE */
  6. /* https://godotengine.org */
  7. /**************************************************************************/
  8. /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
  9. /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
  10. /* */
  11. /* Permission is hereby granted, free of charge, to any person obtaining */
  12. /* a copy of this software and associated documentation files (the */
  13. /* "Software"), to deal in the Software without restriction, including */
  14. /* without limitation the rights to use, copy, modify, merge, publish, */
  15. /* distribute, sublicense, and/or sell copies of the Software, and to */
  16. /* permit persons to whom the Software is furnished to do so, subject to */
  17. /* the following conditions: */
  18. /* */
  19. /* The above copyright notice and this permission notice shall be */
  20. /* included in all copies or substantial portions of the Software. */
  21. /* */
  22. /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
  23. /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
  24. /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
  25. /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
  26. /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
  27. /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
  28. /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
  29. /**************************************************************************/
  30. #include "mesh_storage.h"
  31. using namespace RendererRD;
  32. MeshStorage *MeshStorage::singleton = nullptr;
  33. MeshStorage *MeshStorage::get_singleton() {
  34. return singleton;
  35. }
  36. MeshStorage::MeshStorage() {
  37. singleton = this;
  38. default_rd_storage_buffer = RD::get_singleton()->storage_buffer_create(sizeof(uint32_t) * 4);
  39. //default rd buffers
  40. {
  41. Vector<uint8_t> buffer;
  42. {
  43. buffer.resize(sizeof(float) * 3);
  44. {
  45. uint8_t *w = buffer.ptrw();
  46. float *fptr = reinterpret_cast<float *>(w);
  47. fptr[0] = 0.0;
  48. fptr[1] = 0.0;
  49. fptr[2] = 0.0;
  50. }
  51. mesh_default_rd_buffers[DEFAULT_RD_BUFFER_VERTEX] = RD::get_singleton()->vertex_buffer_create(buffer.size(), buffer);
  52. }
  53. { //normal
  54. buffer.resize(sizeof(float) * 3);
  55. {
  56. uint8_t *w = buffer.ptrw();
  57. float *fptr = reinterpret_cast<float *>(w);
  58. fptr[0] = 1.0;
  59. fptr[1] = 0.0;
  60. fptr[2] = 0.0;
  61. }
  62. mesh_default_rd_buffers[DEFAULT_RD_BUFFER_NORMAL] = RD::get_singleton()->vertex_buffer_create(buffer.size(), buffer);
  63. }
  64. { //tangent
  65. buffer.resize(sizeof(float) * 4);
  66. {
  67. uint8_t *w = buffer.ptrw();
  68. float *fptr = reinterpret_cast<float *>(w);
  69. fptr[0] = 1.0;
  70. fptr[1] = 0.0;
  71. fptr[2] = 0.0;
  72. fptr[3] = 0.0;
  73. }
  74. mesh_default_rd_buffers[DEFAULT_RD_BUFFER_TANGENT] = RD::get_singleton()->vertex_buffer_create(buffer.size(), buffer);
  75. }
  76. { //color
  77. buffer.resize(sizeof(float) * 4);
  78. {
  79. uint8_t *w = buffer.ptrw();
  80. float *fptr = reinterpret_cast<float *>(w);
  81. fptr[0] = 1.0;
  82. fptr[1] = 1.0;
  83. fptr[2] = 1.0;
  84. fptr[3] = 1.0;
  85. }
  86. mesh_default_rd_buffers[DEFAULT_RD_BUFFER_COLOR] = RD::get_singleton()->vertex_buffer_create(buffer.size(), buffer);
  87. }
  88. { //tex uv 1
  89. buffer.resize(sizeof(float) * 2);
  90. {
  91. uint8_t *w = buffer.ptrw();
  92. float *fptr = reinterpret_cast<float *>(w);
  93. fptr[0] = 0.0;
  94. fptr[1] = 0.0;
  95. }
  96. mesh_default_rd_buffers[DEFAULT_RD_BUFFER_TEX_UV] = RD::get_singleton()->vertex_buffer_create(buffer.size(), buffer);
  97. }
  98. { //tex uv 2
  99. buffer.resize(sizeof(float) * 2);
  100. {
  101. uint8_t *w = buffer.ptrw();
  102. float *fptr = reinterpret_cast<float *>(w);
  103. fptr[0] = 0.0;
  104. fptr[1] = 0.0;
  105. }
  106. mesh_default_rd_buffers[DEFAULT_RD_BUFFER_TEX_UV2] = RD::get_singleton()->vertex_buffer_create(buffer.size(), buffer);
  107. }
  108. for (int i = 0; i < RS::ARRAY_CUSTOM_COUNT; i++) {
  109. buffer.resize(sizeof(float) * 4);
  110. {
  111. uint8_t *w = buffer.ptrw();
  112. float *fptr = reinterpret_cast<float *>(w);
  113. fptr[0] = 0.0;
  114. fptr[1] = 0.0;
  115. fptr[2] = 0.0;
  116. fptr[3] = 0.0;
  117. }
  118. mesh_default_rd_buffers[DEFAULT_RD_BUFFER_CUSTOM0 + i] = RD::get_singleton()->vertex_buffer_create(buffer.size(), buffer);
  119. }
  120. { //bones
  121. buffer.resize(sizeof(uint32_t) * 4);
  122. {
  123. uint8_t *w = buffer.ptrw();
  124. uint32_t *fptr = reinterpret_cast<uint32_t *>(w);
  125. fptr[0] = 0;
  126. fptr[1] = 0;
  127. fptr[2] = 0;
  128. fptr[3] = 0;
  129. }
  130. mesh_default_rd_buffers[DEFAULT_RD_BUFFER_BONES] = RD::get_singleton()->vertex_buffer_create(buffer.size(), buffer);
  131. }
  132. { //weights
  133. buffer.resize(sizeof(float) * 4);
  134. {
  135. uint8_t *w = buffer.ptrw();
  136. float *fptr = reinterpret_cast<float *>(w);
  137. fptr[0] = 0.0;
  138. fptr[1] = 0.0;
  139. fptr[2] = 0.0;
  140. fptr[3] = 0.0;
  141. }
  142. mesh_default_rd_buffers[DEFAULT_RD_BUFFER_WEIGHTS] = RD::get_singleton()->vertex_buffer_create(buffer.size(), buffer);
  143. }
  144. }
  145. {
  146. Vector<String> skeleton_modes;
  147. skeleton_modes.push_back("\n#define MODE_2D\n");
  148. skeleton_modes.push_back("");
  149. skeleton_shader.shader.initialize(skeleton_modes);
  150. skeleton_shader.version = skeleton_shader.shader.version_create();
  151. for (int i = 0; i < SkeletonShader::SHADER_MODE_MAX; i++) {
  152. skeleton_shader.version_shader[i] = skeleton_shader.shader.version_get_shader(skeleton_shader.version, i);
  153. skeleton_shader.pipeline[i] = RD::get_singleton()->compute_pipeline_create(skeleton_shader.version_shader[i]);
  154. }
  155. {
  156. Vector<RD::Uniform> uniforms;
  157. {
  158. RD::Uniform u;
  159. u.binding = 0;
  160. u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  161. u.append_id(default_rd_storage_buffer);
  162. uniforms.push_back(u);
  163. }
  164. skeleton_shader.default_skeleton_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, skeleton_shader.version_shader[0], SkeletonShader::UNIFORM_SET_SKELETON);
  165. }
  166. }
  167. }
  168. MeshStorage::~MeshStorage() {
  169. //def buffers
  170. for (int i = 0; i < DEFAULT_RD_BUFFER_MAX; i++) {
  171. RD::get_singleton()->free(mesh_default_rd_buffers[i]);
  172. }
  173. skeleton_shader.shader.version_free(skeleton_shader.version);
  174. RD::get_singleton()->free(default_rd_storage_buffer);
  175. singleton = nullptr;
  176. }
  177. bool MeshStorage::free(RID p_rid) {
  178. if (owns_mesh(p_rid)) {
  179. mesh_free(p_rid);
  180. return true;
  181. } else if (owns_mesh_instance(p_rid)) {
  182. mesh_instance_free(p_rid);
  183. return true;
  184. } else if (owns_multimesh(p_rid)) {
  185. multimesh_free(p_rid);
  186. return true;
  187. } else if (owns_skeleton(p_rid)) {
  188. skeleton_free(p_rid);
  189. return true;
  190. }
  191. return false;
  192. }
  193. /* MESH API */
  194. RID MeshStorage::mesh_allocate() {
  195. return mesh_owner.allocate_rid();
  196. }
  197. void MeshStorage::mesh_initialize(RID p_rid) {
  198. mesh_owner.initialize_rid(p_rid, Mesh());
  199. }
  200. void MeshStorage::mesh_free(RID p_rid) {
  201. mesh_clear(p_rid);
  202. mesh_set_shadow_mesh(p_rid, RID());
  203. Mesh *mesh = mesh_owner.get_or_null(p_rid);
  204. ERR_FAIL_NULL(mesh);
  205. mesh->dependency.deleted_notify(p_rid);
  206. if (mesh->instances.size()) {
  207. ERR_PRINT("deleting mesh with active instances");
  208. }
  209. if (mesh->shadow_owners.size()) {
  210. for (Mesh *E : mesh->shadow_owners) {
  211. Mesh *shadow_owner = E;
  212. shadow_owner->shadow_mesh = RID();
  213. shadow_owner->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MESH);
  214. }
  215. }
  216. mesh_owner.free(p_rid);
  217. }
  218. void MeshStorage::mesh_set_blend_shape_count(RID p_mesh, int p_blend_shape_count) {
  219. ERR_FAIL_COND(p_blend_shape_count < 0);
  220. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  221. ERR_FAIL_NULL(mesh);
  222. ERR_FAIL_COND(mesh->surface_count > 0); //surfaces already exist
  223. mesh->blend_shape_count = p_blend_shape_count;
  224. }
  225. /// Returns stride
  226. void MeshStorage::mesh_add_surface(RID p_mesh, const RS::SurfaceData &p_surface) {
  227. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  228. ERR_FAIL_NULL(mesh);
  229. ERR_FAIL_COND(mesh->surface_count == RS::MAX_MESH_SURFACES);
  230. #ifdef DEBUG_ENABLED
  231. //do a validation, to catch errors first
  232. {
  233. uint32_t stride = 0;
  234. uint32_t attrib_stride = 0;
  235. uint32_t skin_stride = 0;
  236. for (int i = 0; i < RS::ARRAY_WEIGHTS; i++) {
  237. if ((p_surface.format & (1ULL << i))) {
  238. switch (i) {
  239. case RS::ARRAY_VERTEX: {
  240. if ((p_surface.format & RS::ARRAY_FLAG_USE_2D_VERTICES) || (p_surface.format & RS::ARRAY_FLAG_COMPRESS_ATTRIBUTES)) {
  241. stride += sizeof(float) * 2;
  242. } else {
  243. stride += sizeof(float) * 3;
  244. }
  245. } break;
  246. case RS::ARRAY_NORMAL: {
  247. stride += sizeof(uint16_t) * 2;
  248. } break;
  249. case RS::ARRAY_TANGENT: {
  250. if (!(p_surface.format & RS::ARRAY_FLAG_COMPRESS_ATTRIBUTES)) {
  251. stride += sizeof(uint16_t) * 2;
  252. }
  253. } break;
  254. case RS::ARRAY_COLOR: {
  255. attrib_stride += sizeof(uint32_t);
  256. } break;
  257. case RS::ARRAY_TEX_UV: {
  258. if (p_surface.format & RS::ARRAY_FLAG_COMPRESS_ATTRIBUTES) {
  259. attrib_stride += sizeof(uint16_t) * 2;
  260. } else {
  261. attrib_stride += sizeof(float) * 2;
  262. }
  263. } break;
  264. case RS::ARRAY_TEX_UV2: {
  265. if (p_surface.format & RS::ARRAY_FLAG_COMPRESS_ATTRIBUTES) {
  266. attrib_stride += sizeof(uint16_t) * 2;
  267. } else {
  268. attrib_stride += sizeof(float) * 2;
  269. }
  270. } break;
  271. case RS::ARRAY_CUSTOM0:
  272. case RS::ARRAY_CUSTOM1:
  273. case RS::ARRAY_CUSTOM2:
  274. case RS::ARRAY_CUSTOM3: {
  275. int idx = i - RS::ARRAY_CUSTOM0;
  276. const uint32_t fmt_shift[RS::ARRAY_CUSTOM_COUNT] = { RS::ARRAY_FORMAT_CUSTOM0_SHIFT, RS::ARRAY_FORMAT_CUSTOM1_SHIFT, RS::ARRAY_FORMAT_CUSTOM2_SHIFT, RS::ARRAY_FORMAT_CUSTOM3_SHIFT };
  277. uint32_t fmt = (p_surface.format >> fmt_shift[idx]) & RS::ARRAY_FORMAT_CUSTOM_MASK;
  278. const uint32_t fmtsize[RS::ARRAY_CUSTOM_MAX] = { 4, 4, 4, 8, 4, 8, 12, 16 };
  279. attrib_stride += fmtsize[fmt];
  280. } break;
  281. case RS::ARRAY_WEIGHTS:
  282. case RS::ARRAY_BONES: {
  283. //uses a separate array
  284. bool use_8 = p_surface.format & RS::ARRAY_FLAG_USE_8_BONE_WEIGHTS;
  285. skin_stride += sizeof(int16_t) * (use_8 ? 16 : 8);
  286. } break;
  287. }
  288. }
  289. }
  290. int expected_size = stride * p_surface.vertex_count;
  291. ERR_FAIL_COND_MSG(expected_size != p_surface.vertex_data.size(), "Size of vertex data provided (" + itos(p_surface.vertex_data.size()) + ") does not match expected (" + itos(expected_size) + ")");
  292. int bs_expected_size = expected_size * mesh->blend_shape_count;
  293. ERR_FAIL_COND_MSG(bs_expected_size != p_surface.blend_shape_data.size(), "Size of blend shape data provided (" + itos(p_surface.blend_shape_data.size()) + ") does not match expected (" + itos(bs_expected_size) + ")");
  294. int expected_attrib_size = attrib_stride * p_surface.vertex_count;
  295. ERR_FAIL_COND_MSG(expected_attrib_size != p_surface.attribute_data.size(), "Size of attribute data provided (" + itos(p_surface.attribute_data.size()) + ") does not match expected (" + itos(expected_attrib_size) + ")");
  296. if ((p_surface.format & RS::ARRAY_FORMAT_WEIGHTS) && (p_surface.format & RS::ARRAY_FORMAT_BONES)) {
  297. expected_size = skin_stride * p_surface.vertex_count;
  298. ERR_FAIL_COND_MSG(expected_size != p_surface.skin_data.size(), "Size of skin data provided (" + itos(p_surface.skin_data.size()) + ") does not match expected (" + itos(expected_size) + ")");
  299. }
  300. }
  301. #endif
  302. uint64_t surface_version = p_surface.format & (uint64_t(RS::ARRAY_FLAG_FORMAT_VERSION_MASK) << RS::ARRAY_FLAG_FORMAT_VERSION_SHIFT);
  303. RS::SurfaceData new_surface = p_surface;
  304. #ifdef DISABLE_DEPRECATED
  305. ERR_FAIL_COND_MSG(surface_version != RS::ARRAY_FLAG_FORMAT_CURRENT_VERSION, "Surface version provided (" + itos(int(surface_version >> RS::ARRAY_FLAG_FORMAT_VERSION_SHIFT)) + ") does not match current version (" + itos(RS::ARRAY_FLAG_FORMAT_CURRENT_VERSION >> RS::ARRAY_FLAG_FORMAT_VERSION_SHIFT) + ")");
  306. #else
  307. if (surface_version != uint64_t(RS::ARRAY_FLAG_FORMAT_CURRENT_VERSION)) {
  308. RS::get_singleton()->fix_surface_compatibility(new_surface);
  309. surface_version = new_surface.format & (RS::ARRAY_FLAG_FORMAT_VERSION_MASK << RS::ARRAY_FLAG_FORMAT_VERSION_SHIFT);
  310. ERR_FAIL_COND_MSG(surface_version != RS::ARRAY_FLAG_FORMAT_CURRENT_VERSION,
  311. vformat("Surface version provided (%d) does not match current version (%d).",
  312. (surface_version >> RS::ARRAY_FLAG_FORMAT_VERSION_SHIFT) & RS::ARRAY_FLAG_FORMAT_VERSION_MASK,
  313. (RS::ARRAY_FLAG_FORMAT_CURRENT_VERSION >> RS::ARRAY_FLAG_FORMAT_VERSION_SHIFT) & RS::ARRAY_FLAG_FORMAT_VERSION_MASK));
  314. }
  315. #endif
  316. Mesh::Surface *s = memnew(Mesh::Surface);
  317. s->format = new_surface.format;
  318. s->primitive = new_surface.primitive;
  319. bool use_as_storage = (new_surface.skin_data.size() || mesh->blend_shape_count > 0);
  320. if (new_surface.vertex_data.size()) {
  321. // If we have an uncompressed surface that contains normals, but not tangents, we need to differentiate the array
  322. // from a compressed array in the shader. To do so, we allow the normal to read 4 components out of the buffer
  323. // But only give it 2 components per normal. So essentially, each vertex reads the next normal in normal.zw.
  324. // This allows us to avoid adding a shader permutation, and avoid passing dummy tangents. Since the stride is kept small
  325. // this should still be a net win for bandwidth.
  326. // If we do this, then the last normal will read past the end of the array. So we need to pad the array with dummy data.
  327. if (!(new_surface.format & RS::ARRAY_FLAG_COMPRESS_ATTRIBUTES) && (new_surface.format & RS::ARRAY_FORMAT_NORMAL) && !(new_surface.format & RS::ARRAY_FORMAT_TANGENT)) {
  328. // Unfortunately, we need to copy the buffer, which is fine as doing a resize triggers a CoW anyway.
  329. Vector<uint8_t> new_vertex_data;
  330. new_vertex_data.resize_zeroed(new_surface.vertex_data.size() + sizeof(uint16_t) * 2);
  331. memcpy(new_vertex_data.ptrw(), new_surface.vertex_data.ptr(), new_surface.vertex_data.size());
  332. s->vertex_buffer = RD::get_singleton()->vertex_buffer_create(new_vertex_data.size(), new_vertex_data, use_as_storage);
  333. s->vertex_buffer_size = new_vertex_data.size();
  334. } else {
  335. s->vertex_buffer = RD::get_singleton()->vertex_buffer_create(new_surface.vertex_data.size(), new_surface.vertex_data, use_as_storage);
  336. s->vertex_buffer_size = new_surface.vertex_data.size();
  337. }
  338. }
  339. if (new_surface.attribute_data.size()) {
  340. s->attribute_buffer = RD::get_singleton()->vertex_buffer_create(new_surface.attribute_data.size(), new_surface.attribute_data);
  341. }
  342. if (new_surface.skin_data.size()) {
  343. s->skin_buffer = RD::get_singleton()->vertex_buffer_create(new_surface.skin_data.size(), new_surface.skin_data, use_as_storage);
  344. s->skin_buffer_size = new_surface.skin_data.size();
  345. }
  346. s->vertex_count = new_surface.vertex_count;
  347. if (new_surface.format & RS::ARRAY_FORMAT_BONES) {
  348. mesh->has_bone_weights = true;
  349. }
  350. if (new_surface.index_count) {
  351. bool is_index_16 = new_surface.vertex_count <= 65536 && new_surface.vertex_count > 0;
  352. s->index_buffer = RD::get_singleton()->index_buffer_create(new_surface.index_count, is_index_16 ? RD::INDEX_BUFFER_FORMAT_UINT16 : RD::INDEX_BUFFER_FORMAT_UINT32, new_surface.index_data, false);
  353. s->index_count = new_surface.index_count;
  354. s->index_array = RD::get_singleton()->index_array_create(s->index_buffer, 0, s->index_count);
  355. if (new_surface.lods.size()) {
  356. s->lods = memnew_arr(Mesh::Surface::LOD, new_surface.lods.size());
  357. s->lod_count = new_surface.lods.size();
  358. for (int i = 0; i < new_surface.lods.size(); i++) {
  359. uint32_t indices = new_surface.lods[i].index_data.size() / (is_index_16 ? 2 : 4);
  360. s->lods[i].index_buffer = RD::get_singleton()->index_buffer_create(indices, is_index_16 ? RD::INDEX_BUFFER_FORMAT_UINT16 : RD::INDEX_BUFFER_FORMAT_UINT32, new_surface.lods[i].index_data);
  361. s->lods[i].index_array = RD::get_singleton()->index_array_create(s->lods[i].index_buffer, 0, indices);
  362. s->lods[i].edge_length = new_surface.lods[i].edge_length;
  363. s->lods[i].index_count = indices;
  364. }
  365. }
  366. }
  367. ERR_FAIL_COND_MSG(!new_surface.index_count && !new_surface.vertex_count, "Meshes must contain a vertex array, an index array, or both");
  368. s->aabb = new_surface.aabb;
  369. s->bone_aabbs = new_surface.bone_aabbs; //only really useful for returning them.
  370. s->mesh_to_skeleton_xform = p_surface.mesh_to_skeleton_xform;
  371. s->uv_scale = new_surface.uv_scale;
  372. if (mesh->blend_shape_count > 0) {
  373. s->blend_shape_buffer = RD::get_singleton()->storage_buffer_create(new_surface.blend_shape_data.size(), new_surface.blend_shape_data);
  374. }
  375. if (use_as_storage) {
  376. Vector<RD::Uniform> uniforms;
  377. {
  378. RD::Uniform u;
  379. u.binding = 0;
  380. u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  381. if (s->vertex_buffer.is_valid()) {
  382. u.append_id(s->vertex_buffer);
  383. } else {
  384. u.append_id(default_rd_storage_buffer);
  385. }
  386. uniforms.push_back(u);
  387. }
  388. {
  389. RD::Uniform u;
  390. u.binding = 1;
  391. u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  392. if (s->skin_buffer.is_valid()) {
  393. u.append_id(s->skin_buffer);
  394. } else {
  395. u.append_id(default_rd_storage_buffer);
  396. }
  397. uniforms.push_back(u);
  398. }
  399. {
  400. RD::Uniform u;
  401. u.binding = 2;
  402. u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  403. if (s->blend_shape_buffer.is_valid()) {
  404. u.append_id(s->blend_shape_buffer);
  405. } else {
  406. u.append_id(default_rd_storage_buffer);
  407. }
  408. uniforms.push_back(u);
  409. }
  410. s->uniform_set = RD::get_singleton()->uniform_set_create(uniforms, skeleton_shader.version_shader[0], SkeletonShader::UNIFORM_SET_SURFACE);
  411. }
  412. if (mesh->surface_count == 0) {
  413. mesh->aabb = new_surface.aabb;
  414. } else {
  415. mesh->aabb.merge_with(new_surface.aabb);
  416. }
  417. mesh->skeleton_aabb_version = 0;
  418. s->material = new_surface.material;
  419. mesh->surfaces = (Mesh::Surface **)memrealloc(mesh->surfaces, sizeof(Mesh::Surface *) * (mesh->surface_count + 1));
  420. mesh->surfaces[mesh->surface_count] = s;
  421. mesh->surface_count++;
  422. for (MeshInstance *mi : mesh->instances) {
  423. _mesh_instance_add_surface(mi, mesh, mesh->surface_count - 1);
  424. }
  425. mesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MESH);
  426. for (Mesh *E : mesh->shadow_owners) {
  427. Mesh *shadow_owner = E;
  428. shadow_owner->shadow_mesh = RID();
  429. shadow_owner->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MESH);
  430. }
  431. mesh->material_cache.clear();
  432. }
  433. void MeshStorage::_mesh_surface_clear(Mesh *p_mesh, int p_surface) {
  434. Mesh::Surface &s = *p_mesh->surfaces[p_surface];
  435. if (s.vertex_buffer.is_valid()) {
  436. RD::get_singleton()->free(s.vertex_buffer); // Clears arrays as dependency automatically, including all versions.
  437. }
  438. if (s.attribute_buffer.is_valid()) {
  439. RD::get_singleton()->free(s.attribute_buffer);
  440. }
  441. if (s.skin_buffer.is_valid()) {
  442. RD::get_singleton()->free(s.skin_buffer);
  443. }
  444. if (s.versions) {
  445. memfree(s.versions); // reallocs, so free with memfree.
  446. }
  447. if (s.index_buffer.is_valid()) {
  448. RD::get_singleton()->free(s.index_buffer);
  449. }
  450. if (s.lod_count) {
  451. for (uint32_t j = 0; j < s.lod_count; j++) {
  452. RD::get_singleton()->free(s.lods[j].index_buffer);
  453. }
  454. memdelete_arr(s.lods);
  455. }
  456. if (s.blend_shape_buffer.is_valid()) {
  457. RD::get_singleton()->free(s.blend_shape_buffer);
  458. }
  459. memdelete(p_mesh->surfaces[p_surface]);
  460. }
  461. int MeshStorage::mesh_get_blend_shape_count(RID p_mesh) const {
  462. const Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  463. ERR_FAIL_NULL_V(mesh, -1);
  464. return mesh->blend_shape_count;
  465. }
  466. void MeshStorage::mesh_set_blend_shape_mode(RID p_mesh, RS::BlendShapeMode p_mode) {
  467. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  468. ERR_FAIL_NULL(mesh);
  469. ERR_FAIL_INDEX((int)p_mode, 2);
  470. mesh->blend_shape_mode = p_mode;
  471. }
  472. RS::BlendShapeMode MeshStorage::mesh_get_blend_shape_mode(RID p_mesh) const {
  473. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  474. ERR_FAIL_NULL_V(mesh, RS::BLEND_SHAPE_MODE_NORMALIZED);
  475. return mesh->blend_shape_mode;
  476. }
  477. void MeshStorage::mesh_surface_update_vertex_region(RID p_mesh, int p_surface, int p_offset, const Vector<uint8_t> &p_data) {
  478. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  479. ERR_FAIL_NULL(mesh);
  480. ERR_FAIL_UNSIGNED_INDEX((uint32_t)p_surface, mesh->surface_count);
  481. ERR_FAIL_COND(p_data.is_empty());
  482. ERR_FAIL_COND(mesh->surfaces[p_surface]->vertex_buffer.is_null());
  483. uint64_t data_size = p_data.size();
  484. const uint8_t *r = p_data.ptr();
  485. RD::get_singleton()->buffer_update(mesh->surfaces[p_surface]->vertex_buffer, p_offset, data_size, r);
  486. }
  487. void MeshStorage::mesh_surface_update_attribute_region(RID p_mesh, int p_surface, int p_offset, const Vector<uint8_t> &p_data) {
  488. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  489. ERR_FAIL_NULL(mesh);
  490. ERR_FAIL_UNSIGNED_INDEX((uint32_t)p_surface, mesh->surface_count);
  491. ERR_FAIL_COND(p_data.is_empty());
  492. ERR_FAIL_COND(mesh->surfaces[p_surface]->attribute_buffer.is_null());
  493. uint64_t data_size = p_data.size();
  494. const uint8_t *r = p_data.ptr();
  495. RD::get_singleton()->buffer_update(mesh->surfaces[p_surface]->attribute_buffer, p_offset, data_size, r);
  496. }
  497. void MeshStorage::mesh_surface_update_skin_region(RID p_mesh, int p_surface, int p_offset, const Vector<uint8_t> &p_data) {
  498. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  499. ERR_FAIL_NULL(mesh);
  500. ERR_FAIL_UNSIGNED_INDEX((uint32_t)p_surface, mesh->surface_count);
  501. ERR_FAIL_COND(p_data.is_empty());
  502. ERR_FAIL_COND(mesh->surfaces[p_surface]->skin_buffer.is_null());
  503. uint64_t data_size = p_data.size();
  504. const uint8_t *r = p_data.ptr();
  505. RD::get_singleton()->buffer_update(mesh->surfaces[p_surface]->skin_buffer, p_offset, data_size, r);
  506. }
  507. void MeshStorage::mesh_surface_set_material(RID p_mesh, int p_surface, RID p_material) {
  508. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  509. ERR_FAIL_NULL(mesh);
  510. ERR_FAIL_UNSIGNED_INDEX((uint32_t)p_surface, mesh->surface_count);
  511. mesh->surfaces[p_surface]->material = p_material;
  512. mesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MATERIAL);
  513. mesh->material_cache.clear();
  514. }
  515. RID MeshStorage::mesh_surface_get_material(RID p_mesh, int p_surface) const {
  516. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  517. ERR_FAIL_NULL_V(mesh, RID());
  518. ERR_FAIL_UNSIGNED_INDEX_V((uint32_t)p_surface, mesh->surface_count, RID());
  519. return mesh->surfaces[p_surface]->material;
  520. }
  521. RS::SurfaceData MeshStorage::mesh_get_surface(RID p_mesh, int p_surface) const {
  522. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  523. ERR_FAIL_NULL_V(mesh, RS::SurfaceData());
  524. ERR_FAIL_UNSIGNED_INDEX_V((uint32_t)p_surface, mesh->surface_count, RS::SurfaceData());
  525. Mesh::Surface &s = *mesh->surfaces[p_surface];
  526. RS::SurfaceData sd;
  527. sd.format = s.format;
  528. if (s.vertex_buffer.is_valid()) {
  529. sd.vertex_data = RD::get_singleton()->buffer_get_data(s.vertex_buffer);
  530. // When using an uncompressed buffer with normals, but without tangents, we have to trim the padding.
  531. if (!(s.format & RS::ARRAY_FLAG_COMPRESS_ATTRIBUTES) && (s.format & RS::ARRAY_FORMAT_NORMAL) && !(s.format & RS::ARRAY_FORMAT_TANGENT)) {
  532. sd.vertex_data.resize(sd.vertex_data.size() - sizeof(uint16_t) * 2);
  533. }
  534. }
  535. if (s.attribute_buffer.is_valid()) {
  536. sd.attribute_data = RD::get_singleton()->buffer_get_data(s.attribute_buffer);
  537. }
  538. if (s.skin_buffer.is_valid()) {
  539. sd.skin_data = RD::get_singleton()->buffer_get_data(s.skin_buffer);
  540. }
  541. sd.vertex_count = s.vertex_count;
  542. sd.index_count = s.index_count;
  543. sd.primitive = s.primitive;
  544. if (sd.index_count) {
  545. sd.index_data = RD::get_singleton()->buffer_get_data(s.index_buffer);
  546. }
  547. sd.aabb = s.aabb;
  548. sd.uv_scale = s.uv_scale;
  549. for (uint32_t i = 0; i < s.lod_count; i++) {
  550. RS::SurfaceData::LOD lod;
  551. lod.edge_length = s.lods[i].edge_length;
  552. lod.index_data = RD::get_singleton()->buffer_get_data(s.lods[i].index_buffer);
  553. sd.lods.push_back(lod);
  554. }
  555. sd.bone_aabbs = s.bone_aabbs;
  556. sd.mesh_to_skeleton_xform = s.mesh_to_skeleton_xform;
  557. if (s.blend_shape_buffer.is_valid()) {
  558. sd.blend_shape_data = RD::get_singleton()->buffer_get_data(s.blend_shape_buffer);
  559. }
  560. return sd;
  561. }
  562. int MeshStorage::mesh_get_surface_count(RID p_mesh) const {
  563. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  564. ERR_FAIL_NULL_V(mesh, 0);
  565. return mesh->surface_count;
  566. }
  567. void MeshStorage::mesh_set_custom_aabb(RID p_mesh, const AABB &p_aabb) {
  568. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  569. ERR_FAIL_NULL(mesh);
  570. mesh->custom_aabb = p_aabb;
  571. mesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_AABB);
  572. }
  573. AABB MeshStorage::mesh_get_custom_aabb(RID p_mesh) const {
  574. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  575. ERR_FAIL_NULL_V(mesh, AABB());
  576. return mesh->custom_aabb;
  577. }
  578. AABB MeshStorage::mesh_get_aabb(RID p_mesh, RID p_skeleton) {
  579. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  580. ERR_FAIL_NULL_V(mesh, AABB());
  581. if (mesh->custom_aabb != AABB()) {
  582. return mesh->custom_aabb;
  583. }
  584. Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton);
  585. // A mesh can be shared by multiple skeletons and we need to avoid using the AABB from a different skeleton.
  586. if (!skeleton || skeleton->size == 0 || (mesh->skeleton_aabb_version == skeleton->version && mesh->skeleton_aabb_rid == p_skeleton)) {
  587. return mesh->aabb;
  588. }
  589. AABB aabb;
  590. for (uint32_t i = 0; i < mesh->surface_count; i++) {
  591. AABB laabb;
  592. const Mesh::Surface &surface = *mesh->surfaces[i];
  593. if ((surface.format & RS::ARRAY_FORMAT_BONES) && surface.bone_aabbs.size()) {
  594. int bs = surface.bone_aabbs.size();
  595. const AABB *skbones = surface.bone_aabbs.ptr();
  596. int sbs = skeleton->size;
  597. ERR_CONTINUE(bs > sbs);
  598. const float *baseptr = skeleton->data.ptr();
  599. bool found_bone_aabb = false;
  600. if (skeleton->use_2d) {
  601. for (int j = 0; j < bs; j++) {
  602. if (skbones[j].size == Vector3(-1, -1, -1)) {
  603. continue; //bone is unused
  604. }
  605. const float *dataptr = baseptr + j * 8;
  606. Transform3D mtx;
  607. mtx.basis.rows[0][0] = dataptr[0];
  608. mtx.basis.rows[0][1] = dataptr[1];
  609. mtx.origin.x = dataptr[3];
  610. mtx.basis.rows[1][0] = dataptr[4];
  611. mtx.basis.rows[1][1] = dataptr[5];
  612. mtx.origin.y = dataptr[7];
  613. // Transform bounds to skeleton's space before applying animation data.
  614. AABB baabb = surface.mesh_to_skeleton_xform.xform(skbones[j]);
  615. baabb = mtx.xform(baabb);
  616. if (!found_bone_aabb) {
  617. laabb = baabb;
  618. found_bone_aabb = true;
  619. } else {
  620. laabb.merge_with(baabb);
  621. }
  622. }
  623. } else {
  624. for (int j = 0; j < bs; j++) {
  625. if (skbones[j].size == Vector3(-1, -1, -1)) {
  626. continue; //bone is unused
  627. }
  628. const float *dataptr = baseptr + j * 12;
  629. Transform3D mtx;
  630. mtx.basis.rows[0][0] = dataptr[0];
  631. mtx.basis.rows[0][1] = dataptr[1];
  632. mtx.basis.rows[0][2] = dataptr[2];
  633. mtx.origin.x = dataptr[3];
  634. mtx.basis.rows[1][0] = dataptr[4];
  635. mtx.basis.rows[1][1] = dataptr[5];
  636. mtx.basis.rows[1][2] = dataptr[6];
  637. mtx.origin.y = dataptr[7];
  638. mtx.basis.rows[2][0] = dataptr[8];
  639. mtx.basis.rows[2][1] = dataptr[9];
  640. mtx.basis.rows[2][2] = dataptr[10];
  641. mtx.origin.z = dataptr[11];
  642. // Transform bounds to skeleton's space before applying animation data.
  643. AABB baabb = surface.mesh_to_skeleton_xform.xform(skbones[j]);
  644. baabb = mtx.xform(baabb);
  645. if (!found_bone_aabb) {
  646. laabb = baabb;
  647. found_bone_aabb = true;
  648. } else {
  649. laabb.merge_with(baabb);
  650. }
  651. }
  652. }
  653. if (found_bone_aabb) {
  654. // Transform skeleton bounds back to mesh's space if any animated AABB applied.
  655. laabb = surface.mesh_to_skeleton_xform.affine_inverse().xform(laabb);
  656. }
  657. if (laabb.size == Vector3()) {
  658. laabb = surface.aabb;
  659. }
  660. } else {
  661. laabb = surface.aabb;
  662. }
  663. if (i == 0) {
  664. aabb = laabb;
  665. } else {
  666. aabb.merge_with(laabb);
  667. }
  668. }
  669. mesh->aabb = aabb;
  670. mesh->skeleton_aabb_version = skeleton->version;
  671. mesh->skeleton_aabb_rid = p_skeleton;
  672. return aabb;
  673. }
  674. void MeshStorage::mesh_set_path(RID p_mesh, const String &p_path) {
  675. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  676. ERR_FAIL_NULL(mesh);
  677. mesh->path = p_path;
  678. }
  679. String MeshStorage::mesh_get_path(RID p_mesh) const {
  680. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  681. ERR_FAIL_NULL_V(mesh, String());
  682. return mesh->path;
  683. }
  684. void MeshStorage::mesh_set_shadow_mesh(RID p_mesh, RID p_shadow_mesh) {
  685. ERR_FAIL_COND_MSG(p_mesh == p_shadow_mesh, "Cannot set a mesh as its own shadow mesh.");
  686. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  687. ERR_FAIL_NULL(mesh);
  688. Mesh *shadow_mesh = mesh_owner.get_or_null(mesh->shadow_mesh);
  689. if (shadow_mesh) {
  690. shadow_mesh->shadow_owners.erase(mesh);
  691. }
  692. mesh->shadow_mesh = p_shadow_mesh;
  693. shadow_mesh = mesh_owner.get_or_null(mesh->shadow_mesh);
  694. if (shadow_mesh) {
  695. shadow_mesh->shadow_owners.insert(mesh);
  696. }
  697. mesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MESH);
  698. }
  699. void MeshStorage::mesh_clear(RID p_mesh) {
  700. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  701. ERR_FAIL_NULL(mesh);
  702. // Clear instance data before mesh data.
  703. for (MeshInstance *mi : mesh->instances) {
  704. _mesh_instance_clear(mi);
  705. }
  706. for (uint32_t i = 0; i < mesh->surface_count; i++) {
  707. _mesh_surface_clear(mesh, i);
  708. }
  709. if (mesh->surfaces) {
  710. memfree(mesh->surfaces);
  711. }
  712. mesh->surfaces = nullptr;
  713. mesh->surface_count = 0;
  714. mesh->material_cache.clear();
  715. mesh->has_bone_weights = false;
  716. mesh->aabb = AABB();
  717. mesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MESH);
  718. for (Mesh *E : mesh->shadow_owners) {
  719. Mesh *shadow_owner = E;
  720. shadow_owner->shadow_mesh = RID();
  721. shadow_owner->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MESH);
  722. }
  723. }
  724. void MeshStorage::mesh_surface_remove(RID p_mesh, int p_surface) {
  725. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  726. ERR_FAIL_NULL(mesh);
  727. ERR_FAIL_UNSIGNED_INDEX((uint32_t)p_surface, mesh->surface_count);
  728. // Clear instance data before mesh data.
  729. for (MeshInstance *mi : mesh->instances) {
  730. _mesh_instance_remove_surface(mi, p_surface);
  731. }
  732. _mesh_surface_clear(mesh, p_surface);
  733. if ((uint32_t)p_surface < mesh->surface_count - 1) {
  734. memmove(mesh->surfaces + p_surface, mesh->surfaces + p_surface + 1, sizeof(Mesh::Surface *) * (mesh->surface_count - (p_surface + 1)));
  735. }
  736. mesh->surfaces = (Mesh::Surface **)memrealloc(mesh->surfaces, sizeof(Mesh::Surface *) * (mesh->surface_count - 1));
  737. --mesh->surface_count;
  738. mesh->material_cache.clear();
  739. mesh->skeleton_aabb_version = 0;
  740. if (mesh->has_bone_weights) {
  741. mesh->has_bone_weights = false;
  742. for (uint32_t i = 0; i < mesh->surface_count; i++) {
  743. if (mesh->surfaces[i]->format & RS::ARRAY_FORMAT_BONES) {
  744. mesh->has_bone_weights = true;
  745. break;
  746. }
  747. }
  748. }
  749. if (mesh->surface_count == 0) {
  750. mesh->aabb = AABB();
  751. } else {
  752. mesh->aabb = mesh->surfaces[0]->aabb;
  753. for (uint32_t i = 1; i < mesh->surface_count; i++) {
  754. mesh->aabb.merge_with(mesh->surfaces[i]->aabb);
  755. }
  756. }
  757. mesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MESH);
  758. for (Mesh *E : mesh->shadow_owners) {
  759. Mesh *shadow_owner = E;
  760. shadow_owner->shadow_mesh = RID();
  761. shadow_owner->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MESH);
  762. }
  763. }
  764. bool MeshStorage::mesh_needs_instance(RID p_mesh, bool p_has_skeleton) {
  765. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  766. ERR_FAIL_NULL_V(mesh, false);
  767. return mesh->blend_shape_count > 0 || (mesh->has_bone_weights && p_has_skeleton);
  768. }
  769. Dependency *MeshStorage::mesh_get_dependency(RID p_mesh) const {
  770. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  771. ERR_FAIL_NULL_V(mesh, nullptr);
  772. return &mesh->dependency;
  773. }
  774. /* MESH INSTANCE */
  775. RID MeshStorage::mesh_instance_create(RID p_base) {
  776. Mesh *mesh = mesh_owner.get_or_null(p_base);
  777. ERR_FAIL_NULL_V(mesh, RID());
  778. RID rid = mesh_instance_owner.make_rid();
  779. MeshInstance *mi = mesh_instance_owner.get_or_null(rid);
  780. mi->mesh = mesh;
  781. for (uint32_t i = 0; i < mesh->surface_count; i++) {
  782. _mesh_instance_add_surface(mi, mesh, i);
  783. }
  784. mi->I = mesh->instances.push_back(mi);
  785. mi->dirty = true;
  786. return rid;
  787. }
  788. void MeshStorage::mesh_instance_free(RID p_rid) {
  789. MeshInstance *mi = mesh_instance_owner.get_or_null(p_rid);
  790. _mesh_instance_clear(mi);
  791. mi->mesh->instances.erase(mi->I);
  792. mi->I = nullptr;
  793. mesh_instance_owner.free(p_rid);
  794. }
  795. void MeshStorage::mesh_instance_set_skeleton(RID p_mesh_instance, RID p_skeleton) {
  796. MeshInstance *mi = mesh_instance_owner.get_or_null(p_mesh_instance);
  797. if (mi->skeleton == p_skeleton) {
  798. return;
  799. }
  800. mi->skeleton = p_skeleton;
  801. mi->skeleton_version = 0;
  802. mi->dirty = true;
  803. }
  804. void MeshStorage::mesh_instance_set_blend_shape_weight(RID p_mesh_instance, int p_shape, float p_weight) {
  805. MeshInstance *mi = mesh_instance_owner.get_or_null(p_mesh_instance);
  806. ERR_FAIL_NULL(mi);
  807. ERR_FAIL_INDEX(p_shape, (int)mi->blend_weights.size());
  808. mi->blend_weights[p_shape] = p_weight;
  809. mi->weights_dirty = true;
  810. //will be eventually updated
  811. }
  812. void MeshStorage::_mesh_instance_clear(MeshInstance *mi) {
  813. while (mi->surfaces.size()) {
  814. _mesh_instance_remove_surface(mi, mi->surfaces.size() - 1);
  815. }
  816. mi->dirty = false;
  817. }
  818. void MeshStorage::_mesh_instance_add_surface(MeshInstance *mi, Mesh *mesh, uint32_t p_surface) {
  819. if (mesh->blend_shape_count > 0 && mi->blend_weights_buffer.is_null()) {
  820. mi->blend_weights.resize(mesh->blend_shape_count);
  821. for (float &weight : mi->blend_weights) {
  822. weight = 0;
  823. }
  824. mi->blend_weights_buffer = RD::get_singleton()->storage_buffer_create(sizeof(float) * mi->blend_weights.size(), mi->blend_weights.to_byte_array());
  825. mi->weights_dirty = true;
  826. }
  827. MeshInstance::Surface s;
  828. if ((mesh->blend_shape_count > 0 || (mesh->surfaces[p_surface]->format & RS::ARRAY_FORMAT_BONES)) && mesh->surfaces[p_surface]->vertex_buffer_size > 0) {
  829. _mesh_instance_add_surface_buffer(mi, mesh, &s, p_surface, 0);
  830. }
  831. mi->surfaces.push_back(s);
  832. mi->dirty = true;
  833. }
  834. void MeshStorage::_mesh_instance_add_surface_buffer(MeshInstance *mi, Mesh *mesh, MeshInstance::Surface *s, uint32_t p_surface, uint32_t p_buffer_index) {
  835. s->vertex_buffer[p_buffer_index] = RD::get_singleton()->vertex_buffer_create(mesh->surfaces[p_surface]->vertex_buffer_size, Vector<uint8_t>(), true);
  836. Vector<RD::Uniform> uniforms;
  837. {
  838. RD::Uniform u;
  839. u.binding = 1;
  840. u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  841. u.append_id(s->vertex_buffer[p_buffer_index]);
  842. uniforms.push_back(u);
  843. }
  844. {
  845. RD::Uniform u;
  846. u.binding = 2;
  847. u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  848. if (mi->blend_weights_buffer.is_valid()) {
  849. u.append_id(mi->blend_weights_buffer);
  850. } else {
  851. u.append_id(default_rd_storage_buffer);
  852. }
  853. uniforms.push_back(u);
  854. }
  855. s->uniform_set[p_buffer_index] = RD::get_singleton()->uniform_set_create(uniforms, skeleton_shader.version_shader[0], SkeletonShader::UNIFORM_SET_INSTANCE);
  856. }
  857. void MeshStorage::_mesh_instance_remove_surface(MeshInstance *mi, int p_surface) {
  858. MeshInstance::Surface &surface = mi->surfaces[p_surface];
  859. if (surface.versions) {
  860. for (uint32_t j = 0; j < surface.version_count; j++) {
  861. RD::get_singleton()->free(surface.versions[j].vertex_array);
  862. }
  863. memfree(surface.versions);
  864. }
  865. for (uint32_t i = 0; i < 2; i++) {
  866. if (surface.vertex_buffer[i].is_valid()) {
  867. RD::get_singleton()->free(surface.vertex_buffer[i]);
  868. }
  869. }
  870. mi->surfaces.remove_at(p_surface);
  871. if (mi->surfaces.is_empty()) {
  872. if (mi->blend_weights_buffer.is_valid()) {
  873. RD::get_singleton()->free(mi->blend_weights_buffer);
  874. mi->blend_weights_buffer = RID();
  875. }
  876. mi->blend_weights.clear();
  877. mi->weights_dirty = false;
  878. mi->skeleton_version = 0;
  879. }
  880. mi->dirty = true;
  881. }
  882. void MeshStorage::mesh_instance_check_for_update(RID p_mesh_instance) {
  883. MeshInstance *mi = mesh_instance_owner.get_or_null(p_mesh_instance);
  884. bool needs_update = mi->dirty;
  885. if (mi->weights_dirty && !mi->weight_update_list.in_list()) {
  886. dirty_mesh_instance_weights.add(&mi->weight_update_list);
  887. needs_update = true;
  888. }
  889. if (mi->array_update_list.in_list()) {
  890. return;
  891. }
  892. if (!needs_update && mi->skeleton.is_valid()) {
  893. Skeleton *sk = skeleton_owner.get_or_null(mi->skeleton);
  894. if (sk && sk->version != mi->skeleton_version) {
  895. needs_update = true;
  896. }
  897. }
  898. if (needs_update) {
  899. dirty_mesh_instance_arrays.add(&mi->array_update_list);
  900. }
  901. }
  902. void MeshStorage::mesh_instance_set_canvas_item_transform(RID p_mesh_instance, const Transform2D &p_transform) {
  903. MeshInstance *mi = mesh_instance_owner.get_or_null(p_mesh_instance);
  904. mi->canvas_item_transform_2d = p_transform;
  905. }
  906. void MeshStorage::update_mesh_instances() {
  907. while (dirty_mesh_instance_weights.first()) {
  908. MeshInstance *mi = dirty_mesh_instance_weights.first()->self();
  909. if (mi->blend_weights_buffer.is_valid()) {
  910. RD::get_singleton()->buffer_update(mi->blend_weights_buffer, 0, mi->blend_weights.size() * sizeof(float), mi->blend_weights.ptr());
  911. }
  912. dirty_mesh_instance_weights.remove(&mi->weight_update_list);
  913. mi->weights_dirty = false;
  914. }
  915. if (dirty_mesh_instance_arrays.first() == nullptr) {
  916. return; //nothing to do
  917. }
  918. //process skeletons and blend shapes
  919. uint64_t frame = RSG::rasterizer->get_frame_number();
  920. bool uses_motion_vectors = (RSG::viewport->get_num_viewports_with_motion_vectors() > 0) || (RendererCompositorStorage::get_singleton()->get_num_compositor_effects_with_motion_vectors() > 0);
  921. RD::ComputeListID compute_list = RD::get_singleton()->compute_list_begin();
  922. while (dirty_mesh_instance_arrays.first()) {
  923. MeshInstance *mi = dirty_mesh_instance_arrays.first()->self();
  924. Skeleton *sk = skeleton_owner.get_or_null(mi->skeleton);
  925. for (uint32_t i = 0; i < mi->surfaces.size(); i++) {
  926. if (mi->surfaces[i].uniform_set[0].is_null() || mi->mesh->surfaces[i]->uniform_set.is_null()) {
  927. // Skip over mesh instances that don't require their own uniform buffers.
  928. continue;
  929. }
  930. mi->surfaces[i].previous_buffer = mi->surfaces[i].current_buffer;
  931. if (uses_motion_vectors && mi->surfaces[i].last_change && (frame - mi->surfaces[i].last_change) <= 2) {
  932. // Use a 2-frame tolerance so that stepped skeletal animations have correct motion vectors
  933. // (stepped animation is common for distant NPCs).
  934. uint32_t new_buffer_index = mi->surfaces[i].current_buffer ^ 1;
  935. if (mi->surfaces[i].uniform_set[new_buffer_index].is_null()) {
  936. // Create the new vertex buffer on demand where the result for the current frame will be stored.
  937. _mesh_instance_add_surface_buffer(mi, mi->mesh, &mi->surfaces[i], i, new_buffer_index);
  938. }
  939. mi->surfaces[i].current_buffer = new_buffer_index;
  940. }
  941. mi->surfaces[i].last_change = frame;
  942. RID mi_surface_uniform_set = mi->surfaces[i].uniform_set[mi->surfaces[i].current_buffer];
  943. if (mi_surface_uniform_set.is_null()) {
  944. continue;
  945. }
  946. bool array_is_2d = mi->mesh->surfaces[i]->format & RS::ARRAY_FLAG_USE_2D_VERTICES;
  947. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, skeleton_shader.pipeline[array_is_2d ? SkeletonShader::SHADER_MODE_2D : SkeletonShader::SHADER_MODE_3D]);
  948. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, mi_surface_uniform_set, SkeletonShader::UNIFORM_SET_INSTANCE);
  949. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, mi->mesh->surfaces[i]->uniform_set, SkeletonShader::UNIFORM_SET_SURFACE);
  950. if (sk && sk->uniform_set_mi.is_valid()) {
  951. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, sk->uniform_set_mi, SkeletonShader::UNIFORM_SET_SKELETON);
  952. } else {
  953. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, skeleton_shader.default_skeleton_uniform_set, SkeletonShader::UNIFORM_SET_SKELETON);
  954. }
  955. SkeletonShader::PushConstant push_constant;
  956. push_constant.has_normal = mi->mesh->surfaces[i]->format & RS::ARRAY_FORMAT_NORMAL;
  957. push_constant.has_tangent = mi->mesh->surfaces[i]->format & RS::ARRAY_FORMAT_TANGENT;
  958. push_constant.has_skeleton = sk != nullptr && sk->use_2d == array_is_2d && (mi->mesh->surfaces[i]->format & RS::ARRAY_FORMAT_BONES);
  959. push_constant.has_blend_shape = mi->mesh->blend_shape_count > 0;
  960. push_constant.normal_tangent_stride = (push_constant.has_normal ? 1 : 0) + (push_constant.has_tangent ? 1 : 0);
  961. push_constant.vertex_count = mi->mesh->surfaces[i]->vertex_count;
  962. push_constant.vertex_stride = ((mi->mesh->surfaces[i]->vertex_buffer_size / mi->mesh->surfaces[i]->vertex_count) / 4) - push_constant.normal_tangent_stride;
  963. push_constant.skin_stride = (mi->mesh->surfaces[i]->skin_buffer_size / mi->mesh->surfaces[i]->vertex_count) / 4;
  964. push_constant.skin_weight_offset = (mi->mesh->surfaces[i]->format & RS::ARRAY_FLAG_USE_8_BONE_WEIGHTS) ? 4 : 2;
  965. Transform2D transform = Transform2D();
  966. if (sk && sk->use_2d) {
  967. transform = mi->canvas_item_transform_2d.affine_inverse() * sk->base_transform_2d;
  968. }
  969. push_constant.skeleton_transform_x[0] = transform.columns[0][0];
  970. push_constant.skeleton_transform_x[1] = transform.columns[0][1];
  971. push_constant.skeleton_transform_y[0] = transform.columns[1][0];
  972. push_constant.skeleton_transform_y[1] = transform.columns[1][1];
  973. push_constant.skeleton_transform_offset[0] = transform.columns[2][0];
  974. push_constant.skeleton_transform_offset[1] = transform.columns[2][1];
  975. Transform2D inverse_transform = transform.affine_inverse();
  976. push_constant.inverse_transform_x[0] = inverse_transform.columns[0][0];
  977. push_constant.inverse_transform_x[1] = inverse_transform.columns[0][1];
  978. push_constant.inverse_transform_y[0] = inverse_transform.columns[1][0];
  979. push_constant.inverse_transform_y[1] = inverse_transform.columns[1][1];
  980. push_constant.inverse_transform_offset[0] = inverse_transform.columns[2][0];
  981. push_constant.inverse_transform_offset[1] = inverse_transform.columns[2][1];
  982. push_constant.blend_shape_count = mi->mesh->blend_shape_count;
  983. push_constant.normalized_blend_shapes = mi->mesh->blend_shape_mode == RS::BLEND_SHAPE_MODE_NORMALIZED;
  984. push_constant.pad1 = 0;
  985. RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(SkeletonShader::PushConstant));
  986. //dispatch without barrier, so all is done at the same time
  987. RD::get_singleton()->compute_list_dispatch_threads(compute_list, push_constant.vertex_count, 1, 1);
  988. }
  989. mi->dirty = false;
  990. if (sk) {
  991. mi->skeleton_version = sk->version;
  992. }
  993. dirty_mesh_instance_arrays.remove(&mi->array_update_list);
  994. }
  995. RD::get_singleton()->compute_list_end();
  996. }
  997. RD::VertexFormatID MeshStorage::_mesh_surface_generate_vertex_format(uint64_t p_surface_format, uint64_t p_input_mask, bool p_instanced_surface, bool p_input_motion_vectors, uint32_t &r_position_stride) {
  998. Vector<RD::VertexAttribute> attributes;
  999. uint32_t normal_tangent_stride = 0;
  1000. uint32_t attribute_stride = 0;
  1001. uint32_t skin_stride = 0;
  1002. r_position_stride = 0;
  1003. for (int i = 0; i < RS::ARRAY_INDEX; i++) {
  1004. RD::VertexAttribute vd;
  1005. vd.location = i;
  1006. if (!(p_surface_format & (1ULL << i))) {
  1007. vd.stride = 0;
  1008. switch (i) {
  1009. case RS::ARRAY_VERTEX:
  1010. case RS::ARRAY_NORMAL:
  1011. vd.format = RD::DATA_FORMAT_R32G32B32_SFLOAT;
  1012. break;
  1013. case RS::ARRAY_TEX_UV:
  1014. case RS::ARRAY_TEX_UV2:
  1015. vd.format = RD::DATA_FORMAT_R32G32_SFLOAT;
  1016. break;
  1017. case RS::ARRAY_BONES:
  1018. vd.format = RD::DATA_FORMAT_R32G32B32A32_UINT;
  1019. break;
  1020. case RS::ARRAY_TANGENT:
  1021. case RS::ARRAY_COLOR:
  1022. case RS::ARRAY_CUSTOM0:
  1023. case RS::ARRAY_CUSTOM1:
  1024. case RS::ARRAY_CUSTOM2:
  1025. case RS::ARRAY_CUSTOM3:
  1026. case RS::ARRAY_WEIGHTS:
  1027. vd.format = RD::DATA_FORMAT_R32G32B32A32_SFLOAT;
  1028. break;
  1029. default:
  1030. DEV_ASSERT(false && "Unknown vertex format element.");
  1031. break;
  1032. }
  1033. } else {
  1034. // Mark that it needs a stride set (default uses 0).
  1035. vd.stride = 1;
  1036. switch (i) {
  1037. case RS::ARRAY_VERTEX: {
  1038. vd.offset = r_position_stride;
  1039. if (p_surface_format & RS::ARRAY_FLAG_USE_2D_VERTICES) {
  1040. vd.format = RD::DATA_FORMAT_R32G32_SFLOAT;
  1041. r_position_stride = sizeof(float) * 2;
  1042. } else {
  1043. if (!p_instanced_surface && (p_surface_format & RS::ARRAY_FLAG_COMPRESS_ATTRIBUTES)) {
  1044. vd.format = RD::DATA_FORMAT_R16G16B16A16_UNORM;
  1045. r_position_stride = sizeof(uint16_t) * 4;
  1046. } else {
  1047. vd.format = RD::DATA_FORMAT_R32G32B32_SFLOAT;
  1048. r_position_stride = sizeof(float) * 3;
  1049. }
  1050. }
  1051. } break;
  1052. case RS::ARRAY_NORMAL: {
  1053. vd.offset = 0;
  1054. if (!p_instanced_surface && (p_surface_format & RS::ARRAY_FLAG_COMPRESS_ATTRIBUTES)) {
  1055. vd.format = RD::DATA_FORMAT_R16G16_UNORM;
  1056. normal_tangent_stride += sizeof(uint16_t) * 2;
  1057. } else {
  1058. vd.format = RD::DATA_FORMAT_R16G16B16A16_UNORM;
  1059. // A small trick here: if we are uncompressed and we have normals, but no tangents. We need
  1060. // the shader to think there are 4 components to "axis_tangent_attrib". So we give a size of 4,
  1061. // but a stride based on only having 2 elements.
  1062. if (!(p_surface_format & RS::ARRAY_FORMAT_TANGENT)) {
  1063. normal_tangent_stride += sizeof(uint16_t) * 2;
  1064. } else {
  1065. normal_tangent_stride += sizeof(uint16_t) * 4;
  1066. }
  1067. }
  1068. } break;
  1069. case RS::ARRAY_TANGENT: {
  1070. vd.stride = 0;
  1071. vd.format = RD::DATA_FORMAT_R32G32B32A32_SFLOAT;
  1072. } break;
  1073. case RS::ARRAY_COLOR: {
  1074. vd.offset = attribute_stride;
  1075. vd.format = RD::DATA_FORMAT_R8G8B8A8_UNORM;
  1076. attribute_stride += sizeof(int8_t) * 4;
  1077. } break;
  1078. case RS::ARRAY_TEX_UV: {
  1079. vd.offset = attribute_stride;
  1080. if (p_surface_format & RS::ARRAY_FLAG_COMPRESS_ATTRIBUTES) {
  1081. vd.format = RD::DATA_FORMAT_R16G16_UNORM;
  1082. attribute_stride += sizeof(uint16_t) * 2;
  1083. } else {
  1084. vd.format = RD::DATA_FORMAT_R32G32_SFLOAT;
  1085. attribute_stride += sizeof(float) * 2;
  1086. }
  1087. } break;
  1088. case RS::ARRAY_TEX_UV2: {
  1089. vd.offset = attribute_stride;
  1090. if (p_surface_format & RS::ARRAY_FLAG_COMPRESS_ATTRIBUTES) {
  1091. vd.format = RD::DATA_FORMAT_R16G16_UNORM;
  1092. attribute_stride += sizeof(uint16_t) * 2;
  1093. } else {
  1094. vd.format = RD::DATA_FORMAT_R32G32_SFLOAT;
  1095. attribute_stride += sizeof(float) * 2;
  1096. }
  1097. } break;
  1098. case RS::ARRAY_CUSTOM0:
  1099. case RS::ARRAY_CUSTOM1:
  1100. case RS::ARRAY_CUSTOM2:
  1101. case RS::ARRAY_CUSTOM3: {
  1102. vd.offset = attribute_stride;
  1103. int idx = i - RS::ARRAY_CUSTOM0;
  1104. const uint32_t fmt_shift[RS::ARRAY_CUSTOM_COUNT] = { RS::ARRAY_FORMAT_CUSTOM0_SHIFT, RS::ARRAY_FORMAT_CUSTOM1_SHIFT, RS::ARRAY_FORMAT_CUSTOM2_SHIFT, RS::ARRAY_FORMAT_CUSTOM3_SHIFT };
  1105. uint32_t fmt = (p_surface_format >> fmt_shift[idx]) & RS::ARRAY_FORMAT_CUSTOM_MASK;
  1106. const uint32_t fmtsize[RS::ARRAY_CUSTOM_MAX] = { 4, 4, 4, 8, 4, 8, 12, 16 };
  1107. const RD::DataFormat fmtrd[RS::ARRAY_CUSTOM_MAX] = { RD::DATA_FORMAT_R8G8B8A8_UNORM, RD::DATA_FORMAT_R8G8B8A8_SNORM, RD::DATA_FORMAT_R16G16_SFLOAT, RD::DATA_FORMAT_R16G16B16A16_SFLOAT, RD::DATA_FORMAT_R32_SFLOAT, RD::DATA_FORMAT_R32G32_SFLOAT, RD::DATA_FORMAT_R32G32B32_SFLOAT, RD::DATA_FORMAT_R32G32B32A32_SFLOAT };
  1108. vd.format = fmtrd[fmt];
  1109. attribute_stride += fmtsize[fmt];
  1110. } break;
  1111. case RS::ARRAY_BONES: {
  1112. vd.offset = skin_stride;
  1113. vd.format = RD::DATA_FORMAT_R16G16B16A16_UINT;
  1114. skin_stride += sizeof(int16_t) * 4;
  1115. } break;
  1116. case RS::ARRAY_WEIGHTS: {
  1117. vd.offset = skin_stride;
  1118. vd.format = RD::DATA_FORMAT_R16G16B16A16_UNORM;
  1119. skin_stride += sizeof(int16_t) * 4;
  1120. } break;
  1121. }
  1122. }
  1123. if (!(p_input_mask & (1ULL << i))) {
  1124. continue; // Shader does not need this, skip it (but computing stride was important anyway)
  1125. }
  1126. attributes.push_back(vd);
  1127. if (p_input_motion_vectors) {
  1128. // Since the previous vertex, normal and tangent can't be part of the vertex format but they are required when
  1129. // motion vectors are enabled, we opt to push a copy of the vertex attribute with a different location.
  1130. switch (i) {
  1131. case RS::ARRAY_VERTEX: {
  1132. vd.location = ATTRIBUTE_LOCATION_PREV_VERTEX;
  1133. } break;
  1134. case RS::ARRAY_NORMAL: {
  1135. vd.location = ATTRIBUTE_LOCATION_PREV_NORMAL;
  1136. } break;
  1137. case RS::ARRAY_TANGENT: {
  1138. vd.location = ATTRIBUTE_LOCATION_PREV_TANGENT;
  1139. } break;
  1140. }
  1141. if (int(vd.location) != i) {
  1142. attributes.push_back(vd);
  1143. }
  1144. }
  1145. }
  1146. // Update final stride.
  1147. for (int i = 0; i < attributes.size(); i++) {
  1148. if (attributes[i].stride == 0) {
  1149. // Default location.
  1150. continue;
  1151. }
  1152. int loc = attributes[i].location;
  1153. if (loc == RS::ARRAY_VERTEX || loc == ATTRIBUTE_LOCATION_PREV_VERTEX) {
  1154. attributes.write[i].stride = r_position_stride;
  1155. } else if ((loc < RS::ARRAY_COLOR) || ((loc >= ATTRIBUTE_LOCATION_PREV_NORMAL) && (loc <= ATTRIBUTE_LOCATION_PREV_TANGENT))) {
  1156. attributes.write[i].stride = normal_tangent_stride;
  1157. } else if (loc < RS::ARRAY_BONES) {
  1158. attributes.write[i].stride = attribute_stride;
  1159. } else {
  1160. attributes.write[i].stride = skin_stride;
  1161. }
  1162. }
  1163. return RD::get_singleton()->vertex_format_create(attributes);
  1164. }
  1165. void MeshStorage::_mesh_surface_generate_version_for_input_mask(Mesh::Surface::Version &v, Mesh::Surface *s, uint64_t p_input_mask, bool p_input_motion_vectors, MeshInstance::Surface *mis, uint32_t p_current_buffer, uint32_t p_previous_buffer) {
  1166. uint32_t position_stride = 0;
  1167. v.vertex_format = _mesh_surface_generate_vertex_format(s->format, p_input_mask, mis != nullptr, p_input_motion_vectors, position_stride);
  1168. Vector<RID> buffers;
  1169. Vector<uint64_t> offsets;
  1170. RID buffer;
  1171. uint64_t offset = 0;
  1172. for (int i = 0; i < RS::ARRAY_INDEX; i++) {
  1173. offset = 0;
  1174. if (!(s->format & (1ULL << i))) {
  1175. // Not supplied by surface, use default buffers.
  1176. buffer = mesh_default_rd_buffers[i];
  1177. } else {
  1178. // Supplied by surface, use buffer.
  1179. switch (i) {
  1180. case RS::ARRAY_VERTEX:
  1181. case RS::ARRAY_NORMAL:
  1182. offset = i == RS::ARRAY_NORMAL ? position_stride * s->vertex_count : 0;
  1183. buffer = mis != nullptr ? mis->vertex_buffer[p_current_buffer] : s->vertex_buffer;
  1184. break;
  1185. case RS::ARRAY_TANGENT:
  1186. buffer = mesh_default_rd_buffers[i];
  1187. break;
  1188. case RS::ARRAY_COLOR:
  1189. case RS::ARRAY_TEX_UV:
  1190. case RS::ARRAY_TEX_UV2:
  1191. case RS::ARRAY_CUSTOM0:
  1192. case RS::ARRAY_CUSTOM1:
  1193. case RS::ARRAY_CUSTOM2:
  1194. case RS::ARRAY_CUSTOM3:
  1195. buffer = s->attribute_buffer;
  1196. break;
  1197. case RS::ARRAY_BONES:
  1198. case RS::ARRAY_WEIGHTS:
  1199. buffer = s->skin_buffer;
  1200. break;
  1201. }
  1202. }
  1203. if (!(p_input_mask & (1ULL << i))) {
  1204. continue; // Shader does not need this, skip it (but computing stride was important anyway)
  1205. }
  1206. buffers.push_back(buffer);
  1207. offsets.push_back(offset);
  1208. if (p_input_motion_vectors) {
  1209. // Push the buffer for motion vector inputs.
  1210. if (i == RS::ARRAY_VERTEX || i == RS::ARRAY_NORMAL || i == RS::ARRAY_TANGENT) {
  1211. if (mis && buffer != mesh_default_rd_buffers[i]) {
  1212. buffers.push_back(mis->vertex_buffer[p_previous_buffer]);
  1213. } else {
  1214. buffers.push_back(buffer);
  1215. }
  1216. offsets.push_back(offset);
  1217. }
  1218. }
  1219. }
  1220. v.input_mask = p_input_mask;
  1221. v.current_buffer = p_current_buffer;
  1222. v.previous_buffer = p_previous_buffer;
  1223. v.input_motion_vectors = p_input_motion_vectors;
  1224. v.vertex_array = RD::get_singleton()->vertex_array_create(s->vertex_count, v.vertex_format, buffers, offsets);
  1225. }
  1226. ////////////////// MULTIMESH
  1227. RID MeshStorage::_multimesh_allocate() {
  1228. return multimesh_owner.allocate_rid();
  1229. }
  1230. void MeshStorage::_multimesh_initialize(RID p_rid) {
  1231. multimesh_owner.initialize_rid(p_rid, MultiMesh());
  1232. }
  1233. void MeshStorage::_multimesh_free(RID p_rid) {
  1234. // Remove from interpolator.
  1235. _interpolation_data.notify_free_multimesh(p_rid);
  1236. _update_dirty_multimeshes();
  1237. multimesh_allocate_data(p_rid, 0, RS::MULTIMESH_TRANSFORM_2D);
  1238. MultiMesh *multimesh = multimesh_owner.get_or_null(p_rid);
  1239. multimesh->dependency.deleted_notify(p_rid);
  1240. multimesh_owner.free(p_rid);
  1241. }
  1242. void MeshStorage::_multimesh_allocate_data(RID p_multimesh, int p_instances, RS::MultimeshTransformFormat p_transform_format, bool p_use_colors, bool p_use_custom_data) {
  1243. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1244. ERR_FAIL_NULL(multimesh);
  1245. if (multimesh->instances == p_instances && multimesh->xform_format == p_transform_format && multimesh->uses_colors == p_use_colors && multimesh->uses_custom_data == p_use_custom_data) {
  1246. return;
  1247. }
  1248. if (multimesh->buffer.is_valid()) {
  1249. RD::get_singleton()->free(multimesh->buffer);
  1250. multimesh->buffer = RID();
  1251. multimesh->uniform_set_2d = RID(); //cleared by dependency
  1252. multimesh->uniform_set_3d = RID(); //cleared by dependency
  1253. }
  1254. if (multimesh->data_cache_dirty_regions) {
  1255. memdelete_arr(multimesh->data_cache_dirty_regions);
  1256. multimesh->data_cache_dirty_regions = nullptr;
  1257. multimesh->data_cache_dirty_region_count = 0;
  1258. }
  1259. if (multimesh->previous_data_cache_dirty_regions) {
  1260. memdelete_arr(multimesh->previous_data_cache_dirty_regions);
  1261. multimesh->previous_data_cache_dirty_regions = nullptr;
  1262. multimesh->previous_data_cache_dirty_region_count = 0;
  1263. }
  1264. multimesh->instances = p_instances;
  1265. multimesh->xform_format = p_transform_format;
  1266. multimesh->uses_colors = p_use_colors;
  1267. multimesh->color_offset_cache = p_transform_format == RS::MULTIMESH_TRANSFORM_2D ? 8 : 12;
  1268. multimesh->uses_custom_data = p_use_custom_data;
  1269. multimesh->custom_data_offset_cache = multimesh->color_offset_cache + (p_use_colors ? 4 : 0);
  1270. multimesh->stride_cache = multimesh->custom_data_offset_cache + (p_use_custom_data ? 4 : 0);
  1271. multimesh->buffer_set = false;
  1272. //print_line("allocate, elements: " + itos(p_instances) + " 2D: " + itos(p_transform_format == RS::MULTIMESH_TRANSFORM_2D) + " colors " + itos(multimesh->uses_colors) + " data " + itos(multimesh->uses_custom_data) + " stride " + itos(multimesh->stride_cache) + " total size " + itos(multimesh->stride_cache * multimesh->instances));
  1273. multimesh->data_cache = Vector<float>();
  1274. multimesh->aabb = AABB();
  1275. multimesh->aabb_dirty = false;
  1276. multimesh->visible_instances = MIN(multimesh->visible_instances, multimesh->instances);
  1277. multimesh->motion_vectors_current_offset = 0;
  1278. multimesh->motion_vectors_previous_offset = 0;
  1279. multimesh->motion_vectors_last_change = -1;
  1280. multimesh->motion_vectors_enabled = false;
  1281. if (multimesh->instances) {
  1282. uint32_t buffer_size = multimesh->instances * multimesh->stride_cache * sizeof(float);
  1283. multimesh->buffer = RD::get_singleton()->storage_buffer_create(buffer_size);
  1284. }
  1285. multimesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MULTIMESH);
  1286. }
  1287. void MeshStorage::_multimesh_enable_motion_vectors(MultiMesh *multimesh) {
  1288. if (multimesh->motion_vectors_enabled) {
  1289. return;
  1290. }
  1291. multimesh->motion_vectors_enabled = true;
  1292. multimesh->motion_vectors_current_offset = 0;
  1293. multimesh->motion_vectors_previous_offset = 0;
  1294. multimesh->motion_vectors_last_change = -1;
  1295. if (!multimesh->data_cache.is_empty()) {
  1296. multimesh->data_cache.append_array(multimesh->data_cache);
  1297. }
  1298. uint32_t buffer_size = multimesh->instances * multimesh->stride_cache * sizeof(float);
  1299. uint32_t new_buffer_size = buffer_size * 2;
  1300. RID new_buffer = RD::get_singleton()->storage_buffer_create(new_buffer_size);
  1301. if (multimesh->buffer_set && multimesh->data_cache.is_empty()) {
  1302. // If the buffer was set but there's no data cached in the CPU, we copy the buffer directly on the GPU.
  1303. RD::get_singleton()->buffer_copy(multimesh->buffer, new_buffer, 0, 0, buffer_size);
  1304. RD::get_singleton()->buffer_copy(multimesh->buffer, new_buffer, 0, buffer_size, buffer_size);
  1305. } else if (!multimesh->data_cache.is_empty()) {
  1306. // Simply upload the data cached in the CPU, which should already be doubled in size.
  1307. ERR_FAIL_COND(multimesh->data_cache.size() * sizeof(float) != size_t(new_buffer_size));
  1308. RD::get_singleton()->buffer_update(new_buffer, 0, new_buffer_size, multimesh->data_cache.ptr());
  1309. }
  1310. if (multimesh->buffer.is_valid()) {
  1311. RD::get_singleton()->free(multimesh->buffer);
  1312. }
  1313. multimesh->buffer = new_buffer;
  1314. multimesh->uniform_set_3d = RID(); // Cleared by dependency.
  1315. // Invalidate any references to the buffer that was released and the uniform set that was pointing to it.
  1316. multimesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MULTIMESH);
  1317. }
  1318. void MeshStorage::_multimesh_get_motion_vectors_offsets(RID p_multimesh, uint32_t &r_current_offset, uint32_t &r_prev_offset) {
  1319. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1320. ERR_FAIL_NULL(multimesh);
  1321. r_current_offset = multimesh->motion_vectors_current_offset;
  1322. if (!_multimesh_uses_motion_vectors(multimesh)) {
  1323. multimesh->motion_vectors_previous_offset = multimesh->motion_vectors_current_offset;
  1324. }
  1325. r_prev_offset = multimesh->motion_vectors_previous_offset;
  1326. }
  1327. bool MeshStorage::_multimesh_uses_motion_vectors_offsets(RID p_multimesh) {
  1328. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1329. ERR_FAIL_NULL_V(multimesh, false);
  1330. return _multimesh_uses_motion_vectors(multimesh);
  1331. }
  1332. int MeshStorage::_multimesh_get_instance_count(RID p_multimesh) const {
  1333. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1334. ERR_FAIL_NULL_V(multimesh, 0);
  1335. return multimesh->instances;
  1336. }
  1337. void MeshStorage::_multimesh_set_mesh(RID p_multimesh, RID p_mesh) {
  1338. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1339. ERR_FAIL_NULL(multimesh);
  1340. if (multimesh->mesh == p_mesh) {
  1341. return;
  1342. }
  1343. multimesh->mesh = p_mesh;
  1344. if (multimesh->instances == 0) {
  1345. return;
  1346. }
  1347. if (multimesh->data_cache.size()) {
  1348. //we have a data cache, just mark it dirt
  1349. _multimesh_mark_all_dirty(multimesh, false, true);
  1350. } else if (multimesh->instances) {
  1351. //need to re-create AABB unfortunately, calling this has a penalty
  1352. if (multimesh->buffer_set) {
  1353. Vector<uint8_t> buffer = RD::get_singleton()->buffer_get_data(multimesh->buffer);
  1354. const uint8_t *r = buffer.ptr() + multimesh->motion_vectors_current_offset * multimesh->stride_cache * sizeof(float);
  1355. const float *data = reinterpret_cast<const float *>(r);
  1356. _multimesh_re_create_aabb(multimesh, data, multimesh->instances);
  1357. }
  1358. }
  1359. multimesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MESH);
  1360. }
  1361. #define MULTIMESH_DIRTY_REGION_SIZE 512
  1362. void MeshStorage::_multimesh_make_local(MultiMesh *multimesh) const {
  1363. if (multimesh->data_cache.size() > 0) {
  1364. return; //already local
  1365. }
  1366. // this means that the user wants to load/save individual elements,
  1367. // for this, the data must reside on CPU, so just copy it there.
  1368. uint32_t buffer_size = multimesh->instances * multimesh->stride_cache;
  1369. if (multimesh->motion_vectors_enabled) {
  1370. buffer_size *= 2;
  1371. }
  1372. multimesh->data_cache.resize(buffer_size);
  1373. {
  1374. float *w = multimesh->data_cache.ptrw();
  1375. if (multimesh->buffer_set) {
  1376. Vector<uint8_t> buffer = RD::get_singleton()->buffer_get_data(multimesh->buffer);
  1377. {
  1378. const uint8_t *r = buffer.ptr();
  1379. memcpy(w, r, buffer.size());
  1380. }
  1381. } else {
  1382. memset(w, 0, buffer_size * sizeof(float));
  1383. }
  1384. }
  1385. uint32_t data_cache_dirty_region_count = Math::division_round_up(multimesh->instances, MULTIMESH_DIRTY_REGION_SIZE);
  1386. multimesh->data_cache_dirty_regions = memnew_arr(bool, data_cache_dirty_region_count);
  1387. memset(multimesh->data_cache_dirty_regions, 0, data_cache_dirty_region_count * sizeof(bool));
  1388. multimesh->data_cache_dirty_region_count = 0;
  1389. multimesh->previous_data_cache_dirty_regions = memnew_arr(bool, data_cache_dirty_region_count);
  1390. memset(multimesh->previous_data_cache_dirty_regions, 0, data_cache_dirty_region_count * sizeof(bool));
  1391. multimesh->previous_data_cache_dirty_region_count = 0;
  1392. }
  1393. void MeshStorage::_multimesh_update_motion_vectors_data_cache(MultiMesh *multimesh) {
  1394. ERR_FAIL_COND(multimesh->data_cache.is_empty());
  1395. if (!multimesh->motion_vectors_enabled) {
  1396. return;
  1397. }
  1398. uint32_t frame = RSG::rasterizer->get_frame_number();
  1399. if (multimesh->motion_vectors_last_change != frame) {
  1400. multimesh->motion_vectors_previous_offset = multimesh->motion_vectors_current_offset;
  1401. multimesh->motion_vectors_current_offset = multimesh->instances - multimesh->motion_vectors_current_offset;
  1402. multimesh->motion_vectors_last_change = frame;
  1403. if (multimesh->previous_data_cache_dirty_region_count > 0) {
  1404. uint8_t *data = (uint8_t *)multimesh->data_cache.ptrw();
  1405. uint32_t current_ofs = multimesh->motion_vectors_current_offset * multimesh->stride_cache * sizeof(float);
  1406. uint32_t previous_ofs = multimesh->motion_vectors_previous_offset * multimesh->stride_cache * sizeof(float);
  1407. uint32_t visible_instances = multimesh->visible_instances >= 0 ? multimesh->visible_instances : multimesh->instances;
  1408. uint32_t visible_region_count = visible_instances == 0 ? 0 : Math::division_round_up(visible_instances, (uint32_t)MULTIMESH_DIRTY_REGION_SIZE);
  1409. uint32_t region_size = multimesh->stride_cache * MULTIMESH_DIRTY_REGION_SIZE * sizeof(float);
  1410. uint32_t size = multimesh->stride_cache * (uint32_t)multimesh->instances * (uint32_t)sizeof(float);
  1411. for (uint32_t i = 0; i < visible_region_count; i++) {
  1412. if (multimesh->previous_data_cache_dirty_regions[i]) {
  1413. uint32_t offset = i * region_size;
  1414. memcpy(data + current_ofs + offset, data + previous_ofs + offset, MIN(region_size, size - offset));
  1415. }
  1416. }
  1417. }
  1418. }
  1419. }
  1420. bool MeshStorage::_multimesh_uses_motion_vectors(MultiMesh *multimesh) {
  1421. return (RSG::rasterizer->get_frame_number() - multimesh->motion_vectors_last_change) < 2;
  1422. }
  1423. void MeshStorage::_multimesh_mark_dirty(MultiMesh *multimesh, int p_index, bool p_aabb) {
  1424. uint32_t region_index = p_index / MULTIMESH_DIRTY_REGION_SIZE;
  1425. #ifdef DEBUG_ENABLED
  1426. uint32_t data_cache_dirty_region_count = Math::division_round_up(multimesh->instances, MULTIMESH_DIRTY_REGION_SIZE);
  1427. ERR_FAIL_UNSIGNED_INDEX(region_index, data_cache_dirty_region_count); //bug
  1428. #endif
  1429. if (!multimesh->data_cache_dirty_regions[region_index]) {
  1430. multimesh->data_cache_dirty_regions[region_index] = true;
  1431. multimesh->data_cache_dirty_region_count++;
  1432. }
  1433. if (p_aabb) {
  1434. multimesh->aabb_dirty = true;
  1435. }
  1436. if (!multimesh->dirty) {
  1437. multimesh->dirty_list = multimesh_dirty_list;
  1438. multimesh_dirty_list = multimesh;
  1439. multimesh->dirty = true;
  1440. }
  1441. }
  1442. void MeshStorage::_multimesh_mark_all_dirty(MultiMesh *multimesh, bool p_data, bool p_aabb) {
  1443. if (p_data) {
  1444. uint32_t data_cache_dirty_region_count = Math::division_round_up(multimesh->instances, MULTIMESH_DIRTY_REGION_SIZE);
  1445. for (uint32_t i = 0; i < data_cache_dirty_region_count; i++) {
  1446. if (!multimesh->data_cache_dirty_regions[i]) {
  1447. multimesh->data_cache_dirty_regions[i] = true;
  1448. multimesh->data_cache_dirty_region_count++;
  1449. }
  1450. }
  1451. }
  1452. if (p_aabb) {
  1453. multimesh->aabb_dirty = true;
  1454. }
  1455. if (!multimesh->dirty) {
  1456. multimesh->dirty_list = multimesh_dirty_list;
  1457. multimesh_dirty_list = multimesh;
  1458. multimesh->dirty = true;
  1459. }
  1460. }
  1461. void MeshStorage::_multimesh_re_create_aabb(MultiMesh *multimesh, const float *p_data, int p_instances) {
  1462. ERR_FAIL_COND(multimesh->mesh.is_null());
  1463. if (multimesh->custom_aabb != AABB()) {
  1464. return;
  1465. }
  1466. AABB aabb;
  1467. AABB mesh_aabb = mesh_get_aabb(multimesh->mesh);
  1468. for (int i = 0; i < p_instances; i++) {
  1469. const float *data = p_data + multimesh->stride_cache * i;
  1470. Transform3D t;
  1471. if (multimesh->xform_format == RS::MULTIMESH_TRANSFORM_3D) {
  1472. t.basis.rows[0][0] = data[0];
  1473. t.basis.rows[0][1] = data[1];
  1474. t.basis.rows[0][2] = data[2];
  1475. t.origin.x = data[3];
  1476. t.basis.rows[1][0] = data[4];
  1477. t.basis.rows[1][1] = data[5];
  1478. t.basis.rows[1][2] = data[6];
  1479. t.origin.y = data[7];
  1480. t.basis.rows[2][0] = data[8];
  1481. t.basis.rows[2][1] = data[9];
  1482. t.basis.rows[2][2] = data[10];
  1483. t.origin.z = data[11];
  1484. } else {
  1485. t.basis.rows[0][0] = data[0];
  1486. t.basis.rows[0][1] = data[1];
  1487. t.origin.x = data[3];
  1488. t.basis.rows[1][0] = data[4];
  1489. t.basis.rows[1][1] = data[5];
  1490. t.origin.y = data[7];
  1491. }
  1492. if (i == 0) {
  1493. aabb = t.xform(mesh_aabb);
  1494. } else {
  1495. aabb.merge_with(t.xform(mesh_aabb));
  1496. }
  1497. }
  1498. multimesh->aabb = aabb;
  1499. }
  1500. void MeshStorage::_multimesh_instance_set_transform(RID p_multimesh, int p_index, const Transform3D &p_transform) {
  1501. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1502. ERR_FAIL_NULL(multimesh);
  1503. ERR_FAIL_INDEX(p_index, multimesh->instances);
  1504. ERR_FAIL_COND(multimesh->xform_format != RS::MULTIMESH_TRANSFORM_3D);
  1505. _multimesh_make_local(multimesh);
  1506. bool uses_motion_vectors = (RSG::viewport->get_num_viewports_with_motion_vectors() > 0) || (RendererCompositorStorage::get_singleton()->get_num_compositor_effects_with_motion_vectors() > 0);
  1507. if (uses_motion_vectors) {
  1508. _multimesh_enable_motion_vectors(multimesh);
  1509. }
  1510. _multimesh_update_motion_vectors_data_cache(multimesh);
  1511. {
  1512. float *w = multimesh->data_cache.ptrw();
  1513. float *dataptr = w + (multimesh->motion_vectors_current_offset + p_index) * multimesh->stride_cache;
  1514. dataptr[0] = p_transform.basis.rows[0][0];
  1515. dataptr[1] = p_transform.basis.rows[0][1];
  1516. dataptr[2] = p_transform.basis.rows[0][2];
  1517. dataptr[3] = p_transform.origin.x;
  1518. dataptr[4] = p_transform.basis.rows[1][0];
  1519. dataptr[5] = p_transform.basis.rows[1][1];
  1520. dataptr[6] = p_transform.basis.rows[1][2];
  1521. dataptr[7] = p_transform.origin.y;
  1522. dataptr[8] = p_transform.basis.rows[2][0];
  1523. dataptr[9] = p_transform.basis.rows[2][1];
  1524. dataptr[10] = p_transform.basis.rows[2][2];
  1525. dataptr[11] = p_transform.origin.z;
  1526. }
  1527. _multimesh_mark_dirty(multimesh, p_index, true);
  1528. }
  1529. void MeshStorage::_multimesh_instance_set_transform_2d(RID p_multimesh, int p_index, const Transform2D &p_transform) {
  1530. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1531. ERR_FAIL_NULL(multimesh);
  1532. ERR_FAIL_INDEX(p_index, multimesh->instances);
  1533. ERR_FAIL_COND(multimesh->xform_format != RS::MULTIMESH_TRANSFORM_2D);
  1534. _multimesh_make_local(multimesh);
  1535. _multimesh_update_motion_vectors_data_cache(multimesh);
  1536. {
  1537. float *w = multimesh->data_cache.ptrw();
  1538. float *dataptr = w + (multimesh->motion_vectors_current_offset + p_index) * multimesh->stride_cache;
  1539. dataptr[0] = p_transform.columns[0][0];
  1540. dataptr[1] = p_transform.columns[1][0];
  1541. dataptr[2] = 0;
  1542. dataptr[3] = p_transform.columns[2][0];
  1543. dataptr[4] = p_transform.columns[0][1];
  1544. dataptr[5] = p_transform.columns[1][1];
  1545. dataptr[6] = 0;
  1546. dataptr[7] = p_transform.columns[2][1];
  1547. }
  1548. _multimesh_mark_dirty(multimesh, p_index, true);
  1549. }
  1550. void MeshStorage::_multimesh_instance_set_color(RID p_multimesh, int p_index, const Color &p_color) {
  1551. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1552. ERR_FAIL_NULL(multimesh);
  1553. ERR_FAIL_INDEX(p_index, multimesh->instances);
  1554. ERR_FAIL_COND(!multimesh->uses_colors);
  1555. _multimesh_make_local(multimesh);
  1556. _multimesh_update_motion_vectors_data_cache(multimesh);
  1557. {
  1558. float *w = multimesh->data_cache.ptrw();
  1559. float *dataptr = w + (multimesh->motion_vectors_current_offset + p_index) * multimesh->stride_cache + multimesh->color_offset_cache;
  1560. dataptr[0] = p_color.r;
  1561. dataptr[1] = p_color.g;
  1562. dataptr[2] = p_color.b;
  1563. dataptr[3] = p_color.a;
  1564. }
  1565. _multimesh_mark_dirty(multimesh, p_index, false);
  1566. }
  1567. void MeshStorage::_multimesh_instance_set_custom_data(RID p_multimesh, int p_index, const Color &p_color) {
  1568. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1569. ERR_FAIL_NULL(multimesh);
  1570. ERR_FAIL_INDEX(p_index, multimesh->instances);
  1571. ERR_FAIL_COND(!multimesh->uses_custom_data);
  1572. _multimesh_make_local(multimesh);
  1573. _multimesh_update_motion_vectors_data_cache(multimesh);
  1574. {
  1575. float *w = multimesh->data_cache.ptrw();
  1576. float *dataptr = w + (multimesh->motion_vectors_current_offset + p_index) * multimesh->stride_cache + multimesh->custom_data_offset_cache;
  1577. dataptr[0] = p_color.r;
  1578. dataptr[1] = p_color.g;
  1579. dataptr[2] = p_color.b;
  1580. dataptr[3] = p_color.a;
  1581. }
  1582. _multimesh_mark_dirty(multimesh, p_index, false);
  1583. }
  1584. RID MeshStorage::_multimesh_get_mesh(RID p_multimesh) const {
  1585. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1586. ERR_FAIL_NULL_V(multimesh, RID());
  1587. return multimesh->mesh;
  1588. }
  1589. Dependency *MeshStorage::multimesh_get_dependency(RID p_multimesh) const {
  1590. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1591. ERR_FAIL_NULL_V(multimesh, nullptr);
  1592. return &multimesh->dependency;
  1593. }
  1594. Transform3D MeshStorage::_multimesh_instance_get_transform(RID p_multimesh, int p_index) const {
  1595. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1596. ERR_FAIL_NULL_V(multimesh, Transform3D());
  1597. ERR_FAIL_INDEX_V(p_index, multimesh->instances, Transform3D());
  1598. ERR_FAIL_COND_V(multimesh->xform_format != RS::MULTIMESH_TRANSFORM_3D, Transform3D());
  1599. _multimesh_make_local(multimesh);
  1600. Transform3D t;
  1601. {
  1602. const float *r = multimesh->data_cache.ptr();
  1603. const float *dataptr = r + (multimesh->motion_vectors_current_offset + p_index) * multimesh->stride_cache;
  1604. t.basis.rows[0][0] = dataptr[0];
  1605. t.basis.rows[0][1] = dataptr[1];
  1606. t.basis.rows[0][2] = dataptr[2];
  1607. t.origin.x = dataptr[3];
  1608. t.basis.rows[1][0] = dataptr[4];
  1609. t.basis.rows[1][1] = dataptr[5];
  1610. t.basis.rows[1][2] = dataptr[6];
  1611. t.origin.y = dataptr[7];
  1612. t.basis.rows[2][0] = dataptr[8];
  1613. t.basis.rows[2][1] = dataptr[9];
  1614. t.basis.rows[2][2] = dataptr[10];
  1615. t.origin.z = dataptr[11];
  1616. }
  1617. return t;
  1618. }
  1619. Transform2D MeshStorage::_multimesh_instance_get_transform_2d(RID p_multimesh, int p_index) const {
  1620. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1621. ERR_FAIL_NULL_V(multimesh, Transform2D());
  1622. ERR_FAIL_INDEX_V(p_index, multimesh->instances, Transform2D());
  1623. ERR_FAIL_COND_V(multimesh->xform_format != RS::MULTIMESH_TRANSFORM_2D, Transform2D());
  1624. _multimesh_make_local(multimesh);
  1625. Transform2D t;
  1626. {
  1627. const float *r = multimesh->data_cache.ptr();
  1628. const float *dataptr = r + (multimesh->motion_vectors_current_offset + p_index) * multimesh->stride_cache;
  1629. t.columns[0][0] = dataptr[0];
  1630. t.columns[1][0] = dataptr[1];
  1631. t.columns[2][0] = dataptr[3];
  1632. t.columns[0][1] = dataptr[4];
  1633. t.columns[1][1] = dataptr[5];
  1634. t.columns[2][1] = dataptr[7];
  1635. }
  1636. return t;
  1637. }
  1638. Color MeshStorage::_multimesh_instance_get_color(RID p_multimesh, int p_index) const {
  1639. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1640. ERR_FAIL_NULL_V(multimesh, Color());
  1641. ERR_FAIL_INDEX_V(p_index, multimesh->instances, Color());
  1642. ERR_FAIL_COND_V(!multimesh->uses_colors, Color());
  1643. _multimesh_make_local(multimesh);
  1644. Color c;
  1645. {
  1646. const float *r = multimesh->data_cache.ptr();
  1647. const float *dataptr = r + (multimesh->motion_vectors_current_offset + p_index) * multimesh->stride_cache + multimesh->color_offset_cache;
  1648. c.r = dataptr[0];
  1649. c.g = dataptr[1];
  1650. c.b = dataptr[2];
  1651. c.a = dataptr[3];
  1652. }
  1653. return c;
  1654. }
  1655. Color MeshStorage::_multimesh_instance_get_custom_data(RID p_multimesh, int p_index) const {
  1656. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1657. ERR_FAIL_NULL_V(multimesh, Color());
  1658. ERR_FAIL_INDEX_V(p_index, multimesh->instances, Color());
  1659. ERR_FAIL_COND_V(!multimesh->uses_custom_data, Color());
  1660. _multimesh_make_local(multimesh);
  1661. Color c;
  1662. {
  1663. const float *r = multimesh->data_cache.ptr();
  1664. const float *dataptr = r + (multimesh->motion_vectors_current_offset + p_index) * multimesh->stride_cache + multimesh->custom_data_offset_cache;
  1665. c.r = dataptr[0];
  1666. c.g = dataptr[1];
  1667. c.b = dataptr[2];
  1668. c.a = dataptr[3];
  1669. }
  1670. return c;
  1671. }
  1672. void MeshStorage::_multimesh_set_buffer(RID p_multimesh, const Vector<float> &p_buffer) {
  1673. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1674. ERR_FAIL_NULL(multimesh);
  1675. ERR_FAIL_COND(p_buffer.size() != (multimesh->instances * (int)multimesh->stride_cache));
  1676. bool used_motion_vectors = multimesh->motion_vectors_enabled;
  1677. bool uses_motion_vectors = (RSG::viewport->get_num_viewports_with_motion_vectors() > 0) || (RendererCompositorStorage::get_singleton()->get_num_compositor_effects_with_motion_vectors() > 0);
  1678. if (uses_motion_vectors) {
  1679. _multimesh_enable_motion_vectors(multimesh);
  1680. }
  1681. if (multimesh->motion_vectors_enabled) {
  1682. uint32_t frame = RSG::rasterizer->get_frame_number();
  1683. if (multimesh->motion_vectors_last_change != frame) {
  1684. multimesh->motion_vectors_previous_offset = multimesh->motion_vectors_current_offset;
  1685. multimesh->motion_vectors_current_offset = multimesh->instances - multimesh->motion_vectors_current_offset;
  1686. multimesh->motion_vectors_last_change = frame;
  1687. }
  1688. }
  1689. {
  1690. const float *r = p_buffer.ptr();
  1691. RD::get_singleton()->buffer_update(multimesh->buffer, multimesh->motion_vectors_current_offset * multimesh->stride_cache * sizeof(float), p_buffer.size() * sizeof(float), r);
  1692. if (multimesh->motion_vectors_enabled && !used_motion_vectors) {
  1693. // Motion vectors were just enabled, and the other half of the buffer will be empty.
  1694. // Need to ensure that both halves are filled for correct operation.
  1695. RD::get_singleton()->buffer_update(multimesh->buffer, multimesh->motion_vectors_previous_offset * multimesh->stride_cache * sizeof(float), p_buffer.size() * sizeof(float), r);
  1696. }
  1697. multimesh->buffer_set = true;
  1698. }
  1699. if (multimesh->data_cache.size()) {
  1700. float *cache_data = multimesh->data_cache.ptrw();
  1701. memcpy(cache_data + (multimesh->motion_vectors_current_offset * multimesh->stride_cache), p_buffer.ptr(), p_buffer.size() * sizeof(float));
  1702. _multimesh_mark_all_dirty(multimesh, true, true); //update AABB
  1703. } else if (multimesh->mesh.is_valid()) {
  1704. //if we have a mesh set, we need to re-generate the AABB from the new data
  1705. const float *data = p_buffer.ptr();
  1706. if (multimesh->custom_aabb == AABB()) {
  1707. _multimesh_re_create_aabb(multimesh, data, multimesh->instances);
  1708. multimesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_AABB);
  1709. }
  1710. }
  1711. }
  1712. RID MeshStorage::_multimesh_get_buffer_rd_rid(RID p_multimesh) const {
  1713. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1714. ERR_FAIL_NULL_V(multimesh, RID());
  1715. return multimesh->buffer;
  1716. }
  1717. Vector<float> MeshStorage::_multimesh_get_buffer(RID p_multimesh) const {
  1718. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1719. ERR_FAIL_NULL_V(multimesh, Vector<float>());
  1720. if (multimesh->buffer.is_null()) {
  1721. return Vector<float>();
  1722. } else {
  1723. Vector<float> ret;
  1724. ret.resize(multimesh->instances * multimesh->stride_cache);
  1725. float *w = ret.ptrw();
  1726. if (multimesh->data_cache.size()) {
  1727. const uint8_t *r = (uint8_t *)multimesh->data_cache.ptr() + multimesh->motion_vectors_current_offset * multimesh->stride_cache * sizeof(float);
  1728. memcpy(w, r, ret.size() * sizeof(float));
  1729. } else {
  1730. Vector<uint8_t> buffer = RD::get_singleton()->buffer_get_data(multimesh->buffer);
  1731. const uint8_t *r = buffer.ptr() + multimesh->motion_vectors_current_offset * multimesh->stride_cache * sizeof(float);
  1732. memcpy(w, r, ret.size() * sizeof(float));
  1733. }
  1734. return ret;
  1735. }
  1736. }
  1737. void MeshStorage::_multimesh_set_visible_instances(RID p_multimesh, int p_visible) {
  1738. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1739. ERR_FAIL_NULL(multimesh);
  1740. ERR_FAIL_COND(p_visible < -1 || p_visible > multimesh->instances);
  1741. if (multimesh->visible_instances == p_visible) {
  1742. return;
  1743. }
  1744. if (multimesh->data_cache.size()) {
  1745. // There is a data cache, but we may need to update some sections.
  1746. _multimesh_mark_all_dirty(multimesh, false, true);
  1747. int start = multimesh->visible_instances >= 0 ? multimesh->visible_instances : multimesh->instances;
  1748. for (int i = start; i < p_visible; i++) {
  1749. _multimesh_mark_dirty(multimesh, i, true);
  1750. }
  1751. }
  1752. multimesh->visible_instances = p_visible;
  1753. multimesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MULTIMESH_VISIBLE_INSTANCES);
  1754. }
  1755. int MeshStorage::_multimesh_get_visible_instances(RID p_multimesh) const {
  1756. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1757. ERR_FAIL_NULL_V(multimesh, 0);
  1758. return multimesh->visible_instances;
  1759. }
  1760. void MeshStorage::_multimesh_set_custom_aabb(RID p_multimesh, const AABB &p_aabb) {
  1761. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1762. ERR_FAIL_NULL(multimesh);
  1763. multimesh->custom_aabb = p_aabb;
  1764. multimesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_AABB);
  1765. }
  1766. AABB MeshStorage::_multimesh_get_custom_aabb(RID p_multimesh) const {
  1767. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1768. ERR_FAIL_NULL_V(multimesh, AABB());
  1769. return multimesh->custom_aabb;
  1770. }
  1771. AABB MeshStorage::_multimesh_get_aabb(RID p_multimesh) {
  1772. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1773. ERR_FAIL_NULL_V(multimesh, AABB());
  1774. if (multimesh->custom_aabb != AABB()) {
  1775. return multimesh->custom_aabb;
  1776. }
  1777. if (multimesh->aabb_dirty) {
  1778. _update_dirty_multimeshes();
  1779. }
  1780. return multimesh->aabb;
  1781. }
  1782. MeshStorage::MultiMeshInterpolator *MeshStorage::_multimesh_get_interpolator(RID p_multimesh) const {
  1783. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1784. ERR_FAIL_NULL_V_MSG(multimesh, nullptr, "Multimesh not found: " + itos(p_multimesh.get_id()));
  1785. return &multimesh->interpolator;
  1786. }
  1787. void MeshStorage::_update_dirty_multimeshes() {
  1788. while (multimesh_dirty_list) {
  1789. MultiMesh *multimesh = multimesh_dirty_list;
  1790. if (multimesh->data_cache.size()) { //may have been cleared, so only process if it exists
  1791. uint32_t visible_instances = multimesh->visible_instances >= 0 ? multimesh->visible_instances : multimesh->instances;
  1792. uint32_t buffer_offset = multimesh->motion_vectors_current_offset * multimesh->stride_cache;
  1793. const float *data = multimesh->data_cache.ptr() + buffer_offset;
  1794. uint32_t total_dirty_regions = multimesh->data_cache_dirty_region_count + multimesh->previous_data_cache_dirty_region_count;
  1795. if (total_dirty_regions != 0) {
  1796. uint32_t data_cache_dirty_region_count = Math::division_round_up(multimesh->instances, (int)MULTIMESH_DIRTY_REGION_SIZE);
  1797. uint32_t visible_region_count = visible_instances == 0 ? 0 : Math::division_round_up(visible_instances, (uint32_t)MULTIMESH_DIRTY_REGION_SIZE);
  1798. uint32_t region_size = multimesh->stride_cache * MULTIMESH_DIRTY_REGION_SIZE * sizeof(float);
  1799. if (total_dirty_regions > 32 || total_dirty_regions > visible_region_count / 2) {
  1800. //if there too many dirty regions, or represent the majority of regions, just copy all, else transfer cost piles up too much
  1801. RD::get_singleton()->buffer_update(multimesh->buffer, buffer_offset * sizeof(float), MIN(visible_region_count * region_size, multimesh->instances * (uint32_t)multimesh->stride_cache * (uint32_t)sizeof(float)), data);
  1802. } else {
  1803. //not that many regions? update them all
  1804. for (uint32_t i = 0; i < visible_region_count; i++) {
  1805. if (multimesh->data_cache_dirty_regions[i] || multimesh->previous_data_cache_dirty_regions[i]) {
  1806. uint32_t offset = i * region_size;
  1807. uint32_t size = multimesh->stride_cache * (uint32_t)multimesh->instances * (uint32_t)sizeof(float);
  1808. uint32_t region_start_index = multimesh->stride_cache * MULTIMESH_DIRTY_REGION_SIZE * i;
  1809. RD::get_singleton()->buffer_update(multimesh->buffer, buffer_offset * sizeof(float) + offset, MIN(region_size, size - offset), &data[region_start_index]);
  1810. }
  1811. }
  1812. }
  1813. memcpy(multimesh->previous_data_cache_dirty_regions, multimesh->data_cache_dirty_regions, data_cache_dirty_region_count * sizeof(bool));
  1814. memset(multimesh->data_cache_dirty_regions, 0, data_cache_dirty_region_count * sizeof(bool));
  1815. multimesh->previous_data_cache_dirty_region_count = multimesh->data_cache_dirty_region_count;
  1816. multimesh->data_cache_dirty_region_count = 0;
  1817. }
  1818. if (multimesh->aabb_dirty) {
  1819. //aabb is dirty..
  1820. multimesh->aabb_dirty = false;
  1821. if (multimesh->custom_aabb == AABB()) {
  1822. _multimesh_re_create_aabb(multimesh, data, visible_instances);
  1823. multimesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_AABB);
  1824. }
  1825. }
  1826. }
  1827. multimesh_dirty_list = multimesh->dirty_list;
  1828. multimesh->dirty_list = nullptr;
  1829. multimesh->dirty = false;
  1830. }
  1831. multimesh_dirty_list = nullptr;
  1832. }
  1833. /* SKELETON API */
  1834. RID MeshStorage::skeleton_allocate() {
  1835. return skeleton_owner.allocate_rid();
  1836. }
  1837. void MeshStorage::skeleton_initialize(RID p_rid) {
  1838. skeleton_owner.initialize_rid(p_rid, Skeleton());
  1839. }
  1840. void MeshStorage::skeleton_free(RID p_rid) {
  1841. _update_dirty_skeletons();
  1842. skeleton_allocate_data(p_rid, 0);
  1843. Skeleton *skeleton = skeleton_owner.get_or_null(p_rid);
  1844. skeleton->dependency.deleted_notify(p_rid);
  1845. skeleton_owner.free(p_rid);
  1846. }
  1847. void MeshStorage::_skeleton_make_dirty(Skeleton *skeleton) {
  1848. if (!skeleton->dirty) {
  1849. skeleton->dirty = true;
  1850. skeleton->dirty_list = skeleton_dirty_list;
  1851. skeleton_dirty_list = skeleton;
  1852. }
  1853. }
  1854. void MeshStorage::skeleton_allocate_data(RID p_skeleton, int p_bones, bool p_2d_skeleton) {
  1855. Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton);
  1856. ERR_FAIL_NULL(skeleton);
  1857. ERR_FAIL_COND(p_bones < 0);
  1858. if (skeleton->size == p_bones && skeleton->use_2d == p_2d_skeleton) {
  1859. return;
  1860. }
  1861. skeleton->size = p_bones;
  1862. skeleton->use_2d = p_2d_skeleton;
  1863. skeleton->uniform_set_3d = RID();
  1864. if (skeleton->buffer.is_valid()) {
  1865. RD::get_singleton()->free(skeleton->buffer);
  1866. skeleton->buffer = RID();
  1867. skeleton->data.clear();
  1868. skeleton->uniform_set_mi = RID();
  1869. }
  1870. if (skeleton->size) {
  1871. skeleton->data.resize(skeleton->size * (skeleton->use_2d ? 8 : 12));
  1872. skeleton->buffer = RD::get_singleton()->storage_buffer_create(skeleton->data.size() * sizeof(float));
  1873. memset(skeleton->data.ptr(), 0, skeleton->data.size() * sizeof(float));
  1874. _skeleton_make_dirty(skeleton);
  1875. {
  1876. Vector<RD::Uniform> uniforms;
  1877. {
  1878. RD::Uniform u;
  1879. u.binding = 0;
  1880. u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  1881. u.append_id(skeleton->buffer);
  1882. uniforms.push_back(u);
  1883. }
  1884. skeleton->uniform_set_mi = RD::get_singleton()->uniform_set_create(uniforms, skeleton_shader.version_shader[0], SkeletonShader::UNIFORM_SET_SKELETON);
  1885. }
  1886. }
  1887. skeleton->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_SKELETON_DATA);
  1888. }
  1889. int MeshStorage::skeleton_get_bone_count(RID p_skeleton) const {
  1890. Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton);
  1891. ERR_FAIL_NULL_V(skeleton, 0);
  1892. return skeleton->size;
  1893. }
  1894. void MeshStorage::skeleton_bone_set_transform(RID p_skeleton, int p_bone, const Transform3D &p_transform) {
  1895. Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton);
  1896. ERR_FAIL_NULL(skeleton);
  1897. ERR_FAIL_INDEX(p_bone, skeleton->size);
  1898. ERR_FAIL_COND(skeleton->use_2d);
  1899. float *dataptr = skeleton->data.ptr() + p_bone * 12;
  1900. dataptr[0] = p_transform.basis.rows[0][0];
  1901. dataptr[1] = p_transform.basis.rows[0][1];
  1902. dataptr[2] = p_transform.basis.rows[0][2];
  1903. dataptr[3] = p_transform.origin.x;
  1904. dataptr[4] = p_transform.basis.rows[1][0];
  1905. dataptr[5] = p_transform.basis.rows[1][1];
  1906. dataptr[6] = p_transform.basis.rows[1][2];
  1907. dataptr[7] = p_transform.origin.y;
  1908. dataptr[8] = p_transform.basis.rows[2][0];
  1909. dataptr[9] = p_transform.basis.rows[2][1];
  1910. dataptr[10] = p_transform.basis.rows[2][2];
  1911. dataptr[11] = p_transform.origin.z;
  1912. _skeleton_make_dirty(skeleton);
  1913. }
  1914. Transform3D MeshStorage::skeleton_bone_get_transform(RID p_skeleton, int p_bone) const {
  1915. Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton);
  1916. ERR_FAIL_NULL_V(skeleton, Transform3D());
  1917. ERR_FAIL_INDEX_V(p_bone, skeleton->size, Transform3D());
  1918. ERR_FAIL_COND_V(skeleton->use_2d, Transform3D());
  1919. const float *dataptr = skeleton->data.ptr() + p_bone * 12;
  1920. Transform3D t;
  1921. t.basis.rows[0][0] = dataptr[0];
  1922. t.basis.rows[0][1] = dataptr[1];
  1923. t.basis.rows[0][2] = dataptr[2];
  1924. t.origin.x = dataptr[3];
  1925. t.basis.rows[1][0] = dataptr[4];
  1926. t.basis.rows[1][1] = dataptr[5];
  1927. t.basis.rows[1][2] = dataptr[6];
  1928. t.origin.y = dataptr[7];
  1929. t.basis.rows[2][0] = dataptr[8];
  1930. t.basis.rows[2][1] = dataptr[9];
  1931. t.basis.rows[2][2] = dataptr[10];
  1932. t.origin.z = dataptr[11];
  1933. return t;
  1934. }
  1935. void MeshStorage::skeleton_bone_set_transform_2d(RID p_skeleton, int p_bone, const Transform2D &p_transform) {
  1936. Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton);
  1937. ERR_FAIL_NULL(skeleton);
  1938. ERR_FAIL_INDEX(p_bone, skeleton->size);
  1939. ERR_FAIL_COND(!skeleton->use_2d);
  1940. float *dataptr = skeleton->data.ptr() + p_bone * 8;
  1941. dataptr[0] = p_transform.columns[0][0];
  1942. dataptr[1] = p_transform.columns[1][0];
  1943. dataptr[2] = 0;
  1944. dataptr[3] = p_transform.columns[2][0];
  1945. dataptr[4] = p_transform.columns[0][1];
  1946. dataptr[5] = p_transform.columns[1][1];
  1947. dataptr[6] = 0;
  1948. dataptr[7] = p_transform.columns[2][1];
  1949. _skeleton_make_dirty(skeleton);
  1950. }
  1951. Transform2D MeshStorage::skeleton_bone_get_transform_2d(RID p_skeleton, int p_bone) const {
  1952. Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton);
  1953. ERR_FAIL_NULL_V(skeleton, Transform2D());
  1954. ERR_FAIL_INDEX_V(p_bone, skeleton->size, Transform2D());
  1955. ERR_FAIL_COND_V(!skeleton->use_2d, Transform2D());
  1956. const float *dataptr = skeleton->data.ptr() + p_bone * 8;
  1957. Transform2D t;
  1958. t.columns[0][0] = dataptr[0];
  1959. t.columns[1][0] = dataptr[1];
  1960. t.columns[2][0] = dataptr[3];
  1961. t.columns[0][1] = dataptr[4];
  1962. t.columns[1][1] = dataptr[5];
  1963. t.columns[2][1] = dataptr[7];
  1964. return t;
  1965. }
  1966. void MeshStorage::skeleton_set_base_transform_2d(RID p_skeleton, const Transform2D &p_base_transform) {
  1967. Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton);
  1968. ERR_FAIL_NULL(skeleton);
  1969. ERR_FAIL_COND(!skeleton->use_2d);
  1970. skeleton->base_transform_2d = p_base_transform;
  1971. }
  1972. void MeshStorage::_update_dirty_skeletons() {
  1973. while (skeleton_dirty_list) {
  1974. Skeleton *skeleton = skeleton_dirty_list;
  1975. if (skeleton->size) {
  1976. RD::get_singleton()->buffer_update(skeleton->buffer, 0, skeleton->data.size() * sizeof(float), skeleton->data.ptr());
  1977. }
  1978. skeleton_dirty_list = skeleton->dirty_list;
  1979. skeleton->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_SKELETON_BONES);
  1980. skeleton->version++;
  1981. skeleton->dirty = false;
  1982. skeleton->dirty_list = nullptr;
  1983. }
  1984. skeleton_dirty_list = nullptr;
  1985. }
  1986. void MeshStorage::skeleton_update_dependency(RID p_skeleton, DependencyTracker *p_instance) {
  1987. Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton);
  1988. ERR_FAIL_NULL(skeleton);
  1989. p_instance->update_dependency(&skeleton->dependency);
  1990. }